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Supplemental Materials and Methods 

Study Design 

 The purpose of this study was to use an integrated multicohort meta-analysis framework 

to analyze multiple gene expression data sets to identify a set of genes that can separate patients 

with sterile inflammation from patients with infectious inflammation.  This framework has been 

described previously (41, 42).   

Search  

Two public gene expression microarray repositories (NIH GEO, ArrayExpress) were 

searched for all human data sets that matched any of the following search terms: sepsis, SIRS, 

trauma, shock, surgery, infection, pneumonia, critical, ICU, inflammatory, nosocomial. Data sets 

that compared either healthy controls or patients with non-infectious inflammation (SIRS, 

trauma, surgery, autoimmunity) to patients with acute infections and/or sepsis were kept for 

further study.  Data sets that utilized endotoxin injection as a model for SIRS or sepsis were not 

included. 

Data set Details 

 Six of the publicly available whole blood data sets were from the Genomics of Pediatric 

SIRS/Septic Shock Investigators (GPSSSI) (15-20). These data sets contain overlapping samples, 

for which Hector Wong provided a key of the unique patients. Those unique patients were then 

gcRMA normalized together and treated as a single data set (GPSSSI Unique).  

 In addition to the publicly-available data sets, we used the Inflammation and Host 

Response to Injury Program (Glue Grant) trauma data sets (6, 12, 13). The Glue Grant data sets 

consist of separate trauma patient cohorts sampled for either the entire buffy coat or sorted cells 

(neutrophils, monocytes, T-cells). Inclusion criteria are described elsewhere (14). Patients were 

sampled at the following days after admission: 0.5, 1, 4, 7, 14, 21, 28 days. The Glue Grant 

trauma cohort patients were classified as ‘infected’ if they had a nosocomial infection 

(pneumonia, urinary tract infection, catheter-related bloodstream infection, etc.), a surgical 

infection (excluding superficial wound infections), or underwent surgery for perforated viscus; 

infection definitions can be found at http://www.gluegrant.org/commonlyreferencedpubs.htm. 



For meta-analyses, samples drawn within +/- 24 hours of the day of diagnosis of infection were 

included as infection cases. Time points with fewer than 20 patients were not included in the 

multicohort analysis. The Glue Grant also contains burn patients, but these were not included due 

to the difficulty of distinguishing clinically relevant infections from colonized burn wounds. Use 

of the Glue Grant was approved by both the Glue Grant Consortium and the Stanford University 

IRB (protocol 29798). 

Gene Expression Normalization 

 All Affymetrix data sets were downloaded as CEL files and re-normalized using gcRMA 

(R package affy). Output from Agilent chips and custom arrays analyzed on GenePix scanners 

was background corrected, within-arrays loess normalized, and then between-arrays quantile 

normalized (R package limma).  Illumina data sets were quantile normalized. The Glue Grant 

sorted-cell data sets were analyzed using custom arrays (GGH-1, GGH-2); these were 

normalized as previously described and used in their post-processed state (55).  For all gene 

analyses, the mean of probes for common genes was set as the gene expression level. All probe-

to-gene mappings were downloaded from GEO from the most current SOFT files on Dec 14, 

2014.  

Labelled PCA Method  

 The labelled principal components analysis (PCA) method is an implementation of the 

constrained optimization described in equations 6 and 7 in section 4.1 of Koren and Carmel (56). 

This optimization computes a linear transformation of the data that maximizes the pairwise 

distance between points in different labelled classes of the data while maintaining the constraint 

that the transformed data are orthogonal to each other. This orthogonal constraint is slightly 

different to the constraint employed by PCA, which demands that the transformed basis is 

mutually orthogonal, not the transformed data itself. While PCA is a projection scheme, labelled 

PCA is a general form of a linear transformation due to this difference in constraint. 

 Call X the original data set, with m rows (data points) and n columns (each data point has 

n elements). Y is an m by 1 matrix that has a different listing for each class. In other words, Y (i) 

equals Y (j) if and only if elements i and j are part of the same labelled class. L is a symmetrical 

m by m matrix whose (i,j) entry is -1, unless Y (i) equals Y (j). In this latter case, the entry is 0. 



