Supplemental materials

Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

Yu-Guang Yang, Peng Xu, Rui Yang, Yi-Hua Zhou, Wei-Min Shi

The	mess	sage o	can b	e ran	doml	y cho	osen a	as fol	lows:									
"0	0	1	1	0	0	0	0	0	0	1	0	1	1	1	1	1	0	1
0	1	1	0	0	0	1	1	0	1	1	0	1	0	1	0	0	0	0
1	0	1	0	0	0	1	0	0	0	1	0	1	0	1	0	1	0	0
0	1	1	1	0	1	1	1	1	1	0	1	0	0	1	0	0	1	1
0	1	0	1	1	0	1	1	1	1	0	0	0	1	1	0	1	1	1
1	1	1	1	0	0	0	0	0	0	0	1	1	1	1	1	0	0	1
0	1	1	1	0	0	1	1	1	0	0	1	0	0	1	0	0	1	0
1	0	1	1	0	0	0	0	0	0	1	0	1	0	1	0	1	1	0
0	1	1	0	1	0	1	1	0	1	1	1	1	1	0	0	0	1	1
1	0	1	0	0	0	1	0	0	0	0	0	1	1	1	1	1	1	1
1	0	1	1	1	1	0	1	0	0	1	1	1	1	1	0	1	0	1
1	1	1	1	1	1	1	1	0	0	1	0	1	0	1	1	0	1	0
0	0	0	0	0	0	0	0	1	0	1	1	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0	0	0	0	1	1	0	1	1	1	0	1
1	1	1	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1	1
0	0	0	0	1	0	1	0	1	1	1	1	0	0	0	1	1	0	0
0	0	1	0	0	0	1	1	0	1	0	1	1	1	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1
1	1	0	0	1	1	1	0	1	0	0	1	0	0	1	1	1	1	1
1	0	1	1	0	0	1	0	1	1	0	0	1	0	1	1	1	0	0
0	1	1	1	0	1	0	0	1	0	1	1	1	1	0	1	1	1	0
0"																		

The message can be randomly chosen as follow

Supplementary Figure S1 (a)Distribution of the original message in ASCII. (b) Distribution of the

hash value in hexadecimal format.

Supplementary Figure S2 Plots of the 128-bit hash value C1, C2, C3 and C4

Supplementary Figure S3 | Distribution of the number of the changed bits. (a) plot of B_{i} . (b) histogram of B_{i} .

Supplementary Figure S4 Distribution of the hash value in hash space. The mean, maximum and minimum of toggled bit number are 4973.5, 5689 and 4072 respectively for N = 10,000.

Supplementary Figure S5 |RPs for various values of the control parameters *message*: (a) *message* = 50, (b) *message* = 60, (c) *message* = 70, (d) *message* = 80, (e) *message* = 90, (f) *message* = 100; with

the embedding dimension m = 2, time delay $\tau = 1$, threshold $\varepsilon = 0.1\sigma$, and L_{∞} -norm.

Supplementary Figure S6| RRs with different messages.

Supplementary Figure S7| The histogram of the diagonal line lengths.

Supplementary Figure S8| The measure entropy *ENTR*.

Supplementary Figure S9| The histogram of the vertical line lengths.

Supplementary Figure S10| the sketch of the original image divided into four parts

Supplementary Figure S11 The first round of the image encryption process. a) Encrypt block 1 with the original image block 4 as the secret key, b) Encrypt block 2 with the encrypted image block 1 as the

secret key, c) Encrypt block 3 with the encrypted image block 2 as the secret key, d) Encrypt block 4 with the encrypted image block 3 as the secret key.

Supplementary Figure S12 (a) Buddha image (b) Histograms of Buddha image (c) cipher image (d) Histograms of cipher image. We acknowledge Yu-Guang Yang who took the paragraph in (a).

Supplementary Figure S13 (a) Flower image (b) Histograms of Flower image (c) cipher image (d) Histograms of cipher image. We acknowledge Yu-Guang Yang who took the paragraph in (a).

