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Fig S1 – RNA-seq data quality, related to Fig 1, Supplemental Experimental 
Procedures 
(A) Spearman correlation between all pairs of all samples for relative normalized TPM 
abundances. Neighboring samples are as correlated as replicates. 
 
(B) Scatter plots of all TPM abundances for all samples. Color indicates density of points. 
Horizontal and vertical strips indicate measurements only present in one sample. 
 
(C) RNA standard performance. Scatter plots compare RNA standard TPM abundances 
between all pairs of datasets. Color indicates spike-in species. Red boxes mark ArrayControl 
spikes present only in Clutch B PolyA+. Although, we find small numbers of reads that align 
uniquely to ArrayControl sequences when ArrayControl spikes are not present in the sample. 
We note that this is not true for ERCC spikes, we never find ERCC reads when ERCC 
spikes are not present (data not shown). ERCC PolyA+ and rdRNA comparisons lie off the 
diagonal indicating poor PolyA+ performance. ERCC-00116 has the worst PolyA+ 
performance and is not used in absolute normalization. 
 
(D) Identification of poorly performing libraries. Normalized leave-one-out score 
(Supplemental Experimental Procedures), higher scores indicate a poorly performing 
sample. Samples adjacent to a bad sample can also receive high scores. Red and blue 
samples in Clutch A PolyA+ are selected for repeat library construction and sequencing (E). 
Red samples excluded from all analysis. 
 
(E) Technical replicates in Clutch A PolyA+ of poorly performing samples reveal that the 
poor performance is highly reproducible indicating that performance issues are not due to 
library construction and sequencing. Red boxes marked those discarded, black boxes 
marked those retained. 
 
(F) Projections onto the first two principle components for Clutch A PolyA+ (left), Clutch B 
PolyA+ (center), and Clutch A rdRNA (right). Note strong temporal correlation between 
samples, major changes in the transcriptome are visible. 
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Fig S2 – Statistics of Absolute Normalization, related to Fig 1, Supplemental 
Experimental Procedures 
 
(A) Absolute normalization of RNA standards. Left: relative normalization in TPM on linear 
and log scale for the three datasets. The trend shared by all spikes is clearly visible and 
differs between PolyA+ and rdRNA samples. Right:  absolute normalization in transcripts per 
embryo on log and linear scale. Trend in spikes is removed, the sample noise of the spikes 
is retained and does not contaminate the absolute normalization of native transcripts. 
 
(B) Absolute normalization factors. Circles mark per sample factors, lines mark Gaussian 
Process smoothed factors. Left: Estimates of 𝛽𝑗 (Supplemental Experimental Procedures), 

for three datasets. Center-left: per dataset correction factors e−𝛽𝑗, note discrepancy in 
magnitude but not in trend between datasets. Center-right: correction for PolyA+ bias, and 
averaging Clutch A and Clutch B spike levels results in excellent agreement between the 
correction factors. Right: Smoothed correction factors calculated with non-stationary 
Gaussian Process (Supplemental Experimental Procedures). 
 
(C) Absolute normalization consistency and accuracy. Scatter plots of ERCC standards 
spiked vs calculated for Clutch A PolyA+, Clutch A rdRNA, Clutch B PolyA+ and Clutch 
A/Clutch B PolyA+ combined. Points are averaged over all samples in time to remove spike-
in sample noise. ArrayControl spikes are given with fold change errors for Clutch B PolyA+, 
fold changes range from 1.11-1.25. ArrayControl spikes EC02 and EC12 have are spiked in 
with the same copy number and are marked with the same vertical line.Combined Clutch 
A/Clutch B gives 95% confidence interval for a linear model with Gaussan noise, with slope 
unity and with standard deviation 𝜎𝑠 = 0.25. Note that residuals do not depend on expression 
level. 
 
(D) Absolute normalization uncertainty model. Left: model as described in C (far-right), with 
25%, 50%, 75%, 95% confidence intervals for 106 transcripts. Right: Propagation of 
uncertainty model to absolute normalization of eef1a1o Clutch A polyA+, again 25%, 50% 
75% and 95% of confidence intervals for the true number of eef1a1o transcripts/embryo 
marked.  
 
(E) RNA-seq detection limits – Transcript abundance required to produce a single read with 
time, detection limits increase as RNA content in the embryo increases. Top row: Detection 
limits in kb, points give the per sample detection limits, lines and shaded area give Gaussian 
Process median and 95% confidence interval. Bottom: Detection limit in transcripts/embryo, 
calculated by averaging kb Gaussian Process distribution over all transcript lengths. 
 
(F) The depletion of non-ribosomal RNAs in rdRNA sequencing. Comparisons between 
Clutch A PolyA+ and rdRNA sequencing (top). Examples of extreme depletion: mixer and 
foxh1.2. 
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Supplemental Experimental Procedures

(A) Histogram of fold change envelope between maximum and minimum Gaussian Process median abundances in transcripts 
per embryo for all genes for Clutch A PolyA+ and rdRNA. Candidates for loading control with a fold change < 2 are highlighted. 
Histogram displays up to 8-fold envelope.
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change envelopes indicated.
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Table S1 – Mapping of observed Xenopus tropicalis NF stages to time in hours post 

fertilisation, related to Fig 1. 

NF Stage Time (hpf) 
1 0 

2 1 

3 1.33 

4 1.67 

5 2 

6 2.33 

7 3 

8 4 

9 4.5 

10 6.5 

11 8 

12 8.5 

12.5 10.5 

13 12 

14 13.5 

15 14.5 

16 15 

17 15 

18 15.5 

19 15.5 

20 16 

21 16.5 

22 17.5 

23 18.5 

24 19 

25 21 

26 22.5 

27 24 

28 27 

29 29 

30 29 

31 30 

32 31 

33 33 

34 33 

35 36 

36 37 

37 38 

38 39 

39 41 

40 46 

41 51 

42 56 

  



Table S2 – Absolute Normalisation errors, related to Fig S2F, Supplemental 

Experimental Procedures. Genes with possible error in absolute normalization due to: 1) 

Non-ribosomal RNAs depleted at least 5-fold in rdRNA sequencing (Fig S2F); 2) genes with 

discrepant read density over UTR versus entire transcript. 

Table S3 – Genes with constant expression, related to Fig S4, Supplemental 

Experimental Procedures. Genes with constant expression over the timecourse are 

candidates for loading controls. All genes with maximum/minimum fold change < 2 for 

PolyA+ 0-66hpf and rdRNA 0-24hpf listed (Fig S4). 

Table S4 – Gene ontology enrichments, related to Fig 4, Fig 7. Gene ontology 

enrichments for 1) Clutch A vs Clutch B differentially expressed with large effect (Fig 2). 2) 

Temporal Synexpression heatmap (Fig 4), position contents and statistics of all marked 

blocks in main and inset heatmaps. 3) Characteristic Timescale (Fig 7). Details of min and 

max timescale of each block are given. 

Table S5 – Somite and Vision Temporal Synexpression groups, related to Fig 4. 

Somite Synexpression: Top 150 genes with similarity to ckb between 34-66 hpf 

(Supplemental Experimental Procedures). Vision Synexpression: Identity of groups V1 and 

V2 given with Human orthology, OMIM and OMIA references. 

Table S6 – cDNA clones used to make in situ probes, related to Fig 6, Fig S3.  

Gene Clone: 

ace2 IMAGE:7712185 

act3 Sanger: TNeu071i12 

ankrd2 Sanger: TTpA004e10 

col3a1 IMAGE: 7702933 

cpb1 IMAGE:7003112 

ctrb1 IMAGE:7840666 

ctrl IMAGE: 7007251 

g6pc2 IMAGE: 7736777 

hbe1 IMAGE: 7608779 

mep1a IMAGE: 7021568 

mep1b IMAGE:7623560 

myf5 Sanger: TGas127b01 

myod1 Sanger: Tneu017H11 

pri-mir427 IMAGE:7545411 

t (brachyury) Sanger: Tgas023E12 

thdl17 IMAGE: 8902999 

thdl18 Sanger: TTpA005b18 

 



Table S7 – Primer sequences for isoform specific probes, related to Fig 3.  

 Isoform A Primers  Isoform B Primers  

Name Forward Reverse 
Promote

r 
Forward Reverse 

Promote
r 

ckb 
ACTCTCAC
AACACCTT
GAAGC 

CCCCAGTTT
GAATGACAT
CATCC 

SP6 
CAATATCAG
TATGGCGC
AACC 

GTCTGAAT
GACATCAT
CCAGGG 

SP6 

btbd3 
AGCGGCA
CATAGTTC
ATCCC 

AGATACAGC
GGATCCAT
GCG 

T7 
TTGAGTCAG
CGAACAGA
CCC 

TCTTCCCT
CGTGCATC
TACC 

T7 

calhm2 
TCTCAATG
TGCCTACG
TTGC 

CCAGCCTG
TAGGAGAAA
TGC 

T7 
GGGGCTGA
TTTCTTGCT
ACC 

TCAGCAAC
AGGAAACA
CAGG 

T7 

 

 

 

Supplemental Data 

Data S1 – Gene Models, related to Experimental Procedures. Additional gene models 

beyond those in X. tropicalis v7.2 models. 

Data S2 – mir427 locus, related to Fig 6. mir427 locus features described in Fig 6. 
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1 Sample Collection and RNA-seq Library Generation 
 

1.1 Frog Husbandry 

We employed Xenopus tropicalis for these studies because: 1) its high fecundity, combined 

with the use of in vitro fertilization, allows for the collection of large numbers of synchronized 

embryos, 2) its diploid sequenced genome facilitates genomics and 3) its evolutionary 

proximity to humans makes it highly applicable as a disease model and for regenerative 

medicine. 

X. tropicalis were housed and cared for in our aquatics facility according to established 

protocols that were approved by Yale IACUC (Khokha et al., 2002). We obtained eggs from 

female frogs after injection of HCG and manually expressing eggs into a dry petri dish. IVF 

was performed after isolating both testes from males and applying a sperm solution to eggs 

after homogenizing testes with a pestle. After waiting 2 minutes, we flooded the eggs with 

1/9thx MMR to activate fertilization; this was considered time zero.  

