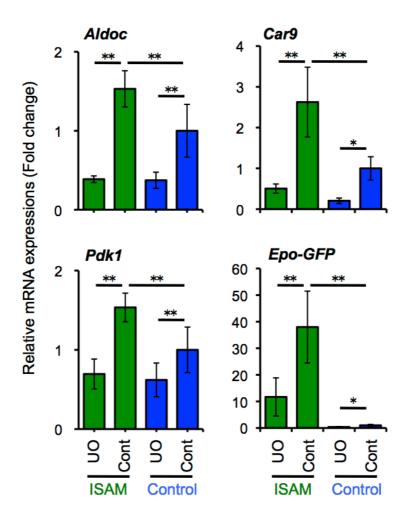
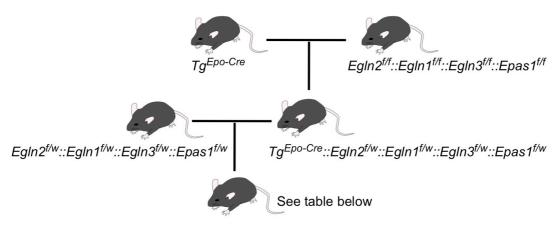

Supplemental Information

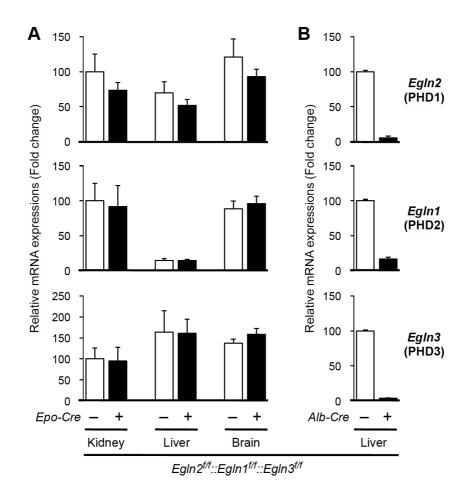

(6 figures and 1 table)

Erythropoietin Synthesis in Renal Myofibroblasts Is Restored by Activation of Hypoxia Signaling

Tomokazu Souma, Masahiro Nezu, Daisuke Nakano, Shun Yamazaki, Ikuo Hirano, Hiroki Sekine, Takashi Dan, Kotaro Takeda, Guo-Hua Fong, Akira Nishiyama, Sadayoshi Ito, Toshio Miyata, Masayuki Yamamoto and Norio Suzuki



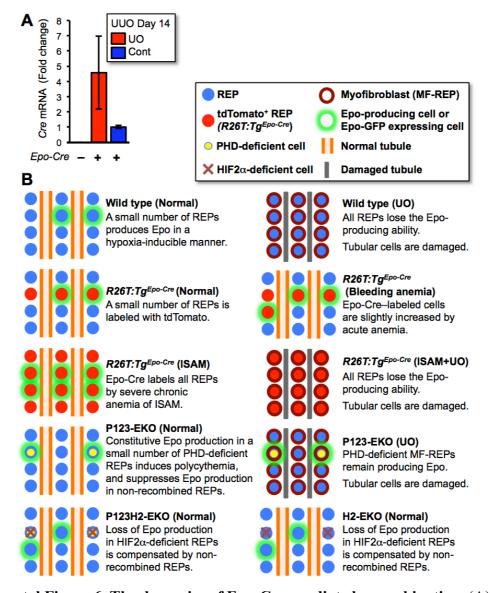
Supplemental Figure 1. Decrease in mitochondrial membrane potential upon injury in ISAM kidneys. (**A**) Schematic protocol for detecting mitochondrial membrane potential in ISAM kidneys by two-photon microscopic imaging at indicated time points (i-vi) before and after UUO treatment. To detect mitochondrial membrane potential, TMRM dye was intravenously injected into ISAM at the indicated time points. (**B**) Activity of the *Epo*-gene transcription (GFP, bright green spots) and mitochondrial membrane potential (TMRM, red) in ISAM kidneys at time points indicated in **A** (i-vi) are shown. Asterisks indicate green autofluorescence in tubules. Note that red fluorescence of TMRM was diminished within 4 hours after UUO treatment even with the additional injection of TMRM (vi). GFP signals of ON-REPs are mainly distributed in oxygen-poor areas negative for TMRM signals.


Supplemental Figure 2. Expression of hypoxia-inducible genes in kidneys upon injury.

For validation of Figure 3B, RT-qPCR analyses of the indicated genes in the ureteral obstructed (UO) and contralateral (Cont) kidneys of ISAM ($Epo^{GFP/GFP}$:: Tg^{Epo3} genotype) or the control littermate mice ($Epo^{GFP/wt}$:: Tg^{Epo3} genotype) were conducted at 2 days after UUO treatment. Data from the contralateral kidneys of control mice were set as 1 (mean±s.d.). *P<0.05, **P<0.01 (n=4) by one-way ANOVA with Tukey-Kramer test for multiple comparisons.

Gene	Protein	Nomenclature	Genotype
Egln1 Egln2 Egln3 Epas1	PHD2 PHD1 PHD3 HIF2α	Control (Cre-) Control (Cre+) P1-EKO P2-EKO P3-EKO	Mice without $Tg^{Epo-Cre}$ Mice with $Tg^{Epo-Cre}$ and each heterozygous allele $Tg^{Epo-Cre}$:: $Egln2^{f/f}$:: $Egln1^{f/w}$:: $Egln3^{f/w}$:: $Epas1^{w/w}$ or f/w $Tg^{Epo-Cre}$:: $Egln2^{f/w}$:: $Egln1^{f/f}$:: $Egln3^{f/w}$:: $Epas1^{w/w}$ or f/w $Tg^{Epo-Cre}$:: $Egln2^{f/w}$:: $Egln1^{f/w}$:: $Egln3^{f/f}$:: $Epas1^{w/w}$ or f/w
		P12-EKO P13-EKO P13-EKO P23-EKO P123-EKO P123H2-EKO H2-EKO	$Tg^{Epo-Cre}$::Egln2 f/f ::Egln1 f/f ::Egln3 f/w ::Epas1 w/w or f/w $Tg^{Epo-Cre}$::Egln2 f/f ::Egln1 f/w ::Egln3 f/f ::Epas1 w/w or f/w $Tg^{Epo-Cre}$::Egln2 f/w ::Egln1 f/f ::Egln3 f/f ::Epas1 w/w or f/w $Tg^{Epo-Cre}$::Egln2 f/w ::Egln1 f/f ::Egln3 f/f ::Epas1 w/w or f/w $Tg^{Epo-Cre}$::Egln2 f/f ::Egln1 f/f ::Egln3 f/f ::Epas1 f/f $Tg^{Epo-Cre}$::Egln2 f/f ::Egln1 f/f ::Egln3 f/f ::Epas1 f/f

Supplemental Figure 3. Breeding strategy for Epo-producing cell-specific targeting of genes for PHDs and HIF2 α .



Supplemental Figure 4. Expression of genes for PHDs in kidneys, livers, and

brains. (**A**) Gene-targeting efficiency by the *Epo-Cre* transgene. RT-qPCR analyses of genes for PHDs were conducted using P123-EKO (*Epo-Cre*⁺) and the control (*Epo-Cre*⁻) littermate mice. (**B**) Expression levels of genes for PHDs in livers by the *Alb-Cre* transgene. Data from the kidneys (A) or livers (B) of control mice were set as 100 (mean±s.d., n=4). The data indicate that the recombination efficiency of the *Epo-Cre* transgene is very low in whole organ samples, whereas the recombinant efficacy of the *Alb-Cre* transgene, which expresses Cre recombinase exclusively in hepatocytes, is very high. Theses findings are consistent with our previous reports showing that *Epo-Cre*—mediated recombination is induced in a small fraction of total REPs under physiological conditions, and that the population of total REPs is less than 5% of the cells in a whole kidney. Therefore, significant changes in levels of mRNAs for PHDs in individual *Epo-Cre*-expressing cells were not observed in whole kidney samples from P123-EKO mice. Polycythemia may be caused by continuous Epo production in a small number of PHD-deficient REPs even though the induction is undetectable in whole kidney samples.

treatment. (A) REPs were tagged and traced with tdTomato expression (red) in kidneys of $R26T::Tg^{Epo-Cre}$ mice. Cryo-sections of kidneys subjected to ureteral obstruction (UO) for 7 and 14 days were stained with α SMA antibodies (green), followed by counterstaining with DAPI (blue). Note that Epo-Cre-tagged cells (positive for tdTomato expression) were also positive for α SMA (arrow). (B) Enrichment of Epo-Cre-tagged cells (red, MF-REPs) in kidneys of $R26T::Tg^{Epo-Cre}$ mice by UO-injury for 7 and 14 days. The percentages of Epo-Cre-tagged cells in a cryo-section were calculated relative to DAPI-positive total cells. Scale bars: 100 μ m.

Supplemental Figure 6. The dynamics of Epo-Cre-mediated recombination. (A)

Expression of the *Epo-Cre* transgene in kidneys from P123-EKO (Cre⁺) and littermate control (Cre⁻) mice at 14 days after UUO treatment. Data from the Cont kidneys were set as 1 (mean±s.d., n=3). Similar to the endogenous *Epo*-gene expression, the *Epo-Cre* transgene expression, which is directed by the *Epo*-gene regulatory elements in the BAC-based transgene, is higher in UO-kidneys than the Cont kidneys in P123-EKO mice. (**B**) A schema of Epo-Cre—mediated recombination in normal, anemic, and injured kidneys. Epo-Cre is active only in a small subset of total REPs in *R26T:Tg* ^{Epo-Cre} mice. The activity is slightly enhanced by acute anemia, and almost all REPs are labeled in chronic severe anemia of ISAM.^{2,3} The *Epo*-gene expression from P123-EKO kidneys is not higher than that of the control mouse kidneys (see Figure 4E), probably due to suppression of the *Epo*-gene expression in non-recombined REPs by polycythemia of P123-EKO mice. PHD-deficient REPs retain the Epo-producing ability after myofibroblastic transformation.

Supplemental Table 1. Oligo-nucleotide sequences used in this study.

For real-time PCR with SYBR Green

Gene	Sense primer	Antisense primer
Epo-GFP	GGTGGATCCTAAAGCAGCAG	GAAGACTTGCAGCGTGGAC
Acta2	CCCACCCAGAGTGGAGAA	ACATAGCTGGAGCAGCGTCT
Collal	AGACATGTTCAGCTTTGTGGAC	GCAGCTGACTTCAGGGATG
Col3a1	TCCCCTGGAATCTGTGAATC	TGAGTCGAATTGGGGAGAAT
<i>Il6</i>	CTGCAAGAGACTTCCATCCAG	AGTGGTATAGACAGGTCTGTTGG
Tnfa	ATGAGAAGTTCCCAAATGGCC	CCTCCACTTGGTGGTTTGCTA
Tgfb1	TGGAGCAACATGTGGAACTC	CAGCAGCCGGTTACCAAG
Itgam	ATGGACGCTGATGGCAATACC	TCCCCATTCACGTCTCCCA
<i>Ptprc</i>	GATTGCTGATGAGGGCAGAC	CTGAATACCCGTGGAATGCT
Emr1	CCTGGACGAATCCTGTGAAG	GGTGGGACCACAGAGAGTTG
Pdk1	GTTGAAACGTCCCGTGCT	GCGTGATATGGGCAATCC
Vegfa	CAGGCTGCTGTAACGATGAA	CTATGTGCTGGCTTTGGTGA
Car9	GCGGATCCACCCGATGGGGA	TGACTGTGGCCACCCCTTT
Ldha	CGCCCCCATCGT	GTTGCCATCTTGGACTTTGAATC
Aldoc	CGTAGGCATCAAGGTTGACA	GAGCACAGCGTTCCAAGAG
Egln1	TAAACGGCCGAACGAAAGC	GGGTTATCAACGTGACGGACA
Egln2	ATGGCTCACGTGGACGCAGTAA	CATTGCCTGGATAACACGCCAC
Egln3	CTATGTCAAGGAGCGGTCCAA	GTCCACATGGCGAACATAACC
Epo-Cre	ACGTTCACCGGCATCAACGT	CTGCATTACCGGTCGATGCA

For real-time PCR primers with Taqman probe

Gene	Sense primer	Antisense primer
rRNA	CGGCTACCACATCCAAGGAA	GCTGGAATTACCGCGGCT
	(FAM-labeled probe	TGCTGGCACCAGACTTGCCCTC)
Еро	GAGGCAGAAAATGTCACGATG	CTTCCACCTCCATTCTTTTCC
	(FAM-labeled probe	TGCAGAAGGTCCCAGACTGAGTGAAAATA)

For mouse genotyping

Gene	Sense primer	Antisense primer
Egln1	CAAATGGAGATGGAAGATGC	TCAACTCGAGCTGGAAACC
Egln2	TGGGCGCTGCATCACCTGTATCT	ACTGGTGAAGCCTGTAGCCTGTC
Egln3	ATGGCCGCTGTATCACCTGTAT	CCACGTTAACTCTAGAGCCACTGA
Epas 1	CAGGCAGTATGCCTGGCTAATTCCAGTT	CTTCTTCCATCATCTGGGATCTGGGACT
Tg^{Epo3}	ACAGGAAGGTCTCACATAGCC	TACAGCTAGGAGAGTTGTGTGG
GFP	CTGAAGTTCATCTGCACCACC	GAAGTTGTACTCCAGCTTGTGC
Cre	ACGTTCACCGGCATCAACGT	CTGCATTACCGGTCGATGCA
R26T	CTGTTCCTGTACGGCATGG	GGCATTAAAGCAGCGTATCC

Supplemental References:

- 1. Postic, C, Shiota, M, Niswender, KD, Jetton, TL, Chen, Y, Moates, JM, Shelton, KD, Lindner, J, Cherrington, AD, Magnuson, MA: Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. *J Biol Chem*, 274: 305-315, 1999.
- 2. Yamazaki, S, Souma, T, Hirano, I, Pan, X, Minegishi, N, Suzuki, N, Yamamoto, M: A mouse model of adult-onset anaemia due to erythropoietin deficiency. *Nat Commun*, 4: 1950, 2013.
- 3. Souma, T, Yamazaki, S, Moriguchi, T, Suzuki, N, Hirano, I, Pan, X, Minegishi, N, Abe, M, Kiyomoto, H, Ito, S, Yamamoto, M: Plasticity of renal erythropoietin-producing cells governs fibrosis. *J Am Soc Nephrol*, 24: 1599-1616, 2013.