SUPPLEMENTARY MATERIALS

Figures S1 - S4

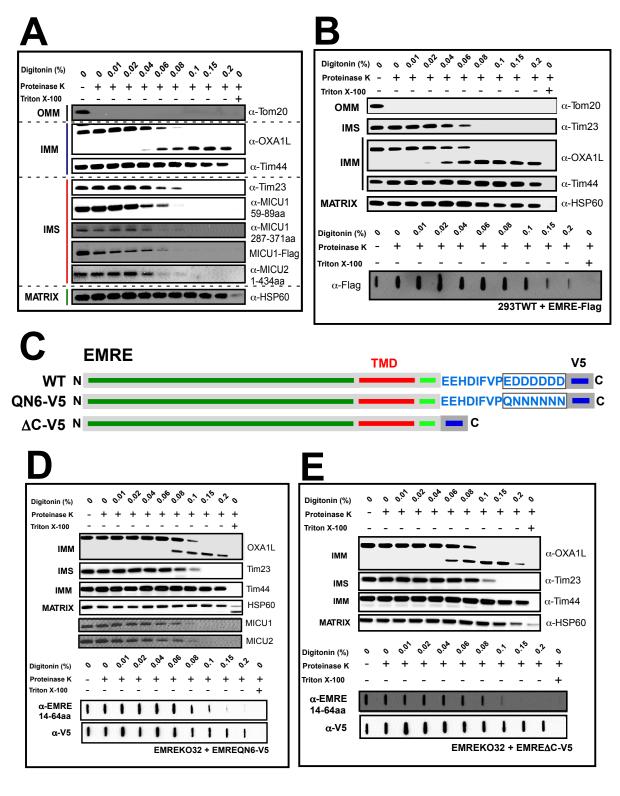


Figure S1

Figure S1. Related to Figure 2. Proteinase sensitivity assays establishing the topology of MICU1, MICU2 and EMRE within the mitochondrion

- (A) MICU1 and MICU2 are facing the inter-membrane space (IMS). MICU1 localization was probed with three different antibodies, with specificities for different regions in the MICU1 sequence indicated.
- (B) The flag-tagged carboxyl terminus of EMRE is facing the mitochondrial matrix (same as EMRE-V5, Fig. 2A).
- (C) Schematic representations of V5-tagged EMRE-rescue, EMRE- Δ C and EMRE-QN6 constructs, used throughout the study.
- (D) QN6 mutations of EMRE does not affect its topology or the IMS localization of MICU1 and MICU2.
- (E) Truncation of the carboxyl terminus of EMRE does not alter its topology in the mitochondrion.

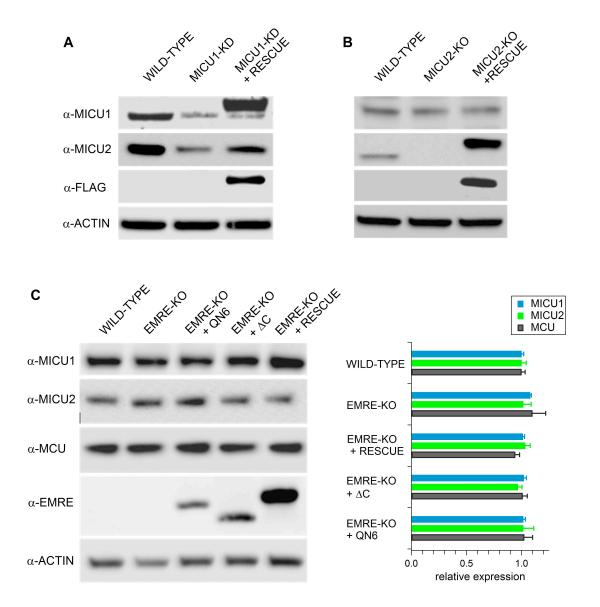


Figure S2 related to Figure 2. Biochemical validation of cell lines

- (A) Western blots with MICU1-KD and MICU1-KD + rescue cells, showing expression levels of MICU1 and MICU2.
- (B) Same as in (A) but with MICU2-KO and MICU2-KO + rescue cells.
- (C) MICU1, MICU2 and MCU expression are the same as in the wild-type cells when either EMRE-rescue or its truncated/mutated forms are expressed in EMRE-KO cells. All EMRE constructs are expressed well above the wild-type level, which was not detected in these experimental conditions.

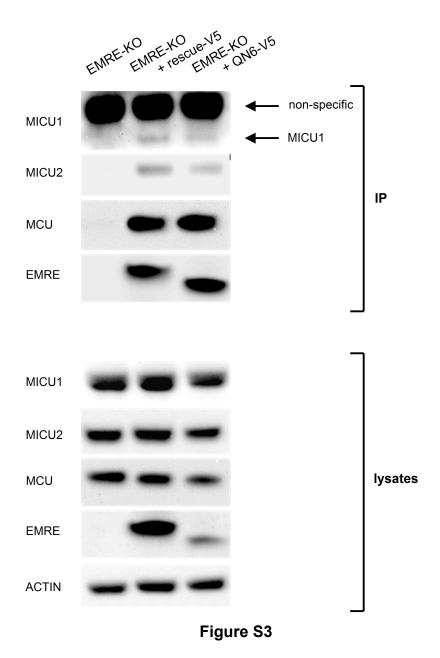


Figure S3 related to Figure 2. Mutation of the C-terminus of EMRE (QN6) does not disrupt EMRE-MCU-MICU1-MICU2 complex formation

EMRE was immunoprecipitated from HEK293 EMRE-KO cells, EMRE-KO cells rescued with WT V5-tagged EMRE (EMRE KO + rescue-V5) or V5-tagged EMRE-QN6 (EMRE-KO + QN6-V5) with anti-V5 agarose.

Immunoprecipitates and lysates immunoblotted for indicated proteins.

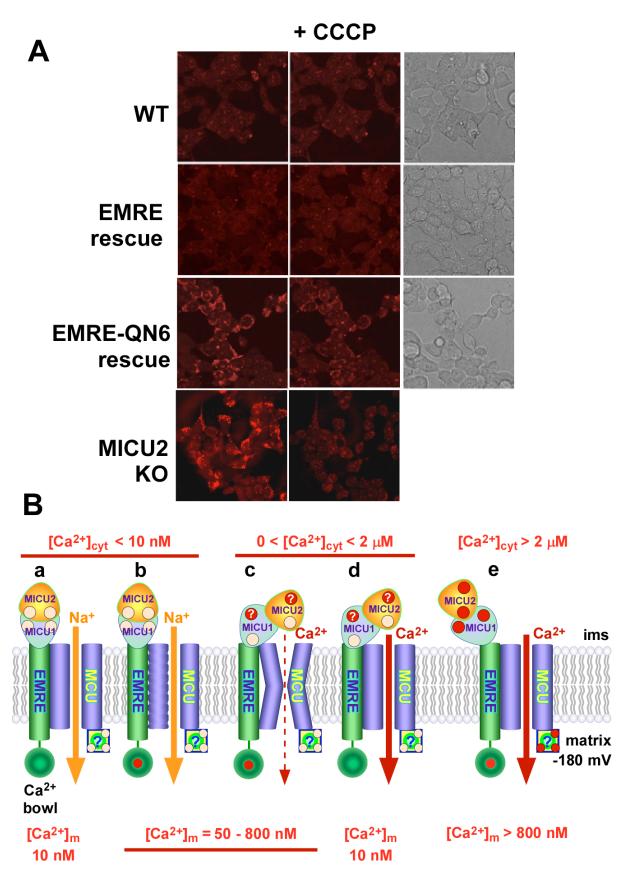


Figure S4

Figure S4 related to Figures 2-4. Rhod-2 reports mitochondrial matrix [Ca²⁺] and model for matrix and intermembrane space [Ca²⁺] regulation of MCU activity.

- (A) Rhod-2 fluorescence imaged in different HEK cell lines, as indicated, in absence and after subsequent exposure to 5-10 μM CCCP. Elevated Rhod-2 fluorescence observed in EMRE-QN6 rescue cells and MICU2 KO cells was punctate and strongly reduced by CCCP, indicating that basal mitochondria [Ca2+] was elevated in this cells compared with WT cells.
- (B) Model for MCU regulation, with Ca²⁺ sensors on both sides of the IMM: EMRE and an unknown protein (box associated with MCU in the cartoon) sense matrix [Ca²⁺] ([Ca²⁺]_m); MICU1 and/or MICU2, through their paired EF hands (red dots), represent intermembrane space (ims) cytoplasmic Ca²⁺ ([Ca²⁺]_{cyt}) sensor(s). Under normal resting conditions channel open probability is strongly reduced (gatekeeping) when sensors on both sides of the IMM are liganded with Ca^{2+} (conformation \mathbf{c} ; red dots with question marks signify Ca^{2+} binding sites possibly liganded). Channel inhibition is effective in the range of $[Ca^{2+}]_m = 50-800 \text{ nM}$, with maximal inhibition at $[Ca^{2+}]_m \sim 400 \text{ nM}$ (from I_{MiCa} biphasic matrix $[Ca^{2+}]$ dependence with apparent inhibition constant of 60 nM and apparent recovery constant of 730 nM; Figure 1D) with peak inhibition of MCU currents by ~75% at ~400 nM, and [Ca²⁺]_{cvt} between resting levels and ~ 2 mM (from permeabilized cell measurements here and in (Mallilankaraman et al., 2012); conformation c, with MICU proteins shown with unknown number of their EF hands liganded with Ca²⁺; 25% open probability indicated by dashed line). Physiological relief of MCU channel inhibition is achieved by agonist-induced elevated [Ca²⁺]_{cvt} that drives Ca²⁺ into the matrix, raising [Ca²⁺]_m to levels (>800 nM) that result in highly cooperative activation (Hill coefficient > 3) of mitochondrial Ca²⁺ influx by unknown mechanisms (conformation e, with the unknown matrix reactivation mechanisms depicted as a Ca²⁺ binding protein with multiple Ca²⁺ binding sites, and MICU proteins with EF hands fully liganded). MCU channel inhibition can also be relieved by very low [Ca²⁺]_{cvt}, independent of Ca²⁺ binding to EMRE (conformations **a** and **b**) and by low [Ca²⁺]_m, independent of the Ca²⁺ binding state of MICU proteins (conformation **d**).