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Supplementary figure 1. Crim1 is expressed in the outflow tract, mitral valve leaflets and 

coronary vascular smooth muscle cells. 

A, Periostin immunohistochemistry on an X-Gal stained Crim1+/KST264 transverse section at 

12.5 dpc. B, higher magnification view of the boxed area in A, showing periostin- and X-Gal-

positive outflow tract mesenchymal cells (arrows). C, Periostin immunohistochemistry on an 

X-Gal stained Crim1+/KST264 coronal section at 13.5 dpc. D, higher magnification view of 

boxed area in C, showing periostin- and X-Gal-positive mesenchymal cells (arrows). E, 
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Periostin immunohistochemistry on an X-Gal stained Crim1+/KST264 coronal section at 18.5 

dpc, showing periostin- and X-Gal-positive mitral valve leaflet cells (arrows). F, Transgelin 

immunohistochemistry on an X-Gal stained Crim1+/KST264 coronal section at 18.5 dpc, 

showing transgelin- and X-Gal-positive coronary vascular smooth muscle cells (arrows). 

Scale bars, A, C, 100 µm; B, D, E, 40 µm; F, 10 µm. 
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Supplementary figure 2. Congenital heart defects in Crim1KST264/KST264 embryos. 

A–C, 18.5 dpc littermate hearts stained with X-Gal to reveal Crim1-LacZ expression (blue). 

A, Crim1+/KST264 18.5 dpc heart. B, Crim1KST264/KST264 18.5 dpc heart. C, Quantification of the 
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size of the ventricular component at 18.5 dpc, showing a significant reduction in the width of 

Crim1KST264/KST264 hearts (n=7–9). D-F, Coronal sections of 18.5 dpc hearts stained with X-

Gal and counter-stained with nuclear fast red. The right atrium (RA) is labelled. D, 

Crim1+/KST264 18.5 dpc heart showing normal morphology. E,F, Crim1KST264/KST264 hearts 

displaying a prominent VSD, a communication between left and right ventricles (arrow). G, 

Another section of the heart in F, showing the VSD. H, View of the inset in G. Note the 

Crim1-LacZ-positive cells (arrows) in the IVS either side of the communication between the 

ventricles. I, Quantification of prevalence of VSDs in Crim1+/KST264 and Crim1KST264/KST264 

hearts (n=5). Z-Score -2.582. *, P<0.01, J-L, Differing ventricular epicardial morphology 

between Crim1+/KST264 and Crim1KST264/KST264 hearts. The epicardium (ep) appears less 

squamous-like in Crim1KST264/KST264 hearts (my, myocardium). L, Quantification of prevalence 

of epicardial defects, (n=13-7). Z-Score -2.7118. *, P<0.01. LV, left ventricle; RV, right 

ventricle. Scale bars D, 500 µm; H, 50 µm; K, 10 µm. 
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Supplementary figure 3. Crim1 is not necessary for specification or early development of 

the proepicardium. 

A-F, Micrographs of 9.5 dpc embryos from Crim1+/+ (A, C, E) and Crim1Δflox/Δflox (B, D, F) 

embryos stained for Gata4 mRNA expression (purple stain, A and B) and Tbx18 mRNA 

expression (purple stain, C and D). E, F, Micrographs of histological sections of whole-

mount in situ hybridization-stained embryos showing Tbx18 expression. The PE is indicated 

(arrows). Scale bars A and E, 50 µm. 
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Supplementary figure 4. Myocardial deletion of Crim1 does not affect cardiomyocyte 

proliferation and survival and thickness of compact myocardium. 

A, D representative whole mount images of X-Gal stained Crim1+/FLOX; Mlc2v- Cre; R26R 

and Crim1FLOX/FLOX; Mlc2v-Cre; R26R hearts at 13.5 dpc. B, E merged confocal images of 

DAPI (blue) and pHH3 (red), with a pHH3-positive nucleus (arrow). C, F merged confocal 

images of DAPI (blue) and CC3 (red), with a CC3-positive nucleus (arrow). G, No 

significant difference in percentage of pHH3-positive cells in the compact myocardium of left 

and right ventricles in control and mutant hearts (n=4-6). H, No significant difference in 

percentage of CC3-positive cells in the compact myocardium of left and right ventricles in 

control and mutant hearts (n=4-5). I, No significant difference in thickness of compact 

myocardium in the left ventricle of control and mutant hearts (n=3). cm, compact 

myocardium; ep, epicardium; n.s, not significant. Scale bars B, C, E, F 20 µm. 
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Supplementary figure 5. Fidelity of the WT1-Cre and WT1-CreERT2 lines. 

A-E, MF20 immunohistochemistry performed on A-C, 15.5 dpc WT1-Cre X-Gal stained 

sections showing MF20-negative epicardium (arrows) and MF20-negative EPDCs (open 

arrowheads), D, WT1-CreERT2 13.5 dpc X-gal stained section showing that most epicardial 

cells are X-Gal-positive (arrow), and E, WT1-CreERT2 17.5 dpc X-Gal stained section 

showing MF20-negative EPDCs (open arrowheads), confirming that the EPDCs are not 

cardiomyocytes. ep; epicardium. Scale bars A-C, 25µm; D-E, 50 µm. 
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Supplementary figure 6. Phospho-SMAD1/5 and phospho-AKT levels are not significantly 

changed in the epicardium or myocardium of Crim1Δflox/Δflox hearts. 

Confocal images of ventricular sections of 13.0 dpc hearts from Crim1+/Δflox (A, B) and 

Crim1Δflox/Δflox (E, F) embryos stained for phospho-SMAD1/5 (white). A and E, merged 

images of DAPI (blue) and actin (green) to delineate the myocardium with the phospho-

SMAD1/5 (white) from A and E, respectively. C, D, G, and H, Quantification of the average 

signal intensity/cell after indirect immunofluorescence to detect phospho-SMAD1/5 showed 

there was no change in the levels in the epicardium or compact myocardium of left and right 

ventricles of Crim1Δ flox/Δflox hearts in comparison to controls (n=5). Confocal images of 

ventricular sections of 13.5 dpc hearts from Crim1+/+ (I, J) and Crim1Δflox/Δflox (M, N) embryos 

stained for phospho-AKT (red). Quantification of signal intensity/ cell after 
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immunofluorescence to detect phospho-AKT revealed no change in the levels in the 

epicardium or compact myocardium of left and right ventricles of Crim1Δflox/Δflox hearts in 

comparison to controls (n=5-6). cm, compact myocardium; ep, epicardium; n.s., not 

significant. Scale bars, A, B, E, F 10µm; I, J, M, N, 50 µm. 
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Supplementary figure 7. No visible change in filamentous actin morphology in the 

epicardium or myocardium of Crim1Δflox/Δflox hearts at 13.5 dpc.  

A-F, Representative confocal images of ventricular sections of 13.5 dpc hearts from Crim1+/+ 

(A, B, C) and Crim1Δflox/Δflox (D, E, F) hearts at 13.5 dpc. A, D merged images of DAPI (blue) 

and MF20 (green) to delineate the myocardium with Phalloidin (red) from B and E, 

respectively (n=4-5). C, F, magnified views of boxed regions in B and E respectively. Scale 

bars A – F, 20 µm. 
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Supplementary figure 8. No change in the expression of key cardiac genes in Crim1Δflox/Δflox 

hearts at 17.5 dpc. 

A, qPCR with fibroblast, smooth muscle and cardiomyocyte markers showing no significant 

difference in fold change between Crim1+/+ and Crim1Δflox/Δflox ventricular samples at 17.5 

dpc. Note that for Collagen1a, P=0.0556. (n=4-5). 


