Text S2. Method of Lagrange multipliers.

Olga Kononova^{1,2}, Joost Snijder³, Yaroslav Kholodov^{2,4}, Kenneth A. Marx¹, Gijs J. L. Wuite³, Wouter H. $\text{Roos}^{3,*}$, Valeri Barsegov^{1,2,*}.

1 Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA

2 Moscow Institute of Physics and Technology, Moscow Region, 141700, Russia

3 Natuur- en Sterrenkunde and LaserLab, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands

4 Institute of Computer Aided Design Russian Academy of Science, Moscow, 123056, Russia

To study the dynamical changes in x_H (Hertzian deformation) and x_b (beam-bending deformation) and their contribution to the total deformation $X=x_H + x_b$ (see Fig. 4 in the main text), we employed the method of Lagrange multipliers [\[1\]](#page-1-0). This method allows us to find the values of x_H and x_b that minimize the total deformation force, $F(x_H, x_b) = k_H x_H^{3/2} + K_b x_b s(x_b)$ (see the inset Fig. 4 in main text), subject to the constraint: $X=x_H+x_b$. To that end, we constructed the Lagrange function

$$
\Lambda(x_H, x_b, \lambda) = F(x_H, x_b) + \lambda g(x_H, x_b),\tag{S1}
$$

where

$$
g(x_H, x_b) = x_H + x_b - X \tag{S2}
$$

Here λ is the Lagrange multiplier. By calculating the partial derivatives of $\Lambda(x_H, x_b, \lambda)$ with respect to each of the two variables x_H and x_b , we obtained equations of the form

$$
\nabla_{x_H, x_b} F(x_H, x_b) = -\lambda \nabla_{x_H, x_b} g(x_H, x_b)
$$
\n(S3)

Next, by eliminating λ we arrived at the system of two equations:

$$
3/2k_H x_H^{1/2} = K_b s(x_b) + K_b x_b s'(x_b)
$$
\n(S4)

$$
X = x_H + x_b \tag{S5}
$$

For small deformations x_b , we expand the Weibull survival probability $s(x_b) = \exp[-(K_b x_b/F_b^*)^m]$ in powers of the exponent $z = K_bx_b/F_b^*$, and retain the terms up to the first order in z. Then, Eq. [\(S4\)](#page-0-0) becomes:

$$
3/2k_H x_H^{1/2} - K_b (1 - \left(\frac{K_b x_b}{F_b^*}\right)^m)(1 - m\left(\frac{K_b x_b}{F_b^*}\right)^m) = 0
$$
 (S6)

Eq. [\(S5\)](#page-0-1) allows us to eliminate x_H by substituting $x_H=X-x_b$ into Eq. [\(S6\)](#page-0-2) above:

$$
3/2k_H(X - x_b)^{1/2} - K_b(1 - \left(\frac{K_b x_b}{F_b^*}\right)^m)(1 - m\left(\frac{K_b x_b}{F_b^*}\right)^m) = 0
$$
 (S7)

Simplifying Eq. [\(S7\)](#page-0-3) and grouping terms of the same power in x_b , we arrive at the following polynomial equation:

$$
a_1 x_b^{4m} + a_2 x_b^{3m} + a_3 x_b^{2m} + a_4 x_b^{m} + a_5 x_b + a_6 = 0
$$
 (S8)

with the following constant coefficients:

$$
a_1 = m^2 K_b^2 \left(\frac{K_b}{F_b^*}\right)^{4m}
$$

\n
$$
a_2 = -2m(1+m)K_b^2 \left(\frac{K_b}{F_b^*}\right)^{3m}
$$

\n
$$
a_3 = (1+4m+m^2)K_b^2 \left(\frac{K_b}{F_b^*}\right)^{2m}
$$

\n
$$
a_4 = -2(1+m)K_b^2 \left(\frac{K_b}{F_b^*}\right)^m
$$

\n
$$
a_5 = \frac{9}{4}k_H^2
$$

\n
$$
a_6 = K_b^2 - \frac{9}{4}k_H^2 X
$$
\n(S9)

Eq. [\(S8\)](#page-0-4) can be solved numerically (for example, using Mathematica software) for a given set of parameters k_H , K_b , F_b^* , and m , and for each specified value of the total deformation X. The obtained numerical solution for x_H and x_b can then be substituted into the expression for $F(x_H, x_b)$ (Eq. (14) in the main text).

References

[1] McQuarrie DA. Statistical Mechanics. University Science Books; 2000.