Supplementary Figure S14 (a) GreatWall image (b) Histograms of GreatWall image (c) cipher image (d) Histograms of cipher image. We acknowledge Yu-Guang Yang who took the paragraph in (a).

Supplementary Figure S15| (a) House image (b) Histograms of House image (c) cipher image (d) Histograms of cipher image. We acknowledge Yu-Guang Yang who took the paragraph in (a).

Supplementary Figure S16| (a) Lake1 image (b) Histograms of Lake1 image (c) cipher image (d) Histograms of cipher image. We acknowledge Yu-Guang Yang who took the paragraph in (a).

Supplementary Figure S17 (a) Lake2 image (b) Histograms of Lake2 image (c) cipher image (d) Histograms of cipher image. We acknowledge Yu-Guang Yang who took the paragraph in (a).

Supplementary Figure S18 (a) WhiteTower image (b) Histograms of WhiteTower image (c) cipher image (d) Histograms of cipher image. We acknowledge Yu-Guang Yang who took the paragraph in (a).

Supplementary Figure S19 Correlation analyses. (a), (c) and (e) show the distribution of the horizontally, vertically and diagonally adjacent pixels in the Buddha image, respectively. (b), (d) and (f) show the distribution of the horizontally, vertically and diagonally adjacent pixels in the encrypted image, respectively.

Supplementary Figure S20 Key sensitivity tests. (a) Cipher image. (b) Cipher image with a little difference from encryption key. (c) Differential image between (a) and (b). (d) Decrypted image of (a) with the correct key; (e) Decrypted image of (a) with a little difference from the decryption key. We acknowledge Yu-Guang Yang who took the Buddha image in Supplementary Fig.S12(a) online and all figures in Supplementary Figure S20 online were obtained by simulations using Matlab software by Peng Xu.

Supplementary Table S1| Maximum, minimum and mean of the absolute difference of two hash values.

Absolute difference d	Minimum	Maximum	Mean
File	505	2231	1395.3

Supplementary Table S2 Comparison of correlation coefficients of the plain-images and the corresponding cipher-images encrypted by our algorithm

Algorithm		Original image	2	Our algorithm			
	Horizontal	Vertical	Diagonal	Horizontal	Vertical	Diagonal	
Images	correlation	correlation	correlation	correlation	correlation	correlation	
Buddha	0.8665	0.7586	0.7261	-0.0004	0.0009	0.0006	
Flower	0.9719	0.9850	0.9593	0.0015	-0.00009	-0.00001	
GreatWall	-0.9792	-0.9826	0.9680	-0.0016	-0.00008	0.0007	
House	0.8597	0.9591	0.8418	-0.0004	0.0007	-0.0035	
Lake1	0.9834	0.9903	0.9737	0.0018	0.0020	0.0013	

Lake2	0.9890	0.9912	0.9802	0.0015	0.0006	0.0021
WhiteTower	0.9714	0.9745	0.9532	-0.0001	0.0041	0.0053
Average	0.9458	0.9160	0.9146	0.0010	0.0012	0.0023

 $\label{eq:supplementary} Supplementary \ Table \ S3 | \ Comparison \ of \ correlation \ coefficients \ between \ our \ algorithm \ and \ the$

Algorithm		Our algorithm		Chaos-based algorithm			
	Horizontal	Vertical	Diagonal	Horizontal	Vertical	Diagonal	
Images	correlation	correlation	correlation	correlation	correlation	correlation	
Buddha	-0.0004	0.0009	0.0006	-0.0186	-0.0023	0.0041	
Flower	0.0015	-0.00009	-0.00001	-0.0078	-0.0009	0.0011	
GreatWall	-0.0016	-0.00008	0.0007	-0.0471	-0.0326	0.0659	
House	-0.0004	0.0007	-0.0035	-0.0541	-0.0248	0.0569	
Lake1	0.0018	0.0020	0.0013	-0.0468	-0.0166	0.0266	
Lake2	0.0015	0.0006	0.0021	-0.1271	-0.0906	0.1852	
WhiteTower	-0.0001	0.0041	0.0053	-0.1469	-0.0340	0.0682	
Average	0.0010	0.0012	0.0023	0.0641	0.0288	0.0583	

Chaos-based algorithm[41]

Supplementary Table S4 | Comparison of correlation coefficients between our algorithm and the Optics-based algorithm[42]

Algorithm		Our algorithm		Optics-based algorithm			
	Horizontal	Vertical	Diagonal	Horizontal	Vertical	Diagonal	
Images	correlation	correlation	correlation	correlation	correlation	correlation	
Buddha	-0.0004	0.0009	0.0006	0.0145	0.0290	0.0155	
Flower	0.0015	-0.00009	-0.00001	0.0449	0.0707	0.0487	
GreatWall	-0.0016	-0.00008	0.0007	0.0285	0.0748	0.0278	
House	-0.0004	0.0007	-0.0035	0.0190	0.0550	0.0214	
Lake1	0.0018	0.0020	0.0013	0.0362	0.0877	0.0345	
Lake2	0.0015	0.0006	0.0021	0.0906	0.1452	0.0918	
WhiteTower	-0.0001	0.0041	0.0053	0.0250	0.0673	0.0235	
Average	0.0010	0.0012	0.0023	0.0370	0.0757	0.0376	

Supplementary Table S5 | Comparison of correlation coefficients between our algorithm and the

hash-based algorithm[43]

Algorithm		Our algorithm		Hash-based algorithm			
	Horizontal	Vertical	Diagonal	Horizontal	Vertical	Diagonal	
Images	correlation	correlation	correlation	correlation	correlation	correlation	
Buddha	-0.0004	0.0009	0.0006	0.0109	0.0221	0.0044	

Flower	0.0015	-0.00009	-0.00001	0.0161	0.0276	0.0072
GreatWall	-0.0016	-0.00008	0.0007	0.0145	0.0314	0.0096
House	-0.0004	0.0007	-0.0035	0.0100	0.0278	0.0086
Lake1	0.0018	0.0020	0.0013	0.0147	0.0381	0.0052
Lake2	0.0015	0.0006	0.0021	0.0174	0.0352	0.0068
WhiteTower	-0.0001	0.0041	0.0053	0.0107	0.0276	0.0084
Average	0.0010	0.0012	0.0023	0.0135	0.0300	0.0072

Supplementary Table S6 Comparison of correlation coefficients between our algorithm and the quantum image encryption algorithm[44]

Algorithm		Our algorithm		Quantum image encryption algorithm			
	Horizontal	Vertical	Diagonal	Horizontal	Vertical	Diagonal	
Images	correlation	correlation	correlation	correlation	correlation	correlation	
Buddha	-0.0004	0.0009	0.0006	-0.0005	-0.0006	-0.0025	
Flower	0.0015	-0.00009	-0.00001	0.0025	0.0017	0.0032	
GreatWall	-0.0016	-0.00008	0.0007	0.0011	0.0004	-0.0049	
House	-0.0004	0.0007	-0.0035	-0.0036	0.0099	0.0026	
Lake1	0.0018	0.0020	0.0013	-0.0001	0.0055	-0.0018	
Lake2	0.0015	0.0006	0.0021	0.0083	0.0009	0.0084	
WhiteTower	-0.0001	0.0041	0.0053	0.0009	-0.0052	-0.0029	
Average	0.0010	0.0012	0.0023	0.0024	0.0035	0.0038	

Supplementary Table S7 | Comparison of correlation coefficients between our algorithm and the QW-based algorithm[14]

Algorithm		Our algorithm		QW-based algorithm			
	Horizontal	Vertical	Diagonal	Horizontal	Vertical	Diagonal	
Images	correlation	correlation	correlation	correlation	correlation	correlation	
Buddha	-0.0004	0.0009	0.0006	0.0088	0.0022	0.0020	
Flower	0.0015	-0.00009	-0.00001	-0.0022	-0.0074	0.0224	
GreatWall	-0.0016	-0.00008	0.0007	0.0064	-0.0131	-0.0072	
Lake1	0.0018	0.0020	0.0013	0.0018	0.0070	-0.0179	
Lake2	0.0015	0.0006	0.0021	-0.0263	0.0036	0.0075	
WhiteTower	-0.0001	0.0041	0.0053	-0.0064	0.0249	0.0029	
Average	0.0010	0.0012	0.0023	0.0081	0.0098	0.0087	

