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SI. GREEN’S FUNCTION

We derive the Green’s function for the Hamiltonian given by

H = ψ†kh(k) · σψk +
1

2
U(nk − 1)(nk − 1), (S1)

where

ψk =

ck↑
ck↓

 , (S2)

σ are Pauli matrices acting on spin degrees of freedom, nk is the density operator nk = ψ†kψk,

and U is the magnitude of the repulsive interaction. The repulsive interaction is infinite-

ranged in the real space, which can be represented in a local way in the momentum space.

Thanks to the locality in the momentum space, the Green’s function can be exactly computed

for this Hamiltonian as follows.

First we perform a unitary transformationck↑
ck↓

 = U(k)

bk+

bk−

 (S3)

that diagonalizes the single-particle part of the Hamiltonian as

U †(k)[h(k) · σ]U(k) = h(k)σz. (S4)

Then the Green’s function is transformed as

Gαβ(k, τ) ≡ −〈Tτckα(τ)c†kβ〉 = −Uαa(k)Uβa′(k)〈Tτbka(τ)b†ka′〉, (S5)

where Tτ denotes the time ordering and ckα(τ) = eτHckαe
−τH .

In this basis, the Hamiltonian is diagonalized as

H|0〉 =
U

2
|0〉, (S6)

Hb†k−|0〉 = −h(k)b†k−|0〉, (S7)

Hb†k+|0〉 = h(k)b†k+|0〉, (S8)

Hb†k−b
†
k+|0〉 =

U

2
b†k−b

†
k+|0〉, (S9)
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where |0〉 is the vacuum state and h(k) = |h(k)|. Thus the expectation value is written as

〈bka(τ)b†ka′〉 =
1

Z
[〈0|bka(τ)b†ka′|0〉e

−β U
2

+ 〈0|bk−bka(τ)b†ka′b
†
k−|0〉e

βh(k)

+ 〈0|bk+bka(τ)b†ka′b
†
k+|0〉e

−βh(k)

+ 〈0|bk+bk−bka(τ)b†ka′b
†
k−b

†
k+|0〉e

−β U
2 ], (S10)

Z = eβh(k) + e−βh(k) + 2e−β
U
2 . (S11)

In the right hand side of the equation for 〈bka(τ)b†ka′〉, the forth term vanishes and other

terms are nonzero when a = a′. Thus we obtain

〈bk+(τ)b†k+〉 =
1

Z
(〈0|bk+(τ)b†k+|0〉e

−β U
2 + 〈0|bk−bk+(τ)b†k+b

†
k−|0〉e

βh(k))

=
1

Z
(eτ(−h+U

2
)−β U

2 + eτ(−h−U
2

)+βh), (S12)

〈bk−(τ)b†k−〉 =
1

Z
(〈0|bk−(τ)b†k−|0〉e

−β U
2 + 〈0|bk+bk−(τ)b†k−b

†
k+|0〉e

−βh(k))

=
1

Z
(eτ(h+U

2
)−β U

2 + eτ(h−U
2

)−βh). (S13)

Therefore, the imaginary-time Green’s function is given by

G++(k, iωn) = −
∫ β

0

dτeiωnτ 〈bk+(τ)b†k+〉

=
1

Z

(
e−βh + e−β

U
2

iωn − h+ U
2

+
eβh + e−β

U
2

iωn − h− U
2

)
, (S14)

G−−(k, iωn) = −
∫ β

0

dτeiωnτ 〈bk−(τ)b†k−〉

=
1

Z

(
e−βh + e−β

U
2

iωn + h− U
2

+
eβh + e−β

U
2

iωn + h+ U
2

)
. (S15)

A. Green’s function for T = 0

In the zero temperature (β →∞), the above Green’ function reduces to

G++(k, iωn) =
1

iωn − h− U
2

, (S16)

G−−(k, iωn) =
1

iωn + h+ U
2

. (S17)

In the original basis, the Green’s function is given by

G(k, iωn) =
1

iωn −
(
h+ U

2

)
n · σ

, n =
h

h
. (S18)
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SII. FERMI ARC

In this section, we study the Fermi arc in the WMIs. Nonvanishing topological indices

for the WMIs indicate that the Fermi arc remains in the WMIs, which we verify in the

following. Since our model [Eq. (S1)] is diagonalized at each k-point and hence we can

consider an effective two-dimensional model for each kz-sector when the system is periodic

in the z-direction. Because of the bulk-boundary correspondence, we expect that “edge

channels” for each kz form a Fermi arc. More explicitly, one can obtain the surface bound

state from the effective Hamiltonian

Heff =

[
h(k) +

U

2

]
n(k) · σ, h(k) = vF (kx, ky, kz), (S19)

by replacing the momenta kx, ky with the derivatives −i∂x,−i∂y. Away from the plane kz =

±k0z, the surface state is almost unchanged from the noninteracting case. The nontrivial

issue is how the surface state behaves as kz approaches ±k0z. Specifically, the problem

is whether the penetration depth of the surface states diverges or not with kz → ±k0z.

Intuitively, the finite gap U indicates that the length scale ξ remains finite, i.e., ξ ∼= ~vF/U .

However, it turns out not when one studies the effective Hamiltonian in Eq. (S19) and the

asymptotic behavior of the surface bound state as |x| → ∞ (here we assume ky = 0) by

tentatively taking the limit of |kx| � |kz|. In this limit, Heff
∼= (vF + U

2
|kz|−1)[−i∂xσ1 +kzσ

3],

which indicates that the penetration depth diverges with ξ = |kz|−1. In any case, the length

scale is determined by |kz|−1 even when we take into account of the higher orders in ∂x.

Therefore, the surface bound states penetrate into the bulk as kz approaches to ±k0z.

SIII. OPTICAL CONDUCTIVITY

We study the optical conductivity σ(ω) for a single WF described h(k) = vFk. In the

following, we set the Fermi velocity vF = 1, which can be always restored by the dimension

analysis.
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A. Matrix elements

Here we calculate matrix elements that we will need in evaluation of conductivities, i.e.,

〈±|σi|±〉. We first parameterize the direction of the momentum as

n = (sin θ cosφ, sin θ cosφ, cos θ). (S20)

Then the wave functions that diagonalize the Hamiltonian are written as

|+〉 =

 cos θ
2

eiφ sin θ
2

 , |−〉 =

 − sin θ
2

eiφ cos θ
2

 . (S21)

The matrix elements are given by

〈+|σx|+〉 = sin θ cosφ, (S22)

〈−|σx|−〉 = − sin θ cosφ, (S23)

〈+|σx|−〉 = cos θ cosφ+ i sinφ, (S24)

〈+|σy|+〉 = sin θ sinφ, (S25)

〈+|σy|−〉 = −i cosφ+ cos θ sinφ. (S26)

In the evaluation of the optical conductivity, we need∫
sin θdθdφ〈±|σx|±〉〈±|σx|±〉 =

4π

3
, (S27)∫

sin θdθdφ〈+|σx|−〉〈−|σx|+〉 =
8π

3
. (S28)

In the evaluation of the Hall conductivity as a function of kz, we need∫
dφ〈+|σx|+〉〈+|σy|+〉 = 0, (S29)∫
dφ〈+|σx|−〉〈−|σy|+〉 = 2πi cos θ = 2πi

kz
k
. (S30)

B. Zero temperature

We first focus on the conductivity σ(ω) for the zero temperature. The Green’s function

is given by

G(iωm) =
1

(iωm)2 − (k + U
2

)2

[
iωm +

(
k +

U

2

)
n · σ

]
, (S31)
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with n = k/|k|. The optical conductivity is given by

σ(ω) = Re

[
Q(ω + iε)

−iω

]
, (S32)

Q(iΩ) = lim
q→0

∫
d3k

(2π)3

∑
iωm

tr[G(k, iωm)σxG(k + q, iωm + iΩ)σx]. (S33)

The integrand of Q(iΩ) reads∑
iωm

tr[G(k, iωm)σxG(k, iωm + iΩ)σx]

=
∑
iωm

1

(iωm + iΩ)2 − (k + U
2

)2

1

(iωm)2 − (k + U
2

)2

tr

[(
iωm + iΩ +

(
k +

U

2

)
n · σ

)
σx

(
iωm +

(
k +

U

2

)
n · σ

)
σx

]
=
∑
iωm

2

(iωm + iΩ)2 − (k + U
2

)2

1

(iωm)2 − (k + U
2

)2

[
(iωm + iΩ)iωm +

(
1 +

U

2k

)2

(k2
x − k2

y − k2
z)

]

=
∑
iωm

2

(iωm + iΩ)2 − (k + U
2

)2

1

(iωm)2 − (k + U
2

)2

[
(iωm + iΩ)iωm −

1

3

(
k +

U

2

)2
]
. (S34)

By using the formula∑
iωm

[(iωm + iΩ)iωm − abc]
[(iωm + iΩ)2 − a2][(iωm)2 − b2]

=
1

2

(a+ b)(1− c)
[iΩ− (a+ b)][iΩ + (a+ b)]

(S35)

for a > 0, b > 0, we perform the summation over iωm for the above equation and obtain∑
iωm

tr[G(k, iωm)σxG(k, iωm + iΩ)σx] =
8

3

(
k + U

2

)
[iΩ− (2k + U)][iΩ + (2k + U)]

. (S36)

After the analytic continuation iΩ→ ω + iε, only the pole at k = ω − U
2

contributes to the

imaginary part of the k-integral. Thus, we obtain

Im[Q(ω)] =
4

3π2

∫ ∞
0

k2dk

(
k + U

2

)
ω + (2k + U)

Im

[
1

ω + iε− (2k + U)

]
= − 1

24π
(ω − U)2θ(ω − U), (S37)

where we used the formula Im
[

1
k−a−iε

]
= πδ(a). Hence, the optical conductivity for the zero

temperature is given by

σ(ω) = −Im[Q(ω)]

ω
=

1

24πω
(ω − U)2 θ (ω − U) . (S38)

By restoring the unit of e2/~ and the Fermi velocity vF , we end up with

σ(ω) =
e2

12hvFω
(ω − U)2 θ (ω − U) . (S39)
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1. Poles of σ(q, ω)

Let us study the locus of the poles of the two-particle correlation function that contribute

to the conductivity σ(q, ω) for nonzero q. From Eq. (S35) and setting a = |k| + U
2

and

b = |k + q| + U
2

, the poles of
∑

iωm
tr[G(k, iωm)σxG(k + q, iωm + iΩ)σx] can be read off as

ω = a + b = |k| + |k + q| + U . By using the formula |k| + |k + q| ≥ |q| and restoring the

Fermi velocity vF , the lower bound of the poles is given by

ω = U + vF |q|. (S40)

C. Finite temperature

In this section, we calculate the optical conductivity σ(ω) in the finite temperature. In

doing so, we consider contributions from interband and intraband transitions separately as

σ(ω) = σinter(ω) + σintra(ω). (S41)

1. Interband transition

The interband contribution to Q(iΩ) is given by

Qinter(iΩ) =
1

(2π)3

∫
k2dkAinter(iΩ), (S42)

where

Ainter(iΩ)

≡
∫

sin θdθdφ
∑
iωm

[G++(k, iωm)〈+|σx|−〉G−−(k, iωm + iΩ)〈−|σx|+〉

+G++(k, iωm + iΩ)〈+|σx|−〉G−−(k, iωm)〈−|σx|+〉]

=
8π

3
Z−2

∑
s=±1

[( eβk + e−β
U
2

2k + U + isΩ
+
e−βk + e−β

U
2

2k + isΩ

)
e−β

U
2 +

(
eβk + e−β

U
2

2k + isΩ
+

e−βk + e−β
U
2

2k − U + isΩ

)
e−βk

+

(
eβk + e−β

U
2

−(2k + U) + isΩ
+
e−βk + e−β

U
2

−2k + isΩ

)
eβk +

(
eβk + e−β

U
2

−2k + isΩ
+

e−βk + e−β
U
2

−(2k − U) + isΩ

)
e−β

U
2

]
.

(S43)
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This is reduced to

Qinter(ω) =
1

3π2
Z−2

∑
s=±1

∫
k2dk

(
eβk + e−β

U
2

2k + U + isΩ
+
e−βk + e−β

U
2

2k + isΩ

)
(−eβk + e−β

U
2 )

+

(
eβk + e−β

U
2

2k + isΩ
+

e−βk + e−β
U
2

2k − U + isΩ

)
(e−βk − e−β

U
2 ). (S44)

After the analytic continuation iΩ→ ω + iε, poles that contribute to the imaginary part of

the k-integral are

k =
ω − U

2
,
ω

2
,
ω + U

2
,
U − ω

2
. (S45)

Thus the interband contribution to the optical conductivity at the finite temperature is given

by

σinter(ω) = Im

[
Qinter(ω)

−iω

]
= − 1

6πω

[
(eβ

ω−U
2 + e−β

U
2 )(−eβ

ω−U
2 + e−β

U
2 )

(
ω − U

2

)2

Z

(
ω − U

2

)−2

θ(ω − U)

+ 2(e−β
ω+U

2 − eβ
ω−U

2 )
(ω

2

)2

Z
(ω

2

)−2

+ (e−β
ω+U

2 + e−β
U
2 )(e−β

ω+U
2 − e−β

U
2 )

(
ω + U

2

)2

Z

(
ω + U

2

)−2

− (e−β
−ω+U

2 + e−β
U
2 )(e−β

−ω+U
2 − e−β

U
2 )

(
−ω + U

2

)2

Z

(
−ω + U

2

)−2

θ(−ω + U)
]
.

(S46)

The minus sign for the term in the last line arises because the pole k = U−ω−iε
2

locates in

the lower half plane while other poles locate in the upper half plane.

2. Intraband transition

The intraband contribution to Q(iΩ) is given by

Qintra(iΩ) =
1

(2π)3

∫
k2dk[Aintra(iΩ) +Bintra(iΩ)], (S47)
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where

Aintra(iΩ) ≡
∫

sin θdθdφ
∑
iωn

G++(k, iωn)〈+|σx|+〉G++(k + q, iωn + iΩm)〈+|σx|+〉

=
4π

3

1

Z2

[
(e−βh + e−β

U
2 )2nF (hk − U

2
)− nF (hk+q − U

2
)

iΩ + hk − hk+q

+ (eβh + e−β
U
2 )(e−βh + e−β

U
2 )
nF (hk − U

2
)− nF (hk+q + U

2
)

iΩ + hk − hk+q − U

+ (eβh + e−β
U
2 )2nF (hk + U

2
)− nF (hk+q + U

2
)

iΩ + hk − hk+q

+ (eβh + e−β
U
2 )(e−βh + e−β

U
2 )
nF (hk + U

2
)− nF (hk+q − U

2
)

iΩ + hk − hk+q + U

]
, (S48)

and

Bintra(iΩ) ≡
∫

sin θdθdφ
∑
iωn

G−−(k, iωn)〈−|σx|−〉G−−(k + q, iωn + iΩm)〈−|σx|−〉

=
4π

3

1

Z2

[
(eβh + e−β

U
2 )2nF (−hk − U

2
)− nF (−hk+q − U

2
)

iΩ− hk + hk+q

+ (eβh + e−β
U
2 )(e−βh + e−β

U
2 )
nF (−hk − U

2
)− nF (−hk+q + U

2
)

iΩ− hk + hk+q − U

+ (e−βh + e−β
U
2 )2nF (−hk + U

2
)− nF (−hk+q + U

2
)

iΩ− hk + hk+q

+ (eβh + e−β
U
2 )(e−βh + e−β

U
2 )
nF (−hk + U

2
)− nF (−hk+q − U

2
)

iΩ− hk + hk+q + U

]
. (S49)

After performing an analytic continuation iΩm → ω+ iε and taking a limit q → 0, we obtain

the intraband contribution to the optical conductivity

σintra(ω)

=
1

6π2

∫
dkk2 1

Z(k)2

{
−(e−βh + e−β

U
2 )2n′F

(
hk −

U

2

)
− (eβh + e−β

U
2 )2n′F

(
hk +

U

2

)}
δ(ω)

+
1

6π2

∫
dkk2 1

Z(k)2
(eβh + e−β

U
2 )(e−βh + e−β

U
2 )

× 1

U

[
nF

(
hk −

U

2

)
− nF

(
hk +

U

2

)
+ nF

(
−hk −

U

2

)
− nF

(
−hk +

U

2

)]
δ(ω − U).

(S50)

We note that we used the equation n′F (ε) = n′F (−ε) in the first term, and the forth term in

Eq. (S49) can be discarded after analytic continuation because of a factor δ(ω + U).

We show the temperature dependence of weights of peaks at ω = 0 and U in Fig. S1.
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FIG. S1. Temperature dependence of weights of intraband transitions at ω = 0 (blue) and ω = U

(red).

D. Temperature dependence of Drude weight

We study the behavior of the Drude weight in the limit T → 0. The Drude weight is

given by the coefficient of δ(ω) in Eq. (S50) as

WDrude =
1

6π2

∫
dkk2 1

Z(k)2

{
−(e−βh + e−β

U
2 )2n′F

(
hk −

U

2

)
− (eβh + e−β

U
2 )2n′F

(
hk +

U

2

)}
=

β

6π2
e−β

U
2

∫
dkk2 e−βk + eβk

(e−βk + eβk + 2e−β
U
2 )2

. (S51)

In the noninteracting case (U = 0), the Drude weight behaves as WDrude ∝ T 2. This is

obtained from a crude estimation by replacing the factor e−βk+eβk

(e−βk+eβk+2)2
in the integrand with

1 for k < T and with 0 otherwise. On the other hand, in the case of strong interactions

(U → ∞), the Drude weight behaves as WDrude ∝ e−β
U
2 T 2. Thus the Drude weight is

suppressed exponentially as the interaction U increases.
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E. Hall conductivity

We study the Hall conductivity for a fixed value of kz. The Hall conductivity has a

nonzero contribution from a combination

〈Tτb+(τ)〈+|σx|−〉b†−(τ)b−〈−|σy|+〉b†+〉. (S52)

Here, we set the momentum transfer as q = 0 because we focus on the dc Hall conductivity.

We note that other combinations of current matrices vanish. After we integrate over the

direction φ of (kx, ky) = k‖(cosφ, sinφ) in current matrices [Eq. (S30)], the expectation value

is given by

Q(τ) ≡ 2πikz
k
〈b+(τ)b†−(τ)b−b

†
+〉+ 〈b−(τ)b†+(τ)b+b

†
−〉

=
2πikz
k

1

Z
(〈0|b−b+(τ)b†−(τ)b−b

†
+b
†
−|0〉eβh + 〈0|b+b−(τ)b†+(τ)b+b

†
−b
†
+|0〉e−βh)

=
2πikz
k

1

Z
(e−2τh+βh + e2τh−βh). (S53)

With the Fourier transformation, we obtain

Q(iωn) =
2πikz
k

1

Z

∫ β

0

dτeiωnτ 〈b+(τ)b†−(τ)b−b
†
+〉+ 〈b−(τ)b†+(τ)b+b

†
−〉

=
2πikz
k

1

Z

(
−e−βh − eβh

iωn − 2h
+
−eβh − e−βh

iωn + 2h

)
=

2πikz
k

1

Z
(eβh + e−βh)

2iωn
−(iωn)2 + 4h2

(S54)

By performing analytic continuation and taking the zero frequency limit, we obtain the Hall

conductivity

σxy(kz) =
1

(2π)2

∫
k‖dk‖Re(

Q(ω)

−iω
)

= − 1

2π

∫
k‖dk‖

kz
2k3

eβh + e−βh

eβh + e−βh + 2e−β
U
2

(S55)

where k‖ is the radial coordinate for (kx, ky) and k =
√
k‖ + k2

z . In the zero temperature

limit, the Hall conductivity reduces to

σxy(kz) = − 1

2π

∫ ∞
0

k‖dk‖
kz
2k3

= − 1

2π

kz
2k

∣∣∣∣k‖=∞
k‖=0

=
1

4π
sgn(kz). (S56)

If we restore the unit of e2/~, the Hall conductivity is given by

σxy(kz) =
e2

2h
sgn(kz), (S57)

which remains quantized into ±e2/2h in the WMI.
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SIV. STABILITY OF THE MOTT GAP

We study the stability of the Mott gap against the interaction

HC =
∑
k,k′,q

V (q)c†k+q,σc
†
k′−q,σ′ck′,σ′ck,σ. (S58)

We consider the self-energy arising in the second order of this interaction,

Σ(k, iω) =

∫
d3q

∑
iΩ

V (q)V (−q)G(k + q, iω + iΩ)Π(q, iΩ), (S59)

with the density-density correlation function

Π(q, iΩ) = d3k′
∑
iω′

Tr[G(k′, iω′)G(k′ − q, iω′ − iΩ)]. (S60)

This is explicitly written as

Σ(k, iω) =

∫
d3qd3k′

∑
iω′,iΩ

V (q)V (−q)
(iω + iΩ) + (|k + q|+ U

2
)n(k + q) · σ

(iω + iΩ)2 − (|k + q|+ U
2

)2

1

(iω′)2 − (|k′|+ U
2

)2

× 1

(iω′ − iΩ)2 − (|k′ − q|+ U
2

)2

× 2

[
iω′(iω′ − iΩ) +

(
|k′|+ U

2

)(
|k′ − q|+ U

2

)
n(k′) · n(k′ − q)

]
.

(S61)

If the instability for the Mott gap were present, the gap should close at k = 0 by the

consideration from the rotation symmetry. Therefore, we focus on the self-energy for k = 0.

By summing over Matsubara frequencies and setting k = 0, we obtain

Σ(k = 0, iω) =

∫
d3qd3k′ |V (q)|2

2

(
1− k

′ · (k′ − q)

|k′||k′ − q|

)
1

(iω − |k′| − |k′ − q| − U)2 − (|q|+ U
2

)2

×
[
iω − |k′| − |k′ − q| − U +

(
|q|+ U

2

)
nq · σ

]
. (S62)

After performing an integration over k′, the terms |k′ − q| and k′ · (k′ − q) no longer have

a dependence on the angle of q, because they only depend on the relative angle between k′

and q. Then the only term depending on the angle of q after the k′ integration is nq · σ,

which vanishes upon the integration over the angle of q. Thus the self-energy Σ(k = 0, iω)

is diagonal with respect to the spin degrees of freedom. Furthermore, the imaginary part of

Σ(k, ω) (after the analytic continuation) appears only at ω = |k′|+ |k′− q|+ |q|+ 3U
2
≥ 3U

2
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and ω = |k′| + |k′ − q| − |q| + U
2
≥ U

2
; The imaginary part of Σ(k = 0, ω) is zero for

ω < U
2

. Therefore, the gap of U
2

in the Green’s function is stable against the inclusion of the

interaction HC .

We note that the the perturbation theory with respect to V (q) is valid because of the

absence of the infrared divergence. In the case of the contact quartic interaction V (q) = V ,

we notice that the infrared divergence does not appear for iω = 0 because of the gap of U
2

in

the energy denominator. In the case of the repulsive Coulomb interaction V (q) = 4πe2

q2
, the

infrared divergence is also absent, because the density-density correlation function behaves

Π(q, iΩ) ∝ q2 for small q and Ω, and the integral is convergent around q = 0.
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