 

1.2 RNA Isolation and Spike Ins 

To obtain RNA samples for RNA-seq, we performed 2 parallel in vitro fertilizations of siblings 

of 12th generation inbred Nigerian Xenopus tropicalis. All fertilizations and subsequent 

culturing of embryos were performed in a temperature-controlled room maintained at ~24oC, 

with measurements at each timepoint indicating fluctuations +/- ~1oC over the entire 

timecourse. Unfertilized eggs and embryos were dejellied and embryos were cultured at low 

density, ~100 embryos per 150-mm dish containing ~120-150mls of 1/9thX MMR. For most 

samples, 10 embryos/timepoint were homogenized in 200 l Trizol® and frozen at -80oC, 

with the exception of egg, 0.5, 1, 1.5, 2, 2.5 and 3hpf timepoints, which were sampled at 25, 

30, 20, 20, 20, 15 and 15 embryos respectively. Nieuwkoop and Faber staging of the 

embryos were noted at each time point. We labelled the progeny of the two crosses Clutch A 

and Clutch B. All collections from the two clutches occurred concurrently.  

For the Clutch A timecourse, ERCC Spike In Mix 1 (12l) (lot 1205006) was diluted in 

DEPC-treated water to a final volume of 1045l, which was verified for accuracy by mass 

measurement on a Denver Instruments model 400D balance set to measure three digits past 

the decimal point. The dilution was performed in an Ambion Non-Stick RNAse-Free 1.5-ml 

microfuge tube (AM12450) to minimize loss of RNA to the tube surface. Diluted spike in mix 

was then pipetted directly into the Trizol homogenates such that 1l was delivered per 

embryo, which in most cases required delivery of 10 l diluted spike in mix/sample, with the 

exception of the first several timepoints discussed above. In all cases, a Gilson P10 

pipetman was used, fitted with Denville Sharp® Precision 10l extra long (10-XL) barrier tips 

(P1096-FR) to prevent loss and also to permit a visual confirmation that each 10 l pipetting 

matches the 10 l marking on the pipette tip. Spike in mix was pipeted into samples in the 

order of embryo sample chronology. Total RNA was purified from the embryo Trizol 

homogenates according to the manufacturer’s recommendations. Following isopropanol 

precipitation, RNAs were resuspended in DEPC-treated water and any contaminating 

genomic DNA was removed by a subsequent overnight precipitation in 5M LiCl at 4oC. RNA 

was pelleted and washed twice with 70% ethanol made with DEPC-treated water. All RNAs 
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were resuspended at 2 l/embryo equivalent in DEPC-treated water. RNA quality was 

assessed by Bioanalyzer and RNA Integrity Numbers were all in excess of 9.  

For the Clutch B timecourse, 8l of ERCC spike in Mix 1 (lot 1306008) was similarly diluted 

to a final volume of 836l and delivered to all Trizol® homogenates, except the pipetting was 

done in reverse order to the chronology of the samples. Furthermore, we added an 

additional spike in mix that was pipetted independently and in order of sample chronology. 

Ambion ArrayControl™ RNA spikes (lot 1302027) were used. Two microliters of 

ArrayControl™ spikes 1, 2 and 4 were diluted (using a Gilson P-2 pipetman, 10-XL tips and 

Ambion Nonstick tubes) to a final volume of 82 l in DEPC-treated water to create a solution 

of 2.439ng for each ArrayControl spike-in RNA per microliter. Approximately 5.125l of this 

dilution was then further diluted into DEPC-treated water to a final volume of 1000l as 

verified by weight to create a solution of ~12.5pg/l. One microliter per embryo (~12.5pg) 

was added to Trizol® homogenates by pipetting of 10l per tube except in the cases of the 

0-3hpf samples. In both timecourses these early timepoint spike-ins were pipetted by 

multiple rounds of 10l (for 20 or 30l delivery), or readjustment to 5l (for 15l delivery). 

RNAs were subsequently isolated as described above except we omitted the LiCl 

precipitation step. RNAs were similarly quantitated and evaluated for quality. 

 

1.3 RNA-seq Library Construction and Sequencing 

RNA quality and concentration was evaluated by running total RNA on an Agilent RNA Nano 

Bioanalyzer chip. All samples had an RNA integrity number (RIN) greater than 9. On 

average we recovered ~16g of total RNA per sample, and 1g of total RNA from each 

sample was used for library construction. Ribosomal RNA was removed via polyA-selection 

for mRNA, or by ribosomal RNA depletion. For polyA+ RNAs, transcripts were selected from 

the total RNA using two rounds of binding enrichment to oligo(dT)25 beads (Invitrogen). For 

ribosome-depleted RNAs, rRNAs were eliminated from total RNA using the Ribo-Zero 

(Human/Mouse/Rat) Magnetic Ribosomal rRNA Removal kit (Epicenter) according to the 

manufacturer’s recommendations. The supernatants from both approaches were each 

purified and concentrated using RNAclean XP beads (Beckman Coulter).  Following 

selection, RNA was fragmented to approximately 140 base pairs and first-strand synthesis 

was completed with SuperScript III reverse transcriptase (Invitrogen) using random 

hexamers. Magnetic AMPure XP beads (Beckman Coulter) were used to purify the cDNA 

and remained with the sample throughout sequencing library construction. During 

preparation, DNA is selectively precipitated by weight and re-bound to the beads through the 

addition of a 20% polyethylene glycol, 2.5 M NaCl solution.  We used T4 DNA polymerase 

and T4 polynucleotide kinase to blunt ends and phosphorylate the fragments. E. coli DNA 

polymerase (Klenow large fragment) was then used to add a single adenine residue to the 3' 

end of each fragment; custom adapters (IDT) are ligated using T4 DNA ligase. The 

remaining product is then PCR amplified using custom-made primers (IDT) containing 

unique 6 bp indices.  

In the primary cross (Clutch A, Fig 1A), we sequenced polyA+ mRNA covering the entire 
time course (66 hours, 90 samples) and rdRNA for the first 24 hours (48 samples). For the 
secondary cross (Clutch B, Fig 1A), we sequenced polyA+ mRNA for the first 24 hours only 
(48 samples). We generated ~7 billion paired end reads over 145 RNA samples with an 
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average of ~36 million reads per library for a total of 1 trillion bp (750x the size of the Xt 
genome). Frog A polyA+ libraries yielded 34 million paired-end reads on average, Frog B 
polyA+ 31 million paired-end  reads, and Frog A rdRNA 43 million paired-end  reads. 
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2 High-throughput sequencing data processing 
 

2.1 Xenopus tropicalis transcriptome and genome 

In this study we use the Xenopus tropicalis version 7.1 genome (Hellsten et al., 2010; 

Karpinka et al., 2015) and the associated X. tropicalis v7.2 gene models (Karpinka et al., 

2015). To this we add known off-assembly gene sequences used in a similar study (Collart 

et al., 2014), models for ERCC and ArrayControl spikes, and a model for the mir427 locus 

(see Section 2.1.2). We corrected a number of gene models known to be erroneous in the 

v7.2 assembly, predominantly these are models of short locally repeated families such as 

the nodal3/5, bix, and sox17 family genes. For convenience we model these short repeated 

families to report the aggregate signal from each copy as a total “gene” expression, and 

report the signal from each copy as transcript “isoforms” of the family. For example, nodal5 

is present with 4 copies, we report the aggregate of all the copies as nodal5 as we would a 

gene, and we report the individual copies nodal5.1-nodal5.4 as we would isoforms of the 

gene. Corrected and additional gene models beyond the X. tropicalis v7.2 models are given 

in Data S1. The final transcriptome contains 28,274 genes with 43,568 distinct transcript 

isoforms. Of these isoforms, 31,928 (73%) have annotated coding and UTR sequence. Of 

the 28,274 genes, 15,277 (54%) have a gene symbol assigned by orthology to other 

species. Overall, we find that 85.9%, 79.3%, 71.6% of reads align to the genome and off-

genome EST sequences for Clutch A PolyA+, Clutch A rdRNA and Clutch B respectively. 

2.1.2 mir427 locus 

The sequence of the mir427 locus is identical in X. tropicalis genome builds v7, v8 and v9. In 

v7 it is located scaffold_3b:3515270-3571270, in v8 Chr03:3956500-4012500 and v9 

Chr03:133289810-133345810. We provide the coordinates for the features marked in (Fig 

6), in Data S2. In this work we do not attempt to distinguish the abundance or accumulation 

rates of individual features of the pri-mir427 locus, but we report the aggregate abundance 

and accumulation of the entire locus. 

2.2 RNA-seq read alignment and estimation of relative abundance 

All libraries were sequenced at 76bp paired-end on an Illumina HiSeq 2000 (GEO 

GSE65785). Read pairs were aligned using TopHat v2.0.10 (Trapnell et al., 2009) to the 

Xenopus tropicalis version 7.1 genome described above along with our ERCC & 

ArrayControl exogenous spike sequences. Spliced alignment was guided by the gene 

models, and TopHat was run with the following parameters “\-r 13 --mate-std-dev 60 -G 

v7models -g 200 --report-secondary-alignments". Overall, we find that 85.9% of reads align 

in Clutch A PolyA+, 79.3% of reads align in Clutch B PolyA+ and 71.6% of reads align in 

Clutch A rdRNA. 

We estimated the relative abundance of all transcripts in fragments per kilobase per million 

(FPKM) with Cufflinks v2.1.1 (Trapnell et al., 2010) with the parameters "--compatible-hits-

norm --max-bundle-frags 10000000 -p 24 -G v7models -b xt7.fa -u --max-mle-iterations 

50000". As such, ambiguous reads are not discarded, and Cufflinks assigns these with an 

expectation-maximization procedure. For an absolute normalization to be successful is 

essential that no ambiguous reads are discarded. We did not allow Cuffinks to assemble 
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new transcripts; new transcript discovery from this data will be the subject of a subsequent 

manuscript.   

2.2.1 Relative abundance corrections for repetitive loci 

We found that Cufflinks underestimates the read mass aligning to certain locally repetitive 

loci.  

We compared the read mass aligning to each gene reported by Cufflinks to that obtained by 

naïve counting in which we count the number of reads aligning to one or many transcripts of 

a given gene and to no transcripts of any other gene. As we discard reads that map to 

multiple genes, the read mass found by naïve counting should be less than or equal to that 

found by Cufflinks up to sequencing bias corrections applied by Cufflinks. In general, we find 

this to be the case with mean fold change of 0.92 (on log2 scale -0.18 +/- 0.35 [mean +/- std. 

dev]) between the naïve counting mass and the Cufflinks mass, and near identical results for 

genes with no ambiguous reads. However, we found discrepancies for a small number of 

genes in which the naïve counting read mass significantly exceeded that of Cufflinks.  We 

find 12 genes for which the naïve counting read mass is two-fold larger than that of Cufflinks, 

and of these we find 5 known genes which exceed by over four-fold: pri-mir427 - 190x, 

nodal5 - 10x, sst - 9.5x, nodal3 - 4.6x, Xetro.K01272 – 4.1x. All of these genes have locally 

repeated loci, pri-mir427 is the most repetitive with over 160 copies of the mir427 hairpin, 

nodal3 is present with 5 copies, nodal5 is present with 4 copies, and sst is present with 2 

copies. Unnamed gene model Xetro.K01272 contains a sequence repeated locally and 

genome wide, it is adjacent to a gap in the genome assembly on a short scaffold and its true 

nature is unclear. Of the remainder of the 12 with fold change greater than two-fold, most 

also exhibit local repetitions albeit to a lesser degree. We note that for pri-mir427 the 

Cufflinks read mass is approximately equal to the number of reads that only align once to the 

locus. It appears that Cufflinks unduly down-weights reads that align locally many times, 

although other loci present in multiple local copies appear unaffected. 

We correct the abundances of the most severely affected genes: pri-mir427, nodal3, nodal5, 

and sst. We do not correct Xetro.K01272, as we cannot be confident in its model. We return 

to the original read alignments, and use a simple expectation-maximization procedure that 

does not account for sequencing biases to assign reads between the transcripts of these 

genes. We discard reads that align ambiguously to one of these genes and any other gene. 

For nodal3, nodal5 and sst we find no such reads to discard. For pri-mir427 we find that 

0.3% of reads over all samples (and 0.001% of reads between 0-10hpf in rdRNA 

sequencing) that align to the mir427 locus also align elsewhere in the genome, we discard 

these reads. These reads map to the extreme flanks of the mir427 locus, and importantly, 

they do not exhibit the same temporal profile as the remainder of the locus. We can be 

confident that they do not originate from pri-mir427 transcripts and so these reads should be 

discarded for correct estimation of pri-mir427 absolute abundance. We calculate the FPKM 

for all transcripts of these genes using effective lengths calculated using the fragment size 

statistics reported by Cufflinks. We update the FPKM of all transcripts in light of the 

additional read mass. 

We convert transcript abundances in FPKM and convert to transcripts per million (TPM). We 

sum the expression of isoforms of each gene to estimate the TPM per gene.  
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2.3 Analysis of RNA Pol II ChIP 

We demonstrate that there is significant RNA Pol II activity over the mir427 locus. We took 

publically available NF stage 9 RNA Pol II ChIP-seq data, GEO accession GSE41161 (van 

Heeringen et al., 2014). We aligned reads to the X. tropicalis v7 genome with Bowtie2 with 

parameter “-k 80”. We generated pile ups for all loci in Fig S7 from unique reads with the 

exception of mir427. Here, for a read with 𝑛 best alignments within the mir427 locus and no 

alignments outside the locus we assign a read mass of 1/𝑛 to all best alignment locations. 
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3 Modeling RNA-seq time series data 
 

3.1 Relative Transcript Abundance 

We introduce some concepts relevant to relative transcript abundance estimation with RNA-

seq, a more complete overview is found elsewhere (Trapnell et al., 2009; Trapnell et al., 

2010). Sample 𝑗 =  1, … , 𝑆 is collected at 𝑡𝑗 hours post fertilization, and transcript 𝑖 =

 1, … , 𝑀 with length 𝑙𝑖 present with 𝑚𝑖𝑗 copies, and the total number of transcript copies at 

time 𝑡𝑗 is 𝑇𝑗 = ∑ 𝑚𝑖𝑗𝑖 . From RNA-seq data we estimate two relative abundances: 1) relative 

transcript abundance: 𝜌𝑖𝑗 = 𝑚𝑖𝑗/𝑇𝑗; 2) relative fragment abundance (𝛼𝑖𝑗) and describes the 

expected proportion of sequenced fragments derived from transcript 𝑖: 𝛼𝑖𝑗 = 𝑚𝑖𝑗  𝑙𝑖/ ∑ 𝑚𝑘𝑗𝑙𝑘𝑘  

here 𝑙𝑖 is the effective transcript length that accounts for the RNA-seq fragment size 

distribution (Trapnell et al., 2010). Note that the FPKM is given by 𝑓𝑖𝑗 = 109𝛼𝑖𝑗/𝑙𝑖, and a 

FPKM abundance can be converted into the relative transcript abundance as 𝜌𝑖𝑗 =

𝑓𝑖𝑗/ ∑ 𝑓𝑘𝑗𝑘 . We report relative transcript abundances in TPM defined as 106𝜌𝑖𝑗. 

 

3.2 Biological and Technical Noise 

The technical noise of re-sequencing the same library has been shown to be well 

approximated by a Poisson distribution (Marioni et al., 2008). If sample 𝑗 is sequenced to a 

depth of 𝑑𝑗 and 𝑣𝑖𝑗 is the number of fragments sequenced from transcript 𝑖 then 𝔼[𝑣𝑖𝑗] =

𝑑𝑗𝔼[𝛼𝑖𝑗] and by the law of total variance 𝕍[𝑣𝑖𝑗] = 𝑑𝑗𝔼[𝛼𝑖𝑗] + 𝑑𝑗
2𝕍[𝛼𝑖𝑗]. Consequently 𝑣𝑖𝑗 is 

overdispersed or heteroskedastic; its variance is greater than its mean by the variance of 𝛼𝑖𝑗 

(the biological noise) scaled by the sequencing depth. We can apply a transform to 

approximately stabilize the variance of 𝑣𝑖𝑗. If the variance of 𝛼𝑖𝑗 depends linearly on 𝔼[𝛼𝑖𝑗] 

and some biological noise parameter 𝜎𝑖𝑗 such that 𝕍[𝛼𝑖𝑗] =  𝛽1𝔼[𝛼𝑖𝑗] + 𝛽2𝜎𝑖𝑗 and if 𝑦𝑖𝑗 =

 √𝑣𝑖𝑗 then 𝕍[𝑦𝑖𝑗] ≈ 𝑎 + 𝑏𝜎𝑖𝑗/𝔼[𝛼𝑖𝑗] for positive constants 𝑎 and 𝑏. The square root 

transformation is not a perfect variance stabilizing transformation, but significantly reduces 

the dependence of the variance on the expression level.  
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3.3 Gaussian Process Models of Gene Expression 

We model our gene expression time series with Gaussian Processes (Rasmussen and 

Williams, 2006), examples of their application to biological data are increasing, including 

examples of approaches similar to ours (Aijo et al., 2014; Heinonen et al., 2014; Honkela et 

al., 2010; Stegle et al., 2010; wa Maina et al., 2014). We have estimates of a gene's 

abundance 𝐠 = (𝑔1, 𝑔2, … , 𝑔𝑛)⊤ measured at times 𝐭 =  (𝑡1, 𝑡2, … , 𝑡𝑛)⊤. Here, 𝐠 is non-

negative and has variance as outlined above. Rather than modelling the likelihood of this 

data explicitly, we opt to transform the data using the Anscombe transform: 𝐲 = ℎ(𝐲) =

√𝐠 + 3/8, and then assume that the transformed data are Gaussian distributed, we address 

the validity of this assumption below. 

We assume that the transformed variables are noisy observations from some underlying 

process, 𝑓(𝑡), that describes gene expression: 

𝑦𝑡 = 𝑓(𝑡) + 𝜖,    with 𝜖 ∼ 𝒩(0, 𝜎𝑛
2), 

𝜖 is a zero mean Gaussian random variable with variance 𝜎𝑛
2. We apply a Gaussian process 

prior 𝑝(𝐟|𝐭) = 𝒩(𝟎, 𝐊) with covariance matrix entries defined by the covariance 

function 𝐊𝑖𝑗 =  𝐾(𝑡𝑖, 𝑡𝑗). In the majority of cases we use the stationary Matérn class of 

covariance functions: 

𝐾𝑀(𝑡𝑖, 𝑡𝑗) =  
21−𝜈

Γ(𝜈)
(

√2𝜈𝑟

𝜏
)

𝜈

𝐾𝜈 (
√2𝜈𝑟

𝜏
) ,    with 𝑟 = |𝑡𝑖 − 𝑡𝑗|; 

𝜈 > 0 controls the roughness of the process; 𝜏 > 0 describes the characteristic timescale; 

and 𝐾𝜈is a modified Bessel function. We select the Matérn covariance function over the 

infinitely differentiable squared exponential, exp (−
𝑟

2𝜏2), as we find it better describes the 

features of gene expression, and it has been pointed out that squared exponential is 

unrealistically smooth for modelling a physical process (Rasmussen and Williams, 2006; 

Stein, 1991). Rather than treating 𝜈 as a hyperparameter we find that setting 𝜈 = 5/2 

robustly captures the features of gene expression in our data. In this case the covariance 

function reduces to 𝐾𝑀,𝜈=5/2(𝑡𝑖, 𝑡𝑗) = (1 + √5 𝑟/𝜏 + 5𝑟2/(3𝜏2))exp (−√5𝑟/𝜏). We scale our 

covariance by a parameter 𝜎𝑓 so 𝐊𝑖𝑗 = 𝜎𝑓𝐾𝑀(𝑡𝑖, 𝑡𝑗). We treat 𝜎𝑓 , 𝜏, 𝜎𝑛 as hyperparameters, 

and select their values by optimizing the log marginal likelihood (see below).  

