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Supplemental Materials and Methods
Study Design

The purpose of this study was to use an integraitdticohort meta-analysis framework
to analyze multiple gene expression data setsetttiig a set of genes that can separate patients
with sterile inflammation from patients with infemiis inflammation. This framework has been
described previousl{4l, 42).

Search

Two public gene expression microarray repositaisl GEO, ArrayExpress) were
searched for all human data sets that matchedfahg dollowing search terms: sepsis, SIRS,
trauma, shock, surgery, infection, pneumonia,aaitilCU, inflammatory, nosocomial. Data sets
that compared either healthy controls or patients mon-infectious inflammation (SIRS,
trauma, surgery, autoimmunity) to patients withtagofections and/or sepsis were kept for
further study. Data sets that utilized endotorjection as a model for SIRS or sepsis were not

included.
Data set Details

Six of the publicly available whole blood datasseere from the Genomics of Pediatric
SIRS/Septic Shock Investigators (GPSS$5Z0). These data sets contain overlapping samples,
for which Hector Wong provided a key of the uniguagients. Those unique patients were then
gcRMA normalized together and treated as a single set (GPSSSI Unique).

In addition to the publicly-available data setg, wsed the Inflammation and Host
Response to Injury Program (Glue Grant) trauma siet®6, 12, 13). The Glue Grant data sets
consist of separate trauma patient cohorts sanifiptezither the entire buffy coat or sorted cells
(neutrophils, monocytes, T-cells). Inclusion cieaire described elsewhefgl). Patients were
sampled at the following days after admission: 0,5, 7, 14, 21, 28 days. The Glue Grant
trauma cohort patients were classified as ‘inféafdtiey had a nosocomial infection
(pneumonia, urinary tract infection, catheter-retalbloodstream infection, etc.), a surgical
infection (excluding superficial wound infectionsy,underwent surgery for perforated viscus;

infection definitions can be found at http://mwwwiggrant.org/commonlyreferencedpubs.htm.



For meta-analyses, samples drawn within +/- 24 $1i0tithe day of diagnosis of infection were
included as infection cases. Time points with fethan 20 patients were not included in the
multicohort analysis. The Glue Grant also contaéims patients, but these were not included due
to the difficulty of distinguishing clinically rel@nt infections from colonized burn wounds. Use
of the Glue Grant was approved by both the GluemBCansortium and the Stanford University
IRB (protocol 29798).

Gene Expression Normalization

All Affymetrix data sets were downloaded as CHediand re-normalized using gcRMA
(R package affy). Output from Agilent chips andtous arrays analyzed on GenePix scanners
was background corrected, within-arrays loess nbzed and then between-arrays quantile
normalized (R package limma). Illumina data setsenquantile normalized. The Glue Grant
sorted-cell data sets were analyzed using custaysa(GGH-1, GGH-2); these were
normalized as previously described and used im fueit-processed statgbj. For all gene
analyses, the mean of probes for common genesetvas she gene expression level. All probe-
to-gene mappings were downloaded from GEO frommtbst current SOFT files on Dec 14,
2014.

Labelled PCA Method

The labelled principal components analysis (PCAjhud is an implementation of the
constrained optimization described in equationad ain section 4.1 of Koren and Carm&d)(
This optimization computes a linear transformatibthe data that maximizes the pairwise
distance between points in different labelled @assf the data while maintaining the constraint
that the transformed data are orthogonal to edotr ot his orthogonal constraint is slightly
different to the constraint employed by PCA, whitdmands that the transformed basis is
mutually orthogonal, not the transformed datafitd&hile PCA is a projection scheme, labelled

PCA is a general form of a linear transformatioe tluthis difference in constraint.

Call X the original data set, with m rows (datanp®) and n columns (each data point has
n elements). Y is an m by 1 matrix that has a dbfielisting for each class. In other words, Y (i)
equals Y (j) if and only if elements i and j aretpaf the same labelled class. L is a symmetrical

m by m matrix whose (i,j) entry is -1, unless Ydguals Y (j). In this latter case, the entry is 0.



Finally, all diagonal entries (where i equals g &itled so that row i sums to 0. Koren and
Carmel prove in Lemma 3.2 that the eigenvectotsanispose (X)*L*X provide a mapping that
maximizes the pairwise distance between pointsfiardnt labelled classes of the data.
However, this transformation remains a projecticmesne, which means that these eigenvectors
are orthogonal to each other. This latter resuiit$ the utility of the transformed data, but is
more generalizable. The general linear projectgedun this paper instead finds the vectors v
that solve the equation A¥Bv, where A is transpose (X)*L*X, and B is transpos

(X)*X. Although more expressive, this method is astrobust as the labelled PCA projection
scheme, however, since solutions to this generhfimen require that B is not singular. Since B
is not the identity matrix, the old orthogonal ctwamt used in projections does not have to hold.
Instead, solutions to this form require that thei®& mutually orthogonal with respect to the

covariance basis of the original data.
Labelled PCA Applications

All data sets that contain a comparison of nonetideis SIRS, ICU, or trauma patients to
sepsis patients were converted from probes to gandshen bound into a single large matrix
and quantile normalized. Genes not present inaall dets were thrown out. Patients with sepsis
at any time (either on admission or hospital-aa)iwere grouped in a single class, and Lasso-
penalized regression was applied to separatees®IflS patients from sepsis patients (R
package glmnet). Labelled PCA was carried out uieggenes selected by the penalized
regression, on the classes of sterile SIRS veepss The same graph was then re-labelled to
show which samples are from hospital-acquireddt®)Isterile SIRS or sepsis patients. The
same set of genes from the penalized regressiotheasised in labelled PCA to compare
healthy, sterile SIRS, and sepsis patients. Thieesgraph was then re-labelled to show which

samples are from hospital-acquired or late st&iRS or sepsis patients.

To examine the effects of time on gene expressid@lRS/trauma and infection, all data
sets that include serial measurements over time sadected. From the Glue Grant data sets,
only buffy coat arrays were included, so as naiierwhelm the signal from the other data sets.
The selected data sets were converted from probgsnes, and then bound into a single large
matrix and quantile normalized. Genes not preseatlidata sets were thrown out. To reduce the

gene set in an unbiased manner, CUR matrix decatigyos/as used to select the top 100 genes



with the greatest orthogonality in the combinedadsts (R package rCURY7). Labelled PCA
was then carried out with each time point used @ifferent class (splitat 1, 2, 3, 4, 5, 6, 10, 20
and 40 days). The resulting PCA was graphed incBdred by time point, and a short video of
rotations of the 3D space was captured using Rgupeckgl.

Multicohort Analysis

We performed a multicohort analysi#l(42) comparing gene expression in non-infected
SIRS/trauma patients versus patients with infestimnsepsis. All data sets with comparisons of
SIRS/trauma patients to septic/infected patientseasame time point were selected for
inclusion in the multicohort analysis; thus, comgans of patients at admission to those with
sepsis at a later time-point were excluded (sadigagion for this model in the Results). The
admission data sets were limited to samples fromena within 48 hours of admission. The
Glue Grant trauma data sets were split into tinms biff days since injury, excluding the initial 24
hours after admission (see Supplemental Materrads\dethods). Each of these time bins was
treated as a separate data set in the multicohalyss, where time-matched never-infected
patients were compared to patients within +/- 2dre@f diagnosis of infection (infection as
defined above). Patients who were diagnosed widtiion more than 24 hours earlier are thus
censored in this comparison. This method allowsl&iection of deviation due to infection from
the ‘standard’ changes in gene expression overdumeeto recovery from trauma. A design
matrix for the multicohort analysis is shown in Blgmental Table 2.

After selecting the input data sets applied two meta-analysis methods: one combining
effect sizes using Hedges’ g, the other using Fislsaim of logs method combining p-values
(see schematic iBupplemental Figure 10iven n data sets, this method is applied n times
leave-one-data set-out fashion. A false discovaty (FDR) threshold was set (0.01), and genes
with a g-value below the FDR threshold in both éffect size and the Fischer's sum of log
analyses at every round of the leave-one-out aisalyere selected. The genes were then
subjected to a data set heterogeneity test, sathntla test for heterogeneity across all inpuadat
sets, a p-value greater than 0.01 was requireeldon gene; this removes genes that show
significantly different effects across differentaaets. Next, all genes with a summary effect
size <1.5 fold were removeHinally, all genes found to be statistically sigrant in the
multicohort analysis according to all three of #imve criteria (Supplemental Table 3) were

subjected to a greedy forward search model, wisésetjing with the most significant gene, all



remaining genes are added to the gene score entna, and the gene with the greatest
increase in discriminatory ability is added to timal gene list. The probe-level data for the
genes remaining after forward search are showmpp®mental Table 4.

Infection z score

Genes that were found to be significant after mmohort analysis were separated
according to whether their effects were positiveegative (where ‘positive’ means a positive
effect size in sepsis as compared to SIRS/traunth;regative’ means a negative effect size in
sepsis as compared to SIRS/trauma). The classrdisation power of these gene sets was then
tested using a single gene score. The gene scedasithe geometric mean of the gene
expression level for all positive genes minus teergetric mean of the gene expression level of
all negative genes multiplied by the ratio of cauot positive to negative genes. This was
calculated for each sample in a data set, andcthres for each data set were then standardized
to yield az score (‘infectiorz score’). Genes not present in an entire data eet excluded,;
genes missing for individual samples were set fbolobtain an infectioa score for data sets
with negative gene expression values (two-chanmays), the entire data set was scaled by the
minimum value present in the data set, to enslireahles were positive (since the geometric

mean yields imaginary values for negative input).

Class discriminatory power was examined compathegnfectionz scores for classes of
interest in each examined data set. The infeaisrore ranges were examined with violin plots,
and, since they cannot be assumed to have norstebdtions, are shown with interquartile
range and compared using Wilcoxon rank-sum te€QC Rurves of the infectionscore were
constructed within data sets compared to sepsisthenarea under the curve (AUC) was
calculated using the trapezoidal method.

Forward Search

To obtain a parsimonious gene set that discrirmg&iRS/trauma patients and
septic/infected patients, all genes found to bessizally significant in the multicohort analysis
were subjected to a greedy forward search modeadraylstarting with the most significant gene
in the data set, all remaining genes are addduetgene score one at a time, and the gene with

the greatest increase in discriminatory abilitgdsled to the final gene list. Here, discriminatory



ability was defined as a weighted ROC AUC, whetbminfectionz score is tested in each
discovery data set, and the resulting AUC is mliditpby the total number of samples in the data
set. The function then maximizes the sum of weid#&dCs across all discovery data sets for
each step. In this way, excellent class discrinnbmain a small data set does not outweigh
modest gains in class discrimination in a verydaigta set. The function stops at an arbitrarily
defined threshold; we used a stopping thresholti®{such that when the function cannot find a
gene that will increase the total discovery welybitCs of the current infectionscore by more
than 0.5, it will terminate). This final resultimggne set is thus maximized for discriminatory
power in the discovery cohorts, though is not optéd as a global maximum. The probe-level

data for the genes remaining after forward searelslaown in Supplemental Table 3.
Discovery Cohort Examinations

The final gene score was used to compute infeetgmores in each discovery data set.
The admission data sets were analyