Supplementary Information

Intrinsic and Extrinsic Charge Transport in CH₃NH₃PbI₃ Perovskites Predicted from First-Principles

Tianqi Zhao,¹ Wen Shi,¹ Jinyang Xi,¹ Dong Wang,^{*,1} Zhigang Shuai^{*,1,2,3}

¹MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China

²Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

³Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, 351005 Xiamen, China

Supplementary Figure S1. Energy reference for the VBM and CBM calibration during straining of cubic (a) and tetragonal (b) CH₃NH₃PbI₃.

Supplementary Figure S2. Energy shift of the CBM and VBM with respect to dilation (upper panel) and total energy change with dilation (lower panel) along [100], [010] and [001] directions for cubic $CH_3NH_3PbI_3$.

Supplementary Figure S3. Energy shift of the CBM and VBM with respect to dilation (upper panel) and total energy change with dilation (lower panel) along [100], [010] and [001] directions for tetragonal $CH_3NH_3PbI_3$.

Supplementary Figure S4. Mobility of tetragonal $CH_3NH_3PbI_3$ perovskites limited by charged impurity scattering as a function of free carrier concentration at an impurity density of 10^{18} cm⁻³.

		a (Å)	b (Å)	<i>с</i> (Å)	α	β	γ
Cubic	Calc.	6.67	6.44	6.44	89.76	90.02	90.02
	Expt. ^a	6.31	6.31	6.32	90.0	90.0	90.0
Tetragonal	Calc.	9.11	9.07	12.91	90.25	89.25	88.32
	Expt. ^a	8.85	8.85	12.64	90.0	90.0	90.0

Supplementary Table S1. Structural parameters of cubic and tetragonal CH₃NH₃PbI₃.

^aRef. S1.

Supplementary Table S2. Effective mass m^*/m_e of electrons and holes in cubic and tetragonal CH₃NH₃PbI₃. 1 and 2 represent bands with opposite spins.

		VB(2)	VB(1)	CB(1)	CB(2)
	R-M	0.60	0.28	0.16	0.30
Cubic	R-G	0.52	0.26	0.17	0.28
	R-X	0.55	0.31	0.18	0.32
	G-M	0.52	0.28	0.15	0.23
	G-Z	0.45	0.43	0.26	0.27
Tetragonal	G-X	0.31	0.24	0.16	0.20
	G-A	0.50	0.28	0.15	0.24
	G-R	0.36	0.26	0.17	0.23

τ		Cu	ıbic	Tetragonal		
(ps)		Electron	n Hole Ele		Hole	
lonized Impurity	10 ¹⁸ cm ⁻³	0.017	0.019	0.016	0.018	
	10 ¹⁷ cm ⁻³	0.17	0.19	0.16	0.18	
	10 ¹⁶ cm ⁻³	1.67	1.95	1.59	1.83	
Total	10 ¹⁸ cm ⁻³	0.011	0.017	0.013	0.017	
	10 ¹⁷ cm ⁻³	0.042	0.10	0.065	0.13	
	10 ¹⁶ cm ⁻³	0.082	0.30	0.16	0.51	

Supplementary Table S3. Relaxation times of electrons and holes in cubic and tetragonal $CH_3NH_3PbI_3$ subject to impurity and acoustic phonon scatterings at 300 K. The impurity density is taken as 10^{16} , 10^{17} and 10^{18} cm⁻³ respectively. The free carrier concentration is 10^{14} cm⁻³.

Supplementary Table S4. Mobilities of electrons and holes in cubic $CH_3NH_3PbI_3$ subject to impurity and acoustic phonon scatterings at 300 K. The impurity density is taken as 10^{16} , 10^{17} and 10^{18} cm⁻³ respectively. The free carrier concentration is 10^{14} cm⁻³.

μ (cm² V ⁻¹ s ⁻¹)		electron		hole			
		а	b	С	а	b	С
lonized Impurity	10 ¹⁸ cm ⁻³	288	172	172	88.7	151	151
	10 ¹⁷ cm ⁻³	2878	1716	1718	887	1506	1506
	10 ¹⁶ cm ⁻³	28781	17157	17175	8871	15062	15065
Total	10 ¹⁸ cm ⁻³	164	101	101	72.2	119	119
	10 ¹⁷ cm ⁻³	473	303	303	377	592	591
	10 ¹⁶ cm ⁻³	708	476	476	927	1399	1399

Supplementary Table S5. Mobilities of electrons and holes in tetragonal CH ₃ NH ₃ Pbl ₃
subject to impurity and acoustic phonon scatterings at 300 K. The impurity density is taken
as 10 ¹⁶ , 10 ¹⁷ and 10 ¹⁸ cm ⁻³ respectively. The free carrier concentration is 10 ¹⁴ cm ⁻³ .

μ		electron			hole		
$(cm^2 V^{-1} s^{-1})$		а	b	С	а	b	С
lonized Impurity	10 ¹⁸ cm ⁻³	184	185	242	158	161	99.2
	10 ¹⁷ cm ⁻³	1844	1853	2423	1577	1613	992
	10 ¹⁶ cm ⁻³	18442	18534	24228	15768	16132	9918
Total	10 ¹⁸ cm ⁻³	139	139	178	142	145	90.2
	10 ¹⁷ cm ⁻³	590	585	711	930	949	605
	10 ¹⁶ cm ⁻³	1294	1261	1365	3086	3150	2050

Supplementary References

S1. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. *Inorg. Chem.* 52, 9019-9038 (2013).