Finally, all diagonal entries (where i equals j) are filled so that row i sums to 0. Koren and 

Carmel prove in Lemma 3.2 that the eigenvectors of transpose (X)*L*X provide a mapping that 

maximizes the pairwise distance between points in different labelled classes of the data. 

However, this transformation remains a projection scheme, which means that these eigenvectors 

are orthogonal to each other. This latter result limits the utility of the transformed data, but is 

more generalizable. The general linear projection used in this paper instead finds the vectors v 

that solve the equation Av=λBv, where A is transpose (X)*L*X, and B is transpose 

(X)*X. Although more expressive, this method is not as robust as the labelled PCA projection 

scheme, however, since solutions to this generalized form require that B is not singular. Since B 

is not the identity matrix, the old orthogonal constraint used in projections does not have to hold. 

Instead, solutions to this form require that the basis is mutually orthogonal with respect to the 

covariance basis of the original data. 

Labelled PCA Applications 

All data sets that contain a comparison of non-infectious SIRS, ICU, or trauma patients to 

sepsis patients were converted from probes to genes, and then bound into a single large matrix 

and quantile normalized. Genes not present in all data sets were thrown out. Patients with sepsis 

at any time (either on admission or hospital-acquired) were grouped in a single class, and Lasso-

penalized regression was applied to separate sterile SIRS patients from sepsis patients (R 

package glmnet). Labelled PCA was carried out using the genes selected by the penalized 

regression, on the classes of sterile SIRS versus sepsis. The same graph was then re-labelled to 

show which samples are from hospital-acquired (or late) sterile SIRS or sepsis patients. The 

same set of genes from the penalized regression was then used in labelled PCA to compare 

healthy, sterile SIRS, and sepsis patients. This same graph was then re-labelled to show which 

samples are from hospital-acquired or late sterile SIRS or sepsis patients. 

To examine the effects of time on gene expression in SIRS/trauma and infection, all data 

sets that include serial measurements over time were selected. From the Glue Grant data sets, 

only buffy coat arrays were included, so as not to overwhelm the signal from the other data sets. 

The selected data sets were converted from probes to genes, and then bound into a single large 

matrix and quantile normalized. Genes not present in all data sets were thrown out. To reduce the 

gene set in an unbiased manner, CUR matrix decomposition was used to select the top 100 genes 



with the greatest orthogonality in the combined data sets (R package rCUR) (57).  Labelled PCA 

was then carried out with each time point used as a different class (split at 1, 2, 3, 4, 5, 6, 10, 20, 

and 40 days). The resulting PCA was graphed in 3D, colored by time point, and a short video of 

rotations of the 3D space was captured using R package rgl.  

Multicohort Analysis 

 We performed a multicohort analysis (41, 42) comparing gene expression in non-infected 

SIRS/trauma patients versus patients with infections or sepsis.  All data sets with comparisons of 

SIRS/trauma patients to septic/infected patients at the same time point were selected for 

inclusion in the multicohort analysis; thus, comparisons of patients at admission to those with 

sepsis at a later time-point were excluded (see justification for this model in the Results). The 

admission data sets were limited to samples from patients within 48 hours of admission. The 

Glue Grant trauma data sets were split into time bins of days since injury, excluding the initial 24 

hours after admission (see Supplemental Materials and Methods).  Each of these time bins was 

treated as a separate data set in the multicohort analysis, where time-matched never-infected 

patients were compared to patients within +/- 24 hours of diagnosis of infection (infection as 

defined above). Patients who were diagnosed with infection more than 24 hours earlier are thus 

censored in this comparison. This method allows for detection of deviation due to infection from 

the ‘standard’ changes in gene expression over time due to recovery from trauma. A design 

matrix for the multicohort analysis is shown in Supplemental Table 2.   

After selecting the input data sets, we applied two meta-analysis methods: one combining 

effect sizes using Hedges’ g, the other using Fisher’s sum of logs method combining p-values 

(see schematic in Supplemental Figure 10). Given n data sets, this method is applied n times in a 

leave-one-data set-out fashion. A false discovery rate (FDR) threshold was set (0.01), and genes 

with a q-value below the FDR threshold in both the effect size and the Fischer’s sum of log 

analyses at every round of the leave-one-out analysis were selected. The genes were then 

subjected to a data set heterogeneity test, such that in a test for heterogeneity across all input data 

sets, a p-value greater than 0.01 was required for each gene; this removes genes that show 

significantly different effects across different data sets. Next, all genes with a summary effect 

size <1.5 fold were removed. Finally, all genes found to be statistically significant in the 

multicohort analysis according to all three of the above criteria (Supplemental Table 3) were 

subjected to a greedy forward search model, where, starting with the most significant gene, all 



remaining genes are added to the gene score one at a time, and the gene with the greatest 

increase in discriminatory ability is added to the final gene list. The probe-level data for the 

genes remaining after forward search are shown in Supplemental Table 4.   

Infection z score 

Genes that were found to be significant after multicohort analysis were separated 

according to whether their effects were positive or negative (where ‘positive’ means a positive 

effect size in sepsis as compared to SIRS/trauma, and ‘negative’ means a negative effect size in 

sepsis as compared to SIRS/trauma). The class discrimination power of these gene sets was then 

tested using a single gene score. The gene score used is the geometric mean of the gene 

expression level for all positive genes minus the geometric mean of the gene expression level of 

all negative genes multiplied by the ratio of counts of positive to negative genes. This was 

calculated for each sample in a data set, and the scores for each data set were then standardized 

to yield a z score (‘infection z score’). Genes not present in an entire data set were excluded; 

genes missing for individual samples were set to 1. To obtain an infection z score for data sets 

with negative gene expression values (two-channel arrays), the entire data set was scaled by the 

minimum value present in the data set, to ensure all values were positive (since the geometric 

mean yields imaginary values for negative input). 

 Class discriminatory power was examined comparing the infection z scores for classes of 

interest in each examined data set. The infection z score ranges were examined with violin plots, 

and, since they cannot be assumed to have normal distributions, are shown with interquartile 

range and compared using Wilcoxon rank-sum test.  ROC curves of the infection z score were 

constructed within data sets compared to sepsis, and the area under the curve (AUC) was 

calculated using the trapezoidal method.  

Forward Search 

 To obtain a parsimonious gene set that discriminates SIRS/trauma patients and 

septic/infected patients, all genes found to be statistically significant in the multicohort analysis 

were subjected to a greedy forward search model, where, starting with the most significant gene 

in the data set, all remaining genes are added to the gene score one at a time, and the gene with 

the greatest increase in discriminatory ability is added to the final gene list. Here, discriminatory 



ability was defined as a weighted ROC AUC, wherein the infection z score is tested in each 

discovery data set, and the resulting AUC is multiplied by the total number of samples in the data 

set. The function then maximizes the sum of weighted AUCs across all discovery data sets for 

each step. In this way, excellent class discrimination in a small data set does not outweigh 

modest gains in class discrimination in a very large data set. The function stops at an arbitrarily 

defined threshold; we used a stopping threshold of 0.5 (such that when the function cannot find a 

gene that will increase the total discovery weight AUCs of the current infection z score by more 

than 0.5, it will terminate).  This final resulting gene set is thus maximized for discriminatory 

power in the discovery cohorts, though is not optimized as a global maximum. The probe-level 

data for the genes remaining after forward search are shown in Supplemental Table 3.  

Discovery Cohort Examinations 

 The final gene score was used to compute infection z scores in each discovery data set. 

The admission data sets were analyzed separately and separate ROC plots plotted. For the 

hospital-acquired (Glue Grant) data sets, infection scores were standardized (converted into z 

scores) once for the whole cohort as opposed to normalizing the different time-bins separately to 

show changes over time in the same patients. The infection z scores were then analyzed for 

significance using repeated-measures analysis of variance. ROC curves were plotted for the 

individual time-bins treated as separate data sets in the multicohort analysis.  

 For the Glue Grant data sets, two time-course analyses of infection z score were carried 

out for both the buffy coat and neutrophil data sets. First, the average infection z score was 

compared over time using linear regression for patients within +/- 24 hours of infection and for 

non-infected patients. Repeated-measures analysis of variance was used to compare infected and 

non-infected groups to each other and to test for the significance of changes over time.  Next, 

boxplots were constructed for each time window, such that the infection z scores for the patients 

in that time window who were never infected were compared to patients at >5 days prior to their 

day of diagnosis with infection, 5-1 days prior to diagnosis, or +/- 24 hours of diagnosis. For 

each time point (except for the 0-1 day window), the trend in infection z score across the 

different groups was tested with the Jonckheere trend (JT) test. The infection z scores at the 

admission time point ([0,1) ) were tested as the outcomes variable in multiple linear regression, 

examining the contributory effects of both injury severity score and time to infection.  



Validation 

The final gene set was tested in several validation cohorts completely separate from the 

discovery cohorts. The sorted-cells cohort of the Glue Grant was broken into time bins, and 

AUCs were calculated separately for each time bin. Note that no infections within +/- 1 day of 

diagnosis were captured in this cohort after 18 days from the time of injury, so the [18,24) day 

bin is never shown. 

The validation cohorts included three data sets that examined trauma patients over time 

(GSE6377, GSE12838, and EMEXP3001), all of whom developed infections (mostly ventilator-

associated pneumonia). These data sets do not include controls, and so they were compared to 

the Glue Grant non-infected patients as a baseline. These three validation data sets and the Glue 

Grant buffy coat non-infected samples were first linearly scaled by a factor of the geometric 

mean of four housekeeping genes (GAPDH, ACTN1, RPL9, KARS) (58). The data sets were then 

joined on overlapping genes, and batch-corrected between data sets using the ComBat empiric 

Bayes batch-correction tool, with parametric priors (R Package sva) (59).  The ComBat 

correction was controlled for day after injury (so that relative differences between days stay 

relatively different). The infection z score was then calculated for the joined data sets, and the 

validation data sets were plotted against the loess curve from the non-infected Glue Grant cohort.  

Patients within +/- 24 hours of their diagnosis of infection in the validation data sets were then 

compared to day-matched ComBat-co-normalized non-infected Glue Grant buffy coat patients, 

and ROC curves were constructed. 

 All other data sets found in the initial search that allow for comparison between healthy 

or SIRS/trauma and sepsis patients were used for simple class discrimination validation. All data 

sets obtained from whole blood or neutrophils are shown. Studies carried out in PBMCs were 

selected for only those that examined SIRS/trauma and sepsis patients. Data sets using PBMC 

samples that did not include both a sterile SIRS group and a sepsis group were excluded.  All 

peripheral blood healthy vs sepsis patient data sets were grouped into a single violin plot and 

tested jointly for separation (Wilcoxon rank-sum) since they were all being used to make the 

same comparison. ROC curves were carried out on each individual data set separately to show 

the discriminatory capability of the infection z scores within each data set. 



Glue Grant SIRS Evaluation 

 To evaluate the effectiveness of SIRS as screening criteria for infection in the Glue Grant 

cohort, all patients were classified as either non-infected or within +/- 24 hours of infection, with 

infection as defined above. Patients were censored >24 hours after infection diagnosis. SIRS 

criteria were defined according to standard international guidelines (Temperature <36C or >38C, 

respiratory rate >20 or PaCO2<32, total WBC <4,000 or >12,000, and HR >90). Patients missing 

any criteria were excluded. Each criterion was stored as a binary variable for each patient for 

each day. Logistic regression was run on the data both with and without inclusion of the z score, 

and ROC AUC was calculated for both models. The two models were then compared using the 

continuous net reclassification index (R package PredictABEL).  

Gene Set Evaluation 

 The final gene set was evaluated for transcription factor binding sites using two online 

tools, EncodeQT (60) and PASTAA (61). Positive and negative genes were evaluated separately, 

since they are hypothesized to be under separate regulatory control. The EncodeQT tool was 

used with 5000 upstream and 5000 downstream base pairs from transcription start site. A similar 

analysis was carried out with PASTAA, examining the region -200 base pairs from transcription 

start site, only for those factors which were conserved for both mouse and human. The top ten 

significant transcription factors were recorded for both analyses. 

Cell-Type Enrichment Tests 

 GEO was searched for gene expression profiles of clinical samples of relevant immune 

cell types. The search was limited to only samples run on Affymetrix platforms, to ensure 

platform effect homogeneity. All data sets used were downloaded in RAW format and gcRMA 

normalized separately. For each sample, the mean of multiple probes mapping to the same gene 

was taken as the gene value. Genes not present in all samples were thrown out. For multiple 

samples all corresponding to the same cell type, the mean of the samples was taken as the final 

value, thus creating a single vector for each cell type. To obtain a z score for a gene set in each 

cell type vector, we took the geometric mean of the ‘positive’ genes’ expression, and subtracted 

from it the geometric mean of the ‘negative’ genes’ expression, times the ratio of negative genes 

to positive genes (same procedure as for the infection z score).  These scores are then 



standardized across all cell types, such that the score represents the number of standard 

deviations away from the group mean. This thus represents how enriched a given gene set is in a 

given cell type, relative to other tested cell types.  

 A total of 18 GEO data sets that matched criteria were used: GSE3982 (62), GSE5099 

(63), GSE8668 (64), GSE11292 (65), GSE12453 (66), GSE13987 (67), GSE14879 (68), 

GSE15743 (69), GSE16020 (70), GSE16836 (71), GSE24759 (72), GSE28490 (73), GSE28491 

(73), GSE31773 (74), GSE34515 (75), GSE38043 (76), GSE39889 (77), GSE42519 (78), 

GSE49910 (79); see Supplemental Table 8 for cell type mapping design matrix.  

 Two gene sets were tested in this manner: both the entire set of genes found to be 

significant after the initial multicohort analysis, and the subset of genes found to be most 

diagnostic after forward search.  Figure 7 shows the z score (enrichment for the given gene set) 

in each cell subtype (black dots), as well as a box plot for the overall distribution of z scores 

(shown in red).  

Statistics and R 

All computation and calculations were carried out in the R language for statistical 

computing (version 3.0.2). Significance levels for p-values were set at 0.05, and analyses were 

two-tailed, unless specified otherwise. 

  



Supplemental Figures 

 

 

Supplemental Figure 1. Labelled PCA comparing healthy controls, SIRS/trauma patients, 

and sepsis patients. A. Healthy controls and SIRS/trauma and sepsis patients appear to be 

largely separable in the transcriptomic space, with only a minimal non-separable set. B. The 

same labelled PCA is shown, with labels updated to reflect patients in recovery from non-

infectious SIRS/trauma and patients with hospital-acquired sepsis; the ‘late’ group (>48 hours 

after hospital admission) is much harder to separate. N= 1316 combined from 15 studies.  
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Supplemental Figure 2. Violin plots for the data sets included in the discovery multicohort 

analysis. (A) Data sets comparing SIRS/ICU/trauma to sepsis patients at admission. (B) Glue 

Grant Buffy Coat cohorts, comparing non-infected trauma patients to sepsis patients at matched 

time points. Error bars show middle quartiles. P-values from Wilcoxon rank-sum test. 
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Supplemental Figure 3. Neutrophil percentages for the Glue Grant patients with both 

complete blood count and microarray data. Median neutrophil percentage is between 75-85% 

for all time points. Patients who were ever infected during their hospital stay are compared to 

patients never infected during their hospital stay. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Supplemental Figure 4. Performance of the infection z score in the sorted monocytes from 

the Glue Grant cohort. These are the same patients as the neutrophils validation cohort in 

Figure 4(B,D,F). (A) ROC curves for each of the four sampled time bins. (B) Boxplots of 

infection z score by time since injury. Patients never infected are compared to patients >5 days 

prior to infection, 5-to-1 days prior to infection, within +/- 1 day of diagnosis (cases), and 2-to-5 

days after infection.  
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Supplemental Figure 5. Performance of the infection z score in the sorted T cells from the 

Glue Grant cohort. These are the same patients as the neutrophils validation cohort in Figure 

4(B,D,F). (A) ROC curves for each of the four sampled time bins. (B) Boxplots of infection z 

score by time since injury. Patients never infected are compared to patients >5 days prior to 

infection, 5-to-1 days prior to infection, within +/- 1 day of diagnosis (cases), and 2-to-5 days 

after infection.  
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A. 

Binary SIRS Criteria Only 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) -1.77613 0.47528 -3.737 0.000186 *** 
SIRS.Temp 1.0799 0.34552 3.125 0.001776 ** 
SIRS.Resp 0.02356 0.32952 0.072 0.942998 
SIRS.WBC 0.55216 0.3269 1.689 0.0912 
SIRS.HR 0.05884 0.44389 0.133 0.894549 

 

Binary SIRS criteria PLUS Infection z score 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) -1.5709 0.5361 -2.93 0.00338 ** 
Infection z score 1.2989 0.2446 5.309 1.10E-07 *** 

SIRS.Temp 1.2583 0.3925 3.206 0.00134 ** 
SIRS.Resp -0.1986 0.37 -0.537 0.59152 
SIRS.WBC 0.3003 0.3664 0.82 0.41237 
SIRS.HR -0.4683 0.5141 -0.911 0.36229 
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Supplemental Figure 6. Linear models of SIRS criteria and the infection z score. (A) 

Logistic regression models for Glue Grant patients with both SIRS data and microarray data 

available. SIRS criteria are represented as binary variables.  First model shows SIRS criteria in 

combination; the second model adds the infection z score. Significance codes: p < 0.001 ‘***’ ; 

0.01 ‘**’ ; 0.05 ‘*’.  (B) Boxplots are shown of predicted log odds of infection for patients as 

output by the logistic regression models in (A).  
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Supplemental Figure 7. The infection z score in non–time-matched data sets. (A) Four data 

sets compared SIRS/ICU/trauma patients to sepsis patients at non-matched time points. These 

data sets tested neutrophils (GSE5772, N=93), whole blood (EMTAB1548, N=73), and PBMCs 

(GSE9960, N=30; EMEXP3621, N=10). See Table 7 for further data set details. (B) Violin plots 

for the non-matched time-point data sets. Error bars show middle quartiles. Tested with 

Wilcoxon rank-sum test.  
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Supplemental Figure 8. Comparison of the infection z scores in patients with acute 

infections to healthy controls and patients with autoimmune diseases. GSE22098 compares 

healthy controls to patients with acute autoimmune inflammation or acute infections. The 

infection z score shows good discrimination of infection from both healthy patients and those 

with autoimmune inflammation. (A) Violin plots; error bars show middle quartiles. Patients with 

autoimmune inflammation vs. those with sepsis tested with Wilcoxon rank-sum test. (B) ROC 

plot of autoimmune patients or healthy controls vs. septic patients.  
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Supplemental Figure 9. Ingenuity Pathway Analysis results for the 11-gene set. Genes that 

are part of the 11-gene set are circled in green; IL-6 and JUN are circled in red.  

  

 

 
 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 10: Schematic of the entire integrated multicohort analysis. 

Systematic Search 
 

26 data sets identified 

Leave-One-Data set-Out Analysis  
Hedge’s g and Fischer’s sum of logs 

FDR threshold q < 0.01 
 

 563 genes remaining 

Forward Search on weighted AUC 
for all discovery cohorts 

 
11 genes remain 

Time-Matched SIRS/trauma patients 
vs. sepsis patients 

 
9 whole-blood cohorts remaining 

Summary Effect Size Threshold 
ES > 1.5 fold 

 
82 genes remaining 

Inter-data set Heterogeneity  
threshold p > 0.01 

 
447 genes remaining 

 



 

Supplemental Table 1. Summary spreadsheet of all data sets referenced in the manuscript. 

Attached as separate Excel file.  

 

 

Supplemental Table 2. Design matrix of individual phenotypes for multicohort analysis. 

Includes accession numbers, clinical time-points, and infection status (attached as separate CSV 

file). 

 

 

Supplemental Table 3. Summary statistics for the 82 genes that passed significance, 

heterogeneity, and effect-size filtering after multicohort analysis. Attached as separate CSV 

file. 

 

 

Supplemental Table 4. Probe-level data for all 11 genes in the diagnostic set for all patients 

in the multicohort analysis.  The first page is all probe-to-gene mappings. The following pages 

show normalized probe (or probeset) expression data for each of the 12 cohorts in the 

multicohort analysis (attached as separate Excel file). 

 

  



 

 

 

Supplemental Table 5. Linear models of infection score in the Glue Grant data. (A) 

Repeated-measures ANOVA of Glue Grant cohorts examining the effects of time since injury 

and infection status on infection z score. (B) Linear regression of admission time point (Day 0-

to-1 since injury) infection score data versus injury severity score and infection status. 

Significance levels:  P less than: 0.001 ‘***’; 0.01 ‘**’; 0.05 ‘*’.  

A.  Repeated-measures ANOVA 
Buffy Coat – DISCOVERY SET 

DF Sum Sq Mean Sq F value P value 
Time since injury 1 38.84 38.84 65.182 2.85E-14 *** 
Infection Status 1 59.83 59.83 100.413 < 2e-16 *** 
Time:Infection status 1 0.97 0.97 1.635 0.202 
Residuals 251 149.56 0.6   
 
Neutrophils – VALIDATION SET 

DF Sum Sq Mean Sq F value P value 
Time since injury 1 3.33 3.33 4.822 2.92E-02 * 
Infection Status 1 32.32 32.32 46.743 8.32E-11 *** 
Time:Infection status 1 1.41 1.41 2.044 0.1543 
Residuals 214 147.99 0.69   

B. Linear Regression 
Buffy Coat – DISCOVERY SET 

Estimate Std Error T stat P value 
(Intercept) -0.281325 0.188184 -1.495 0.13639 
Injury Severity Score (ISS) 0.020229 0.006067 3.33 0.00101 ** 
Eventual Infection 0.913283 0.275058 3.32 0.00106 ** 
ISS:Eventual Infection -0.019907 0.008214 -2.423 0.0162 * 
Residual standard error: 0.7764 on 215 degrees of freedom 
F-statistic: 7.484 on 3 and 215 DF,  p-value: 8.673e-05 

Neutrophils  – VALIDATION SET 
Estimate Std Error T stat P value 

(Intercept) -0.740711 0.241641 -3.07 0.00253 ** 
Injury Severity Score (ISS) 0.029675 0.007585 3.91 0.000132 *** 
Eventual Infection 1.1357 0.372217 3.051 0.002645 ** 
ISS:Eventual Infection -0.030582 0.011067 -2.763 0.006353 ** 
Residual standard error: 0.8582 on 170 degrees of freedom 
F-statistic:  6.19 on 3 and 170 DF,  p-value: 0.0005129 



Gram Positive vs Gram Negative 
     

Study 
N, Gram 

Negative 

N, Gram 

Positive 

Gram 

Negative 

Mean 

Score 

Gram 

Positive 

Mean 

Score 

T 

Statistic 
DF 

P 

value 
Outcome 

GSE9960 18 17 0.32 0.12 0.58 33.0 0.5672 
Not 

different 

GSE13015-

gpl6106 
32 13 0.64 -0.13 3.10 31.0 0.0041 

Higher 

Gram Pos 

GSE33341 19 32 0.83 0.77 0.34 42.4 0.7336 
Not 

different 

GPSSSI 

Unique 
56 87 0.26 0.61 -2.44 128.1 0.0162 

Higher 

Gram Neg 

 

Bacterial vs Viral 
     

Study 

N, 

Bacterial 

Infection 

N, Viral 

Infection 

Bacterial 

Infection 

Mean Score 

Viral 

Infection 

Mean 

Score 

T 

Statistic 
DF 

P 

value 
Outcome 

GSE20346 26 19 0.64 0.56 0.29 39.3 0.7770 
Not 

different 

GSE40012 74 25 0.48 0.52 -0.22 76.4 0.8230 
Not 

different 

GSE40396 8 35 1.07 0.25 2.67 12.7 0.0194 
Bacterial 

Higher 

GPSSSI 

Unique 
143 16 0.47 0.04 1.74 17.9 0.0994 

Not 

different 

 

Supplemental Table 6. Comparison of infection z score across infection types.  Shown are the 

infection classes present in the studied data sets for which n > 20 within 1 day of infection 

diagnosis. Student’s t-tests were used for comparisons, p <0.05 was considered significant. 

  



 

ENCODEQT - 
POSITIVE GENES +/- 5000 bp   

Factor 

Total 
Genes 
with 

Factor 

POSITIVE 
Observed 

Genes  
Q-value  POSITIVE 

Factor Rank 

Max 14735 6 0.00E+00 1 

     
ENCODEQT - 

NEGATIVE GENES +/- 5000 bp   

Factor 

Total 
Genes 
with 

Factor 

NEGATIVE 
Observed 

Genes  
Q-value  NEGATIVE 

Factor Rank 

No Significant Transcription Factor Interactions Found (q < 0.05) 
 

 

  

A 



PASTAA - Positive Genes - 200 bp from TSS, 
conserved 

human/mouse 

Rank Matrix 
Transcription 

Factor 

Association 

Score 
P-Value 

1 ZBRK1_01 N/A 3.353 1.28E-03 

2 PAX_Q6 Pax-1 , Pax-2 2.967 3.70E-03 

3 IRF_Q6_01 Irf-1 , Irf-10 2.72 6.74E-03 

4 CREL_01 C-rel 2.647 7.42E-03 

5 GATA4_Q3 Gata-4 2.522 1.02E-02 

6 PAX4_03 Pax-4a 2.522 1.02E-02 

7 PPAR_DR1_Q2 Ppar-alpha , Ppar-beta 2.521 1.02E-02 

8 STAT5A_04 Stat5a 2.503 1.02E-02 

9 PTF1BETA_Q6 N/A 2.372 1.43E-02 

10 MYB_Q3 C-myb 2.371 1.43E-02 

     

PASTAA - Negative Genes 
- 200 bp from TSS, 

conserved 
human/mouse 

Rank Matrix 
Transcription 

Factor 

Association 

Score 
P-Value 

1 KAISO_01 N/A 3.264 1.28E-03 

2 PAX5_01 Pax-5 3.236 1.28E-03 

3 TCF11_01 Lcr-f1 3.066 1.78E-03 

4 STRA13_01 Stra13 2.823 4.06E-03 

5 HNF4ALPHA_Q6 Hnf-4 , Hnf-4alpha 2.473 9.47E-03 

6 ARNT_02 Arnt 2.346 1.31E-02 

7 USF_Q6 Usf1 , Usf2a 2.346 1.31E-02 

8 PAX4_01 Pax-4a 2.221 1.70E-02 

9 TFIII_Q6 Tfii-i 2.22 1.70E-02 

10 AP1_Q6_01 Fosb , Fra-1 2.204 1.70E-02 

 

Supplemental Table 7. In silico transcription factor binding analyses for the 11-gene set. The 

positive and negative genes in the 11-gene set were analyzed separately using (A) EncodeQT or 

(B) PASTAA. For EncodeQT, default settings were used. For PASTAA, input was -200 base 

pairs from transcription start site, searching over conserved human/mouse sequences. P-values 

are from hypergeometric tests; Q-values were Benjamini-Hochberg corrected. 

  

B 



Supplemental Table 8: Design matrix for cell type enrichment analyses. Shown are all GEO 

data set IDs, GSM IDs, and cell type names for each sample (attached as separate CSV file). 

 

 

Supplemental Video. Rotation of a time–course-labeled PCA of trauma patients. The 

rotation of a 3D representation of the first three components from a time-course labelled PCA 

(same as in Figure 2), showing the ‘corkscrew’ nature of the progression of gene expression over 

time since injury in multiple data sets (attached as separate file). 

 