The timescale 𝜏 is particularly important here. In Gaussian Process literature it is more 

commonly known as the length-scale (Rasmussen and Williams, 2006), due to our temporal 

setting, we refer to it as the characteristic timescale of gene expression (Fig 7). The 

timescale can be understood by the number of upcrossings of the process above a particular 

threshold over the unit interval (Rasmussen and Williams, 2006). Roughly, for a gene whose 

expression is characterized by a process with a timescale 𝜏 and the Matern covariance 

function with 𝜈 = 5/2, the expected number of times a gene is able to cross above its mean 

level of expression in one hour will be √5/3(2𝜋𝜏)−1. Or, that a gene’s expression will cross 

above its mean level of expression once every 2𝜋𝜏√3/5 hours on average.  

In certain instances we make use of the non-stationary Gibbs covariance function to allow a 

time-varying timescale: 
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𝐾𝐺(𝑡𝑖, 𝑡𝑗) = (
2𝜏(𝑡𝑖)𝜏(𝑡𝑗)

𝜏(𝑡𝑖)2 + 𝜏(𝑡𝑗)
2)

1/2 

exp [−
(𝑡𝑖 − 𝑡𝑗)

2

𝜏(𝑡𝑖)2 + 𝜏(𝑡𝑗)
2], 

we set 𝜏(𝑡) = 𝜏𝑒 − (𝜏𝑒 − 𝜏𝑠)e−𝑡/𝜏𝑟 so that the timescale is 𝜏𝑠 at 𝑡 = 0 and increases or 

decreases toward 𝜏𝑒 at rate 𝜏𝑟. We treat 𝜏𝑠, 𝜏𝑒 , 𝜏𝑟 as hyperparameters and constrain them to 

be positive. Similarly, we make use of a covariance function to describe time varying noise: 

𝐾𝑁(𝑡𝑖, 𝑡𝑗) = {
𝜎𝑛(𝑡𝑖)    when 𝑖 =  𝑗
0             otherwise   

, 

with 𝜎𝑛(𝑡) =  𝜎𝑒 − (𝜎𝑒 − 𝜎𝑠)e−𝑡/𝜎𝑟 and 𝜎𝑠, 𝜎𝑒 , 𝜎𝑟 as hyperparameters and similarity constrained 

to be positive.  

Conditioning on observed data yields a Gaussian predictive distribution for 𝑦 at time 𝑡⋆, 

𝑦𝑡⋆
∼ 𝒩(𝜇⋆, 𝜎⋆

2): 

𝜇⋆ = 𝐊𝑡⋆,𝐭[𝐊𝐭,𝐭 +  𝜎𝑛
2𝐈]

−1
𝐲, 

𝜎⋆ = 𝐊𝑡⋆,𝑡⋆
− 𝐊𝑡⋆,𝐭[𝐊𝐭,𝐭 + 𝜎𝑛

2𝐈]
−1

𝐊𝐭,𝑡⋆
+ 𝜎𝑛

2 . 

To report predictions we invert our original data transform and report quantiles of the 

transformed distribution. Commonly, we report the median ℎ−1(𝜇⋆) and the 95% confidence 

interval: ℎ−1(𝜇⋆ ± 1.96𝜎⋆).  

We treat our scale, timescale and noise parameters as hyperparameters 𝛉 = (𝜎𝑓 , 𝜏, 𝜎𝑛) in 

case of the Matérn covariance function, and 𝛉 = (𝜎𝑓 , 𝜏𝑠, 𝜏𝑒 , 𝜏𝑟, 𝜎𝑠, 𝜎𝑒 , 𝜎𝑟)  in the nonstationary 

case. We select our hyperparameters by maximizing the marginal likelihood (or the 

evidence): 

𝑝(𝐲|𝐭, 𝛉) =  ∫ 𝑝(𝐲|𝐟, 𝐭, 𝛉)𝑝(𝐟|𝐭, 𝛉)𝑑𝐟 

 The log marginal likelihood with the Gaussian prior and noise model used here is given by 

log 𝑝(𝐲|𝐭, 𝛉) ≡ ℒ(𝐲|𝐭, 𝛉): 

ℒ(𝐲, 𝐭, 𝛉) =  −
1

2
𝐲⊤[𝐊𝐭,𝐭 +  𝜎𝑛

2𝐈]
−1

𝐲 −
1

2
log|𝐊𝐭,𝐭 + 𝜎𝑛

2𝐈| −
𝑛

2
log 2𝜋. 

To perform the optimization, we used gradient descent to minimize the negative log marginal 

likelihood using fminunc in (MATLAB, 2014). To help ensure that a global minimum had 

been reached, we used a further round of minimization with the Nelder-Mead Simplex 

method using fminsearch (MATLAB, 2014). As all hyperparameters are positive we 

perform the optimization in the log-space of all parameters. Occasionally, this optimization 

procedure selects biologically unrealistic values for hyperparameters. In almost all of these 

cases, the optimization selects a timescale that is excessively short with a noise level that is 

unrealistically small. To ensure an optimum is selected within a biologically reasonable 

region of parameter space, we apply a prior to hyperparameters. To select a suitable prior 

we empirically evaluate the distribution of the maximum likelihood estimates of log 𝛉̂ found 

by maximizing the likelihood without a prior. Treating each parameter independently we find 

that a log-normal distribution to be a good fit for the main mass of each 𝜃𝑖. We place a 
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Gaussian prior on each log 𝜃𝑖 centered on the empirical mode of each 𝜃𝑖, with variance 

greater than the empirical variance and then peak and minimize −ℒ(𝐲, 𝐭, 𝛉) − log 𝑝(𝛉).  

Our sampling intervals Δ𝑡 = 0.5, 1 define a detection limit for genes with fast timescales. If 

we consider the power spectrum (Rasmussen and Williams, 2006) of the covariance 

function, then we will not be able to reliably detect those frequency components that are 

faster than the Nyquist frequency associated with our sampling rate. The power spectrum for 

the Matérn covariance function in one dimension with 𝜈 = 5/2 is:  

𝑆𝑀(𝑠, 𝜏) = 400√5𝜏(5 + 4𝜋2𝑠2𝜏2)−3 . 

We calculate a theoretical timescale detection limit by finding the smallest value of 𝜏 such 

that  ∫ 𝑆𝑀(𝑠, 𝜏)
1/2Δ𝑡

−1/2Δ𝑡
>  𝛼. Setting 𝛼 = 0.99 we find we can reliably detect timescales as small 

as 0.6 hours and 1.1 hours for 0.5 hour and 1 hour sampling respectively. As our 

measurements are not noise free our actual detection limits are larger than this. We are 

nevertheless confident that we capture all relevant behavior as the mass distribution of 

calculated timescales lies well away from these limits. Further, extreme transcriptional 

events with the fastest observed timescales, such as pri-mir427 (Fig 6, Fig 7), are well 

characterized by our 30 minute sampling interval. 
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4 Data Quality 
Alignment rates were high for the X. tropicalis genome. In Clutch A polyA+ 84.9% of all pairs 

mapped; in Clutch A rdRNA 70.5% of pairs mapped, with only 3.5% of reads aligning to 

ribosomal sequence demonstrating excellent ribosomal RNA depletion; in Clutch B polyA+ 

78.9% of reads mapped.  

To assess the quality of our data, we compare the Spearman correlation shared between all 

pairs of samples within each series (Fig S1A). The samples exhibit excellent correlation, 

neighboring samples share a Spearman correlation coefficient close to 1; they are as similar 

as biological replicates. Roughly, the samples fall into two groups: those prior to 10 hours 

post fertilization (hpf) and those after 10 hpf. Poorly performing samples, such as 52 hpf, in 

Clutch A PolyA+ are clearly visible, we address these samples below. Note that all samples 

prior to 4.5 hpf (the period before maternal clearance and widespread zygotic transcription) 

in the rdRNA share very high correlation.  

Fig S1B gives the Spearman correlation between the three series as a whole. The 

reproducibility is greater between biological replicates Clutch A and Clutch B, then between 

different sequencing protocols of the same RNA polyA+ and rdRNA. This is due to large 

changes in polyadenylation state of many maternal genes post-fertilization. 

We assessed the reproducibility of our spiking of RNA standards (Fig 1C). We observed 

excellent reproducibility between each series and within each series. The largest 

discrepancy can be seen in comparisons between polyA+ and rdRNA sequencing. Nearly all 

standards have a greater relative abundance in rdRNA samples and specific spike species 

can be seen to shift consistently away from the identity line. We attribute this to different 

polyA+ capture efficiencies of the spike in species (Qing et al., 2013; SEQC MAQC-III 

Consortium, 2014) and that polyA+ selection is less efficient for our RNA standards than for 

endogenous genes. ERCC-00116 performs especially poorly and is excluded from absolute 

normalization calculations. We note that the relative abundances of the RNA standards in 

Clutch A samples are approximately 1.6 fold greater than those in Clutch B samples, 

reflecting differences in the quantity of RNA standard in each sample due to batch and 

preparation variations. 

We found TPM abundances of certain samples to be consistently diverged from the trend of 

many genes. This effect is partly visible in the PCA (Clutch A polyA+ 52 hpf sample, Clutch 

B polyA+ sample 22.5 hpf). To investigate this further, we evaluated leave-one-out (LOO) 

(Rasmussen and Williams, 2006) residuals, in this scheme we leave out each sample in turn 

and calculate its predictive distribution given the remainder of the data: 𝑝(𝑦𝑖|𝐲−𝐢, 𝐭, 𝛉). We 

maximize the log marginal likelihood on the full data, and then the LOO mean and variance: 

𝜇𝑖𝑗 and 𝜎𝑖𝑗
2  for gene 𝑖 in sample 𝑗 can be efficiently calculated as 𝜇𝑖𝑗 = 𝑦𝑖𝑗 − [𝐊−1𝐲]𝑗/[𝐊−1]𝑗𝑗 

and 𝜎𝑖𝑗
2 = 1/[𝐊−1]𝑗𝑗. We sum the squared normalized residuals over all 𝑚 genes for each 

sample 𝑞𝑗 = ∑ (𝑦𝑖𝑗 − 𝜇𝑖𝑗)
2

/𝜎𝑖𝑗
2  𝑚

𝑖=1 , and so 𝑞𝑗 will by 𝜒2-distributed with 𝑚 degrees of freedom. 

We calculate a LOO score:  𝑧𝑗 =  (𝑞𝑗 − 𝑚)/√2𝑚 will approximately have a standard normal 

distribution. In reality, 𝑞𝑗 will have less than 𝑚 degrees of freedom as some genes will have 

zero expression, but the construction serves well to identify outlying samples (Fig S1D). 

Note, those samples adjacent to poor performing samples can also receive a large positive 

value of 𝑧𝑗, we confirm there are no adjacent poorly performing samples by recalculating a 
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similar score to 𝑧𝑗 but with adjacent large scoring samples removed (data not shown). We 

select the six samples with largest 𝑧𝑗 in Clutch A PolyA+, and returned to the original RNA 

purifications and re-generated new RNA libraries and re-sequenced. We observe a 

remarkable technical reproducibility (Fig S1E), including highly reproducible aberrant 

behavior. The cause is not clear, but AT-rich transcripts are most affected. We excluded the 

3 worst samples: 21.5 hpf, 33hpf and 52 hpf from all further Clutch A analysis, and we 

exclude sample 22.5 hpf from all further Clutch B analysis. Despite the exclusion of these 

samples from our analysis, we continue to plot these data throughout this work.  

 

To further demonstrate the strong temporal relationship between our samples we performed 

a principle component analysis (PCA) on each of the three series independently (Fig S1F). 

The samples plot a clear and dense trajectory through the projections onto the first two 

principle components. Moreover, the major transcriptomic events, particularly those related 

to the maternal to zygotic transition (Fig 1, Fig 5), are clearly observable. The influence of 

changes in polyadenylation is present in polyA+ sequencing, but not rdRNA sequencing.  
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5 Direct Absolute Normalization of RNA-seq data 
To convert relative read transcript abundances into absolute transcript numbers, we added a 

mix of 92 spike-in RNAs from the External RNA Controls Consortium (ERCC; Ambion) along 

with an independently generated mix of 3 spike-in RNAs derived from the ArrayControl set 

as RNA quantitation standards to each time point sample. We avoided adding spike-in RNAs 

per quantity of recovered, purified RNA since this approach is highly error-prone. Instead, we 

added a known amount of these spike-in RNAs directly to each embryo Trizol homogenate 

on a per embryo basis prior to RNA extraction, subjecting the RNA standards to the same 

variations in recovery as the endogenous embryonic transcripts during RNA purification, 

library preparation, and sequencing. 

5.1 Absolute Normalization Methodology 

We apply a two-step normalization. First, we perform a relative normalization for sequencing 

depth and calculate the relative abundance in TPM of all RNA standards and native 

transcripts. Here, it is key to note that the relative abundance of the RNA standards 

decrease with a smooth trend with time (Fig 1B, S2A). This reflects the increasing RNA 

content of the embryo with time.  

We combine the known transcript copy numbers of each RNA standard with their relative 

transcript abundances to estimate the total number of transcripts per sample and discover 

conversion factors from relative to absolute abundances.  

Formally, we add 𝑞 = 1, … , 𝑄 RNA standard species each present with a copy number 𝑠𝑞 to 

each sample, the total number of copies of standards is 𝑆 =  ∑ 𝑠𝑞𝑞 . The relative abundance 

of an endogenous transcript is 𝜌𝑖𝑗 = 𝑚𝑖𝑗/(𝑇𝑗 + 𝑆) and the relative abundance of a RNA 

standard is 𝑟𝑞𝑗 = 𝑠𝑞/(𝑇𝑗 + 𝑆). The variation in 𝑟𝑞𝑗 for a given RNA standard species over all 

samples will arise from the following sources: 

1. Batch variation, both in manufacturing and in RNA standard sample preparation. This 

results in the TPM abundances of spikes in Clutch A PolyA+ being approximately 1.6 

fold higher than those in Clutch B PolyA+ (Fig S1C). 

2. Changes in the total number of transcripts 𝑇𝑗. We assume that 𝑇𝑗 varies smoothly with 

time, and samples close in time will have a more highly correlated total number of 

endogenous transcripts than those more distant in time. This can clearly be seen in 

Fig 1B, S2A, where the trend of relative normalized spikes vary smoothly with time. 

3. Sample noise, including pipetting error. This is also observable in Fig 1B, Fig S2A as 

the deviations from the smooth spike trend lines. 

We opt for a practical strategy for dealing with the above sources of variation: we estimate a 

parameter related to 𝑇𝑗 for each library, we then smooth these estimates to obtain the trend 

in 𝑇𝑗 that is not contaminated by RNA standard sample noise. We combine a Generalized 

Linear Model with our Gaussian Process framework. We use a generalized linear model with 

a dispersed Poisson likelihood to each sample with the following link function: 

log 𝑟̂𝑞𝑗 =  𝛽𝑗 + log 𝑠𝑞 , 

where 𝑟̂𝑞𝑗 is the abundance of RNA standard 𝑞 in sample 𝑗 in TPM, and as a consequence 

e−𝛽𝑗 ≈ (𝑇𝑗 − 𝑆)/106. We then calculate smooth 𝛽̅𝑗 using Gaussian Processes with Matérn 
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covariance function, which describe the trend without sample noise (Fig S2B). We then can 

convert a relative transcript abundance to TPM, 𝜌̂𝑖𝑗, to an absolute abundance by 𝑚̂𝑖𝑗 =

𝜌̂𝑖𝑗e−𝛽̅𝑗, and similarly for the RNA standards 𝑠̂𝑞 = 𝑟̂𝑞𝑗e−𝛽̅𝑗.  

5.2 Corrections for PolyA+ Sequencing Bias and Batch Variation 

The performance of ERCC spikes in PolyA+ sequencing has been reported to be poor (Qing 

et al., 2013; SEQC MAQC-III Consortium, 2014), and our data is in agreement as the spike 

transcripts are captured less well than their endogenous counterparts in a polyA+ selection 

(Fig S1C). Indeed, we find the calculated absolute normalization factors to be higher for 

Clutch A polyA+ samples than rdRNA samples (Fig S2B). We address this by assuming that 

on average only a proportion 0 < 𝜙 < 1 of all PolyA+ spikes present in the embryo 

homogenate are captured. The relative abundance in PolyA+ samples in TPM will now 

become: 

𝜌̃𝑖𝑗 =
106𝑚𝑖𝑗

𝑇𝑗 + 𝜙𝑆
 for endogenous transcripts and 𝑟̃𝑞𝑗 =

106𝜙𝑠𝑞

𝑇𝑗 + 𝜙𝑆
 for RNA standards. 

Applying the absolute normalization as above will still yield the correct result for RNA 

standards as 𝑠̂𝑞 = 𝑟̃𝑞𝑗e−𝛽̅𝑗, but will be inaccurate for endogenous transcripts as 𝑚̂𝑖𝑗𝜙−1 =

𝜌̃𝑖𝑗e−𝛽̅𝑗. To address this we obtain an estimate of 𝜙 by assuming that the majority of 

measured transcripts are polyadenylated over a particular interval in development. This 

amounts to assuming the 𝑇𝑗 are approximately equal in the polyA+ and rdRNA preparations 

for certain samples, so 𝜙̂𝑡 =  (106e𝛽̅𝑗𝑟 − 𝑆) (106e
𝛽̅𝑗𝑝 − 𝑆)⁄  where 𝑗𝑟 and 𝑗𝑝 denote rdRNA 

and polyA+ samples at time 𝑡 respectively. To correct our absolute normalization we use the 

median value of 𝜙̂𝑡 for 𝑡 in the range [6, 23.5] when the polyadenylation of maternal 

transcripts has completed and the clearance of non-polyadenylated transcripts has initiated 

and it is reasonable to assume that all mRNAs that the vast majority measure are 

polyadenylated; this gives 𝜙̂ = 0.56.  

In Clutch B polyA+ the ERCC spikes have lower relative abundance estimates than in the 

Clutch A polyA+. This reflects variation in spike batch preparations and the result of these 

differences inflates Clutch B polyA+ absolute normalization correction factors (Fig S2B). We 

assume that both sets of normalization factors are equally likely and average their 

differences by shifting the normalization factors to the median geometric mean over all time 

points.  

After applying PolyA+ and Clutch A/B corrections we observe excellent agreement between 

the otherwise independently calculated e−βj for the three datasets (Fig S2B). We use 

corrected factors to absolutely normalize endogenous genes and use uncorrected factors to 

normalize RNA standards. 

5.3 Absolute Normalization between 40-66 hpf 

There appears to be a greater level of variability in the RNA standards between 40-66 hpf 

(Fig S2B); the variability results in a wave in the absolute normalization correction factors. 

Contrasting the loading control examples (Fig S4), we find the wave is absent from the 

absolute normalized expression profiles of some but not all genes.  This suggests that for 

some, but not all genes, this wave in the correction factors is appropriate. In the absence of 
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replicates covering this region we cannot ascertain whether this is a biological or a technical 

phenomenon. As the effect is small enough not to alter any of our conclusions we do not 

attempt to alter the correction factors for any individual gene traces. However, when 

presenting certain genome wide results, particularly, the ng /embryo estimates (Fig 1C) and 

the transcriptome synexpression map (Fig 4), we opt to use a stronger smoothing of 

absolute normalization factors. We use the non-stationary Gibbs covariance function in 

combination with the time varying noise covariance function to produce a covariance 

function with increasing timescale and noise level that increase with time (Fig S2B, far-right). 