Supplementary Table S8 Comparison of correlation coefficients between our algorithm and the algorithm based on quantum logistic map[45]

algorithm	Р	roposed algorith	ım	The quantum algorithm			
	Horizontal	Vertical	Diagonal	Horizontal	Vertical	Diagonal	

images	correlation	correlation	correlation	correlation	correlation	correlation
Boat	0.0014	-0.0016	0.0054	0.0065	0.0055	0.0082

Supplementary Table S9 | Comparison of correlation coefficients between our algorithm and the algorithm [46]

Algorithm		Our algorithm			Algorithm[46]
	Horizontal	Vertical	Diagonal	Horizontal	Vertical	Diagonal
Images	correlation	correlation	correlation	correlation	correlation	correlation
Buddha	-0.0004	0.0009	0.0006	-0.0111	-0.0163	0.0061
Flower	0.0015	-0.00009	-0.00001	-0.0004	0.0083	-0.00002
GreatWall	-0.0016	-0.00008	0.0007	0.0060	0.0156	-0.0014
House	-0.0004	0.0007	-0.0035	0.0085	0.0130	0.0119
Lake1	0.0018	0.0020	0.0013	-0.0032	0.0050	-0.0069
Lake2	0.0015	0.0006	0.0021	0.0048	0.0009	0.0066
WhiteTower	-0.0001	0.0041	0.0053	-0.0071	0.0207	0.0064
Average	0.0010	0.0012	0.0023	0.0059	0.0114	0.0056

 $Supplementary \ Table \ S10 | \ Comparison \ of \ correlation \ coefficients \ between \ our \ algorithm \ and \ the$

algorithm [47]

Algorithm		Our algorithm			Algorithm[47]
	Horizontal	Vertical	Diagonal	Horizontal	Vertical	Diagonal
Images	correlation	correlation	correlation	correlation	correlation	correlation
Buddha	-0.0004	0.0009	0.0006	0.0073	-0.0295	-0.0100
Flower	0.0015	-0.00009	-0.00001	0.0018	-0.0689	0.0008
GreatWall	-0.0016	-0.00008	0.0007	0.0067	-0.0645	0.0064
House	-0.0004	0.0007	-0.0035	0.0030	-0.0733	-0.0007
Lake1	0.0018	0.0020	0.0013	-0.0003	-0.0343	0.0093
Lake2	0.0015	0.0006	0.0021	0.0015	-0.0841	0.0053
WhiteTower	-0.0001	0.0041	0.0053	0.0070	-0.0624	0.0076
Average	0.0010	0.0012	0.0023	0.0039	0.0596	0.0057

Supplementary Table S11| Results of NPCR and UACI by using our algorithm

Images	NPCR(×100%)	UACI(×100%)
Buddha	99.60	33.50
Flower	99.60	33.48
GreatWall	99.62	33.51
House	99.60	33.44
Lake1	99.60	33.36
Lake2	99.62	33.46
WhiteTower	99.62	33.48

Average	99.61	33.46

$\label{eq:supplementary Table S12} \mbox{ Comparison of NPCR and UACI between our algorithm and the}$

algorithms[41,43]

Algorithm	Average NPCR(×100%)	Average UACI(×100%)
Ours	99.61	33.46
Chaos-based algorithm [41]	0.00004	4.0605e-06
Hash-based algorithm [43]	0.00004	1.4960e-06

Supplementary Table S13 | Comparison of NPCR by using our algorithm and the algorithm [46]

Algorithm Images	Our algorithm	Algorithm[46]
Buddha	99.60	99.18
Flower	99.60	99.17
GreatWall	99.62	99.12
House	99.60	99.01
Lake1	99.60	99.17
Lake2	99.62	99.17
WhiteTower	99.62	99.13
Average	99.61	99.14

Supplementary Table S14 | Comparison of UACI by using our algorithm and the algorithm [46]

Algorithm		
	Our algorithm	Algorithm[46]
Images		
Buddha	33.50	23.66
Flower	33.48	24.53
GreatWall	33.51	24.81
House	33.44	22.17
Lake1	33.36	22.96
Lake2	33.46	24.83
WhiteTower	33.48	22.99
Average	33.46	23.71

Supplementary Table S15 | Comparison of NPCR between our algorithm and the algorithm [47]

Algorithm Images	Our algorithm	Algorithm[47]
Buddha	99.60	3.8147e-06

Flower	99.60	0
GreatWall	99.62	0
House	99.60	0
Lake1	99.60	0
Lake2	99.62	0
WhiteTower	99.62	3.8147e-06
Average	99.61	0

Supplementary Table S16 | Comparison of UACI between our algorithm and the algorithm [47]

Algorithm		
	Our algorithm	Algorithm[47]
Images		
Buddha	33.50	1.4960e-06
Flower	33.48	0
GreatWall	33.51	0
House	33.44	0
Lake1	33.36	0
Lake2	33.46	0
WhiteTower	33.48	1.4960e-06
Average	33.46	0

Supplementary Table S17 | Comparison of NPCR and UACI between our algorithm and the

algorithm[45]

algorithm	NPCR(×100%)	UACI(×100%)
Ours	0.996078	33.53
The algorithm[45]	99.5896	33.20

Supplementary Table S18 | NPCR value in key sensitivity analysis

	NPCR between the encrypted images with	NPCR between the decrypted images with correct key and	
Images	different secret keys	the decrypted images with wrong key	
Buddha	99.62	99.58	
Flower	99.59	99.61	
GreatWall	99.61	99.61	
House	99.61	99.61	
Lake1	99.61	99.61	
Lake2	99.61	99.59	
WhiteTower	99.59	99.59	
Average	99.61	99.60	

Images	Original image	Our algorithm	Chaos-based algorithm	Hash-based algorithm
Buddha	7.357949	7.999175	7.437544	7.997775
Flower	7.445506	7.999297	7.513925	7.994711
GreatWall	7.571477	7.999304	7.852988	7.997933
House	7.466426	7.999226	7.584169	7.998178
Lake1	7.048217	7.999130	7.563206	7.991746
Lake2	7.305189	7.999108	7.785397	7.986923
WhiteTower	7.477779	7.999355	7.692131	7.997278
Average	7.381792	7.999228	7.632765	7.994934

Supplementary Table S19 | Comparisons of average information entropy of cipher images between our algorithm and other algorithms

Supplementary Table S20 Comparisons of the information entropy of cipher images between our algorithm and the image algorithm based on quantum logistic map[45]

image	Our algorithm	The image algorithm based on quantum logistic map
Boat	7.997	7.999

Supplementary Table S21| Results of NIST SP800-22 for Buddha's cipher image

Test name	P-value	result
Approximate entropy test(block = 10)	0.931323	SUCCESS
Block frequency test(block = 128)	0.566149	SUCCESS
Cumulative sums(forward) test	0.141837	SUCCESS
Cumulative sums (reverse) test	0.091001	SUCCESS
Spectral DFT test	0.102376	SUCCESS
Frequency test	0.846176	SUCCESS
Linear complexity(block = 500)	0.539419	SUCCESS
Longest runs of ones test	0.939260	SUCCESS
Non-Overlapping templates		
test(m=9,template=000000011)	0.984629	SUCCESS
Overlapping template of all ones $test(m = 9)$	0.033341	SUCCESS
Random excursions test(x=-1)	0.766784	SUCCESS
Random excursions variant test(x=+1)	0.857714	SUCCESS
Rank test	0.255072	SUCCESS
Runs test	0.642675	SUCCESS
Serial test1(block = 16)	0.382733	SUCCESS
Serial test2(block = 16)	0.457034	SUCCESS
Universal statistical test(block = 7)	0.135122	SUCCESS