In bias-variance trade-off terms, this equates to a higher bias and lower variance model of 

the data. 

 

5.4 Performance and Uncertainty of Absolute Normalization  

We applied the absolute normalization correction factors to the RNA standards. As desired 

the standards lost the trend present in relative normalization but retained their sample noise 

(Fig 1B, Fig S2A).  

ERCC spike-ins are manufactured to be accurate up to ±5% on a log2 scale (Ambion 

technical service, personal communication), all measures of accuracy are therefore 

performed on a log scale.  

We evaluate the consistency and accuracy of our absolute normalization by comparison of 

calculated to actual RNA standard transcript copy number abundances. We time average 

the abundance of all RNA standards, then we compare the three series individually and a 

normalization involving Clutch A/B PolyA+ combined (Fig S2C).  The normalization shows 

excellent performance with an 𝑅2 = 0.97 − 0.98 error independent of expression level. 

Moreover, calibration of ArrayControl standards by ERCC standards (each standard pipetted 

independently into each embryo Trizol homogenate) alone reveals of 1.11-1.25 fold 

inaccuracy. 

There is a spike-in species specific bias which is reproducible over replicates and partially 

independent of sequencing protocol. This can most readily be seen in the residuals of 

absolute normalization model validations (Fig S2C), these residuals are highly correlated in 

Clutch A and Clutch B polyA+ sequencing (Pearson correlation coefficient 0.86), and are still 

correlated to a lesser degree between Clutch A polyA+ and rdRNA (Pearson correlation 

coefficient 0.59). We conclude that the spike-in polyA+ bias varies between spike-in species 

and may be the result of a variable polyA tail length (indeed, this appears to be the origin of 

the poor performance of ERCC-00116 (Fig S1C)). Further, there is either a sequencing bias 

that affects both polyA+ and rdRNA sequencing, or there is a consistent deviation in 

manufacture of ERCC spike-ins from their stated datasheet abundances. 

We use the variation between Clutch A and Clutch B with the spike-in species specific bias 

to quantify the uncertainty in our absolute normalization. Here, a generative model of the 

error based on distribution of the 𝛽̅𝑗 would be most ideal, however, we do not have the 

necessary replicates of the rdRNA in both clutches to derive confidence intervals for rdRNA 

data that accounts for between clutch batch effects. We opt to estimate empirical uncertainty 

for true transcript numbers based on the residuals of the spikes in ClutchA/B polyA+ 

sequencing. We apply this uncertainty to all polyA+ and rdRNA datasets. 
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 If 𝑠𝑞 is the true number of transcripts for a given RNA standard and 𝑠̂𝑞 is our calculated 

absolute abundance, we find a simple log model summarizes the residuals in our absolute 

normalization well. That is, log 𝑠𝑞 = log 𝑠̂𝑞 + 𝜖, where 𝜖 is zero mean Gaussian random 

variable with standard deviation 𝜎𝑠 =  0.59 (or 0.25 on a log10 scale Fig S2C). Given 

absolute normalized estimates for a transcript’s abundance 𝐦̂ measured at times 𝐭 and a set 

of hyperparameters 𝛉̂ chosen by maximizing the marginal likelihood, the distribution of the 

true transcript number 𝑚⋆ at time 𝑡⋆ is: 

𝑝(𝑚⋆|𝜎𝑠, 𝑡⋆, 𝐦̂, 𝐭, 𝛉̂) = ∫ 𝑝(𝑚⋆| log ℎ−1(𝑦⋆) , 𝜎𝑠)𝑝(𝑦⋆|𝑡⋆, ℎ(𝐦̂), 𝐭, 𝛉̂)𝑑𝑦⋆. 

Where 𝑝(𝑦⋆|𝑡⋆, ℎ(𝐦̂), 𝐭, 𝛉̂) is the Gaussian Process predictive distribution on data 

transformed by ℎ and 𝑝(𝑚⋆| log ℎ−1(𝑦⋆) , 𝜎𝑠) is a log-normal distribution with mean log ℎ−1(𝑦⋆) 

and standard deviation 𝜎𝑠. We evaluate this distribution by Monte Carlo methods. This 

uncertainty is largely a gene independent, time independent phenomenon, and so we do not 

report it as standard as it obscures gene dynamics and gene-gene comparisons. As 

example, we report the uncertainty distributions quantiles for eef1a1o (Fig S2D) and we use 

the distribution to average over the uncertainty of our absolute normalization when 

calculating the concentration of mRNA in ng / embryo (Fig 1C). 

We now explore three factors that confound the absolute normalization of RNA-seq data: 1) 

library amplification artefacts, 2) gene model correctness and 3) ribosomal-depletion 

sequencing bias. 

5.4.1 Library Amplification Artefacts 

We explore the influence of library amplification artefacts on our data and subsequent 

absolute normalization. We evaluate the occurrence of RNA-seq fragments containing the 

same start and end coordinates, for all genes and spikes. These fragments will be both 

genuine and artefactual, that is produced both by different mRNA molecules and PCR 

duplication. We cannot distinguish genuine from artefactual duplicates, but we find an 

equivalent amount of duplication in spikes as endogenous genes: 

We examine transcript length against duplicated read rate (duplicated reads mapping to a 

transcript / total reads mapping to a transcript), to ensure that we have a clear picture of 

duplication we restrict our concern to the most abundant transcript of each gene with at least 

5,000 reads. We find a linear relationship between log transcript length and log duplicated 

read rate. For example, for Clutch A polyA+ at 6.0hpf (a representative but more deeply 

sequenced sample with 46 million reads), we find a Pearson correlation -0.73 between 

transcript length and duplicated read rate. We fit a linear model: log10 𝑟 = −0.75 log10 𝑙 +

1.73, where 𝑟 is the duplication rate and 𝑙 is the transcript length. Examining the residuals of 

this model a two sample Kolmogorov-Smirnov test fails to find any differences between the 

residuals of the spikes and genes (p = 0.45). Extending this analysis to all samples in Clutch 

A polyA+, we do not find any differences between the length corrected duplication rate of the 

spikes compared to genes. Thus, in terms of read duplication rates we find both spikes and 

genes have a similar relationship between molecule numbers and read counts. Therefore, 

any library amplification artefacts present will be accounted for in normalization, and so will 

have a limited undue influence on relative or absolute transcript number predictions. 
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5.4.2 Gene Model Correctness 

In this work we do not assemble or correct the X.tropicalis v7.2 models based on our RNA-

seq data. Incorrect gene models can lead to incorrect estimates of absolute abundance. In 

instances in which an exon is missing from either the 5’ or the 3’ end of a transcript model 

we will estimate the correct transcript copy number, but will underestimate the absolute 

abundance in kb/embryo. Conversely, instances in which the 5’ or 3’ end of a transcript 

model are unduly extended we will incorrectly estimate the transcript copy number, but will 

correctly estimate the abundance in kb/embryo. 

We quantify this latter issue. For the most abundant isoform of each gene we evaluate the 

density of unique reads aligning to the entire transcript versus the UTR. In Table S2, we 

report the 725 transcripts for which these densities differ by at least 2-fold. We calculate a 

predicted fold change error of the absolute normalization due to this discrepancy in 

densities. The is error is calculated by estimating the degree to which the UTR needs to be 

shortened to produce an equal read density over the UTR and coding regions. If a transcript 

model has problems beyond or different to an extended UTR, the transcript will often be 

reported within the list, but the fold change prediction will be incorrect. As such the absolute 

copy numbers of any transcript in this list should be treated with caution. If we combine the 

errors for all 725 transcripts discussed above, this produces a 4.7% error in the total number 

of transcripts present in the embryo (or 1.047 fold error), and this effect is considerably less 

than the uncertainty of our absolute normalization. 

 

5.4.3 rdRNA Depletion of non-ribosomal-RNA transcripts 

Certain transcripts are under-represented in ribosomal depleted sequencing over polyA+ 

sequencing, for example mixer and foxh1.2 (Fig S2F lower panels). We find a severe 

reduction (a greater than 5-fold decrease in rdRNA sequencing compared in polyA+) in 2.2% 

of all genes, this corresponds to a loss of 1.9% of all transcripts. Further, we find that only 

12% of all transcripts experience a decrease greater than 1.1 fold. This is within the error of 

our absolute normalization and so we do not correct further for rdRNA dropout. We provide a 

list of all those genes affected (Table S2). We hypothesize that this effect may be due to 

RiboZero probes matching regions within these mRNAs and note that a sequence based 

regression model would be a fruitful way to account for and measure this bias. 
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6 Gaussian Process Model Validity 
In our standard model of gene expression we opted for the pragmatic assumptions that 

square root transformed transcripts per embryo abundances are noisy observations from a 

stationary Gaussian Process with Gaussian likelihood. Visual inspection suggests the 

assumptions and Gaussian Process construction offer a good representation of the data.  

To validate our assumptions, we calculate the sum of normalized residuals of the 

transformed expression of each gene over all samples, 𝑤𝑖 =  ∑ (𝑦𝑖𝑗 − 𝜇𝑖𝑗)
2

/𝜎𝑖𝑗
2𝑛

𝑗 , with 𝜇𝑖𝑗and 

𝜎𝑖𝑗are the Gaussian Process mean and variance for gene 𝑖 in sample 𝑗. Note, these are no 

longer the leave-one-out mean and variance as before, but the mean and variance 

calculated on the full data. If our assumptions are correct, then 𝑤𝑖 will follow a 𝜒2 distribution 

with 𝑛 degrees of freedom. Taking this as the null hypothesis, accounting for samples in 

which a gene has zero expression we reject the null hypothesis with p < 0.01 for 8.8% of 

genes in Clutch A polyA+, 0.6% of genes in Clutch A rdRNA and 1.2% of genes in Clutch B 

PolyA+. For our shorter 0-24 hpf data we reject the null approximately the expected number 

of times. Clearly, failing to reject the null hypothesis does not imply that the data follow our 

assumed distribution, but we use it as an indicator that our assumptions are reasonable.  

For Clutch A PolyA+ we note that 98% of the cases in which we reject the null hypothesis 

have a characteristic timescale of less than 15 hours. Inspection reveals that it is the 

stationary assumption at fault, and a non-stationary covariance function with a time varying 

timescale or sample noise would be more suitable to describe the data. In the majority of 

cases gene expression appears more tightly controlled in early development. The 

covariance is best characterized by a short timescale and low sample noise during very early 

development (0-24 hpf).  Then it is better characterized by a lengthening timescale and 

increasing sample noise throughout the remainder of development. In these cases our 

maximization of the log marginal likelihood most often to select hyperparameters that match 

the early phase where we have most dense sampling and the largest amount of information 

on a gene’s expression.  

Clearly, the origin of this non-stationarity could be explained by a gene executing different 

programs during development. However, we rarely observe the converse in which a gene’s 

expression becomes more tightly controlled with developmental time. This suggests two 

confounding factors. First, the embryos in the clutch become more de-synchronized with 

time. Second and related, as development progresses the cells within the embryo lose the 

synchronicity they display during the cleavage stages as they execute increasingly complex 

programs of development. Our observed data becomes the aggregate of different 

processes, and our ability to detect fast timescale processes with clarity diminishes and this 

contributes to non-stationary behavior in a gene’s expression.  

As our stationary and data transformation assumptions perform well in the shorter time 

series and those genes with non-stationary behavior are well described early in development 

in the longer series, we opt to not employ the non-stationary Gibbs covariance function for 

these genes.  
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7 Detection Limits and mRNA content of the Embryo 
 

7.1 Spike in Detection Limit 

We evaluate our detection limit by calculating the average number of transcripts required to 

produce a single read. We do so by first calculating the detection limit in transcript 

abundance in kb for each sample from the three series (Fig S2E). We find the detection limit 

increases, as expected, with developmental time as the RNA levels in the embryo increase 

(see below. We average over a Gaussian Process model of these per sample detection 

limits, along with averaging over all transcript sizes to calculate the mean detection limit in 

transcripts/embryo with time (Fig S2D). If we further average over all samples and data sets 

we find a mean detection limit of ≈ 1300 transcripts/embryo for the entire data. 

7.2 Total mRNA per Embryo  

We calculate the total measured mRNA (PolyA+ and rdRNA) in the embryo in nanograms 

(Fig 1C). To evaluate the per-sample variation of this normalization, the data points in these 

figures are estimates of total mRNA calculated from non-smooth correction factors e−𝛽𝑗 

(rather than Gaussian Process smoothed e−𝛽̅𝑗). We average over the uncertainty in our 

absolute normalization, convert abundances to kilobases and then to nanograms, and sum 

up the abundance for all measured transcripts excluding RNA standards. For visualization, 

we smooth the resulting ng/embryo estimates with a Gaussian Process using a non-

stationary Gibbs covariance function and time-varying noise covariance function. 

We compare and validate our X. tropicalis polyA+ mRNA ng/embryo abundances to 

experimentally measured X. laevis polyA+ mRNA yields (Sagata et al., 1980). We first map 

the X. laevis abundances that are given by developmental stage onto X. tropicalis stages 

based on our table of stages and timings (Table S1).  The X. laevis polyA+ mRNA mass is 

greater than that of the X. tropicalis. A reduction of the Sagata et al. X. laevis mRNA 

recoveries by a factor of 3.31 +/- 0.76 [mean +/- std. dev.] maximizes similarity to X. 

tropicalis (Fig 1C). This is in remarkable agreement with the ratio of volumes of X. laevis and 

X. tropicalis egg sizes. In (Crowder et al., 2015) they find X. laevis diameters to be 1.19 +/- 

0.07 mm [mean +/- std. dev., n = 17], and X. tropicalis egg diameters to be 0.80 +/- 0.05 mm 

[mean +/- std. dev., n = 13], and so the volume ratio is 3.31 +/- 0.76. We observe good 

agreement between X. laevis and X. tropicalis in the wave of polyadenylated RNA that 

increases to N&F stage 8/9 (X.t. 4.5 hpf), then decreases to stage 12.5 (X.t. 10 hpf), then 

increases again through early development. 
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8 Differential Expression in time series 

8.1 Clutch A vs Clutch B Differential Expression 

To determine which genes exhibit temporal differential expression, we use our Gaussian 

Process framework. We test the hypothesis that a gene in Clutch A and Clutch B has equal 

expression in time, versus the hypothesis that the gene has different expression in Clutch A 

and Clutch B in time. The latter hypothesis describes differential expression. We ask 

whether a single Gaussian process model best describes the data, or whether two models 

(one for Clutch A and one for Clutch B) best describe the data. We restrict our consideration 

to those timepoints at which Clutch A samples and Clutch B samples overlap, and only those 

genes with a mean abundance greater than 3,000 transcripts per embryo over all Clutch A 

and Clutch B samples. 

We have Clutch A abundance measurements  𝐦̂𝐴 = ℎ−1(𝐲𝐴) measured at times 𝐭𝐴 and 

similarly  𝐦̂𝐵 = ℎ−1(𝐲𝐵) at 𝐭𝐵 for Clutch B, and the combined data with length 𝑚 is 𝐲 =

[𝐲𝐴 𝐲𝐵] and 𝐭 = [𝐭𝐴 𝐭𝐵]. We look for differential expression by comparing the log marginal 

likelihoods of the two hypotheses. To account for the difference in the number of parameters 

we use the Bayesian Information Criterion (BIC):   

BIC(𝐲𝐴, 𝐲𝐵) =  ℒ(𝐲𝐴, 𝐭𝐴, 𝛉𝐴) + ℒ(𝐲𝐵, 𝐭𝐵, 𝛉𝐵) −  ℒ(𝐲, 𝐭, 𝛉) − 3 log[𝑚]/2. 

A positive value of BIC(𝐲𝐴, 𝐲𝐵) would indicate a preference for the hypothesis that Clutch A 

and Clutch B have differential expression. We report the distribution of BIC(𝐲𝐴, 𝐲𝐵) for all 

genes, along with examples of genes with BIC(𝐲𝐴, 𝐲𝐵) > 0 (Fig 2B,C). We wish to focus on 

those genes that are differentially expressed with the largest statistical effect. We calculate 

the time dependent overlap between the models:  

𝛼𝑡 =  ∫ min[𝑝(𝑦𝑡|𝐲𝐴, 𝐭𝐴, 𝛉𝐴), 𝑝(𝑦𝑡|𝐲𝐵, 𝐭𝐵, 𝛉𝐵)] 𝑑𝑦𝑡

∞

−∞

. 

If a gene has greater expression in Clutch A over Clutch B, and an overlap of 𝛼̅ = 0.025, 

then the upper 95% confidence interval of B would be equal to the lower 95% confidence of 

A on average. We plot BIC(𝐲𝐴, 𝐲𝐵) against mean overlap over time for all genes (Fig 2A). We 

find that approximately all genes with BIC(𝐲𝐴, 𝐲𝐵) > 60 have 𝛼̅ < 0.1, and all genes with 

𝛼̅ < 0.025 have BIC(𝐲𝐴, 𝐲𝐵) > 60. The mean overlap dramatically decreases for all genes 

with BIC(𝐲𝐴, 𝐲𝐵) > 60. We divide genes into three categories: 

1. No differential expression: BIC(𝐲𝐴, 𝐲𝐵) ≤ 0, 12,062 genes. 

2. Differential Expression Small effect: 0 < BIC(𝐲𝐴, 𝐲𝐵) ≤ 60, 4,561 genes. These 

genes are statistically distinguishable, but have minor differences. 

3. Differential expression Large effect: BIC(𝐲𝐴, 𝐲𝐵) > 60, 291 genes. These genes 

are strongly differentially expressed. 

We calculate gene ontology enrichment for strongly differentially expressed 291 genes in the 

large effect category. All gene ontology terms over represented with 𝑝 < 0.05  by 𝜒2 test are 

reported in Table S4 along with Benjamini Hochberg FDR values and Fisher exact p-values. 

Interestingly, there is a strong enrichment for GO terms related to cell division. 

8.2 Isoform Differential Temporal Dynamics 
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We now consider differential isoform expression; our primary interest is finding the most 

dramatic examples of differential isoform expression. We use a procedure very similar to that 

used in Clutch A vs Clutch B differential expression; however, we now distinguish between 

differential abundance and differential temporal dynamics. We say that two isoforms whose 

expression ratio is constant with time have differential abundance. These isoforms have the 

same temporal pattern of expression but they are expressed at different levels. Conversely, 

two isoforms whose expression ratio varies with time have differential temporal dynamics. 

Examples of differential abundance and differential dynamics are given in Fig S5. 

To detect differential dynamics, we consider differential expression on scale normalized 

data. If a gene has 𝑘 = 1, … , 𝑃 isoforms and if isoform 𝑘 has abundance estimates 𝐦̂𝑘 =

ℎ−1(𝐲𝑘), then we look for differential expression between normalized 𝐳𝑘 = (𝐲𝑘 − 𝜇𝐲𝑘
)/𝜎𝐲𝑘

 

where 𝜇𝐲𝑘
 and 𝜎𝐲𝑘

 are the mean and standard deviation of vector 𝐲𝑘 respectively. We use 

multiple conditions to detect differential isoform dynamics. First we evaluate the Bayesian 

Information Criterion to decide if we prefer a single model for all isoforms or a different model 

for each individual isoform: 

BIC(𝐳) = (∑ ℒ(𝐳𝑘 , 𝐭, 𝛉𝑘)

𝑃

𝑘

) −  ℒ(𝐳, 𝐭, 𝛉) − 3(𝑃 − 1) log [𝑚𝑃] 2⁄  

With this condition any two isoforms whose expression is linearly related will have BIC(𝐳) ≤

0 and so will have differential or identical abundance. Similar to Clutch A vs Clutch B 

differential expression, we focus our attention on those with BIC(𝐳) > 60. If this first condition 

is satisfied, we next consider whether any of the pairs of isoforms of a gene have differential 

abundance rather than differential dynamics. Consider the graph with nodes for each isoform 

and edges between those isoforms which have BIC(𝐳𝑘 , 𝐳𝑙) < 60. Then, consider the 

transitive closure of this graph. We say that any connected pair of nodes has equal or 

differential abundance, and any disconnected pair of nodes has differential dynamics. This 

procedure may connect two isoforms 𝐳𝑘 and 𝒛𝑙 which have BIC(𝐳𝑘 , 𝐳𝑙) > 60, and it may 

result in a fully connected graph. In these cases the differential dynamics exhibited is not 

strong enough for consideration here. This condition will aid to remove those genes with a 

large number of annotated isoforms and few disambiguating reads.  

Disconnected sub-graphs constitute groups of isoforms with equal or differential abundance, 

see Fig S5 for example. For our final condition, we return to the original reads and require 

unique reads disambiguate each group of isoforms. 

  



23 

 

9 Temporal Synexpression 

9.1 Temporal Map of the Transcriptome 

We generated a temporal map of the transcriptome (Fig 4A), we included all genes with a 

mean expression of at least 3,000 transcripts over the 66 hours of Clutch A PolyA+. To 

visualize the broad behaviors of the transcriptome, we took the transformed Gaussian 

Process medians from absolute normalization using the non-stationary Gibbs and noise 

covariance functions (Fig S2B, far right) and then normalized each trace by its maximum. 

Our intention is to project all variations in gene expression onto a single dimension, and to 

do so we performed a hierarchical clustering and found and ordered the resulting 

dendrogram so that the leaves were most similar (Bar-Joseph et al., 2001). The resultant 

ordering of all genes is more important than the clustering itself.  

While exploring temporal synexpression, we noticed a number of genes with a similar 

expression pattern to ckb, this lead us to identify temporal synexpression groups S1 and S2 

(Fig 4A,B). To expand on these we take the z-normalized expression between 34 and 66 hpf 

and take the 150 genes most similar to ckb by Euclidean distance (Table S5). Similarly, we 

identified V1 and V2, by ranking by similarity to rho over 40-66 hpf (Table S5). 

 

9.2 Gene Ontology Annotation and Sliding Window Overrepresentation 

We use a previously published X. tropicalis gene ontology (GO) annotation generated by 

blast2go (Collart et al., 2014). To augment this GO annotation we include a previously 

published list of transcription factors (Collart et al., 2014), we treat this list in the same 

manner as any GO category when calculating overrepresentations. 

In temporal synexpression (Fig 4) and characteristic timescale analysis (Fig 7) we look for 

locally overrepresented categories in ordered lists of genes. To calculate this 

overrepresentation we slide a window of length 500 (Fig 4) and 600 (Fig 7) along a list of 

genes (Fig S6), at each window position we perform a 𝜒2 tested for an association between 

the genes in the window and each GO category. We calculate − log(𝑝) of the 𝜒2 test at each 

position in the list, and smooth this to obtain the trend (Fig S6). We look for regions in which 

− log(𝑝) > 5 or equivalently 𝑝 < 0.0067. From these regions we retain and report those that 

contain at least 5 genes of the given category, have their maximum − log(𝑝) > 10 and the 𝜒2 

test for the region taken as a whole has 𝑝 < 0.05.  

All GO overrepresentations are reported in Table S4. 
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10 Transcript Kinetics Per Allele 
We calculate the rate of transcript accumulation per allele during the cleavage stages. We 

do this for pri-mir427 (Fig 6), and nodal3, nodal5, nodal6, sia1, sia2, klf17, admp, ventx3.1 

(Fig S7).  

We use an idealized model of cell numbers in which the first cell division occurs at 1 hpf and 

divisions occur every 20 minutes thereafter until the 12th division. We use the following 

continuous approximation for cell numbers: 

𝑐(𝑡) =  {
1                       for 𝑡 ≤ 1                

23(𝑡−1)+1        for 1 < 𝑡 ≤ 4 2
3⁄ ,

 

𝑡 gives the time in hpf. During the growth phase of cells the rate of change of cells is 𝑐̇(𝑡) =

𝜈𝑐(𝑡), with growth rate 𝜈 = 3log 2. We consider a transcript whose Gaussian Process 

abundance in kb at time 𝑡 is given by 𝑔(𝑡). We are interested in the transcript abundance per 

cell and the rate of production by each cell. The cell transcript abundance is given by 

𝜂(𝑡) = 𝑔(𝑡)/𝑐(𝑡), changes in 𝜂(𝑡) will be caused by production of transcript by each cell, 

degradation and dilution amongst the cells, and so: 

𝜂̇(𝑡) = 𝑝(𝑡) − 𝜈𝜂(𝑡), 

where 𝑝(𝑡) is the combination of production and degradation rates. By definition of 𝜂(𝑡): 

𝜂̇(𝑡) =  
𝑔̇(𝑡)

𝑐(𝑡)
−  

𝑔(𝑡)𝑐̇(𝑡)

𝑐(𝑡)2
=

𝑔̇(𝑡)

𝑐(𝑡)
− 𝜈𝜂(𝑡)          for  1 < 𝑡 < 4 2

3⁄ , 

and as a consequence 𝑝(𝑡) =  𝑔̇(𝑡)/𝑐(𝑡) and the combined production and degradation rate 

per allele is 𝑝(𝑡)/2. During the cleavage stages, we assume degradation is negligible, and 

𝑝(𝑡)/2 will be approximately equal to the production rate of transcript per allele.  

In Fig 6 we report the rate of accumulation for pri-mir427, the 95% confidence intervals 

reported are those that arise from differentiating the pri-mir427 Gaussian process, that is, 

they do not include uncertainty due to the absolute normalization. We measure the 

maximum accumulation rate of all pri-mir427 transcript at 2560 (95% CI: 2280 to 2840) 

kb/min/allele. There is a gap in the genome assembly present at the center of the locus (Fig 

6D). This gap will not unduly influence this maximum accumulation rate as long as the gap 

contains sequence exhibiting the same repetitive structure (i.e. the mir427 hairpin and inter-

hairpin repeat) as the remainder of the locus, as we will still detect all reads generated by the 

mir427 locus.  

We provide context to the maximum accumulation rate of pri-mir427 by calculating the 

theoretical accumulation rate assuming maximal RNA pol II transcription. RNA pol II 

elongation has been measured at 4.3 kb/min (Ardehali and Lis, 2009), the maximum loading 

RNA pol II loading density observed in amphibian oocyte lampbrush chromosome is ~10 pol 

II/kb (Miller and Hamkalo, 1972). Assuming RNA pol II transcription is uniform over the 

mir427 locus the theoretical maximal rate of accumulation of pri-mir427 is, 

4.3 
kb

min pol II
× 55kb × 10 

pol II

kb
= 2365 

kb

min
. 

This theoretical rate compares well with the 2560 (95% CI: 2280 to 2840) kb/min/allele we 

measure, and implies that pri-mir427 is transcribed maximally during the early rapid cell 
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divisions of the frog embryo. The above theoretical rate calculation does not include 

transcription from the gap in the genome assembly in the mir427 locus, and therefore a RNA 

pol II elongation rate of 4.3 kb/min and a loading density of 10 pol II/kb constitute an upper 

bound to the RNA pol II activity required. 

The above assumes that the transcript is ubiquitously transcribed. If a transcript is 

transcribed in a fraction of cells that undergo exponential increase during the cleavage 

stages, then the above will underestimate the rate proportional to the fraction of transcribing 

cells. We can be confident that pri-mir427 is ubiquitously transcribed by in situ (Fig 6) and 

that the pol II elongation rates and loading densities required to explain the observed 

accumulation rates are maximal. However, we cannot make any such assumption for genes 

whose rates are given in Fig S7. For these genes, these rates are underestimates of the true 

accumulation per allele. Nevertheless, these rates can be used to derive bounds and 

estimates of relevant biological information. For example, the peak accumulation rate of 

nodal6 is 1.8 (95% CI: 1.3 to 2.2) kb/min/allele averaged over all allelic copies in the embryo 

(Fig S7), and is transcribed from a 1.6kb locus. We can derive a lower bound for the number 

of cells transcribing nodal6 by assuming a maximal RNA pol II output similar to pri-mir427 

(Fig 6). If RNA pol II loads at ~10 pol II/kb and elongates at ~4kb/min/pol II, then a cell is 

capable of producing nodal6 transcript at ~64kb/min. This implies that at least 2.0% - 3.4% 

of the embryo must be transcribing nodal6. Conversely, we can run the argument in the 

other direction. Literature suggests that approximately 10% of the cells of the Stage 8-9 

embryo transcribe nodal6 (Skirkanich et al., 2011). This suggests that the true peak 

accumulation rate of nodal6 is 13-22 kb/min/allele, which could be achieved by 3-5 RNA pol 

lIs elongating at 4 kb/min at each active nodal6 locus. 
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11 in situ Hybridization 
RNA in-situ hybridization was done as previously described (Khokha et al., 2002).  We 

generated probes from cDNA clones available in either the Sanger full-length (Gilchrist et al., 

2004) clone collection or the IMAGE clone repositories. We generated digoxigenin-labelled 

antisense probes using in vitro transcription according to the manufacturer’s instructions (T7 

High Yield Kit, New England Biolabs).  In the case of pri-mir427 the clone was cut with XhoI-

SacI, blunted and re-ligated in order to remove a long polyA tail. All cDNA clones used to 

make probes given in Table S6. 

We generated isoform specific probes from cloned PCR products using a TOPO® TA 

Cloning® Kit, Dual Promoter (Life Technologies). We used either SP6 or T7 RNA 

polymerases to generate RNA probes depending on insert orientation. For isoform specific in 

situs, we also used sense strand probes side-by-side and only report antisense signals that 

are clearly expressed above the sense control. All primer sequences for the isoform specific 

probes are given in Table S7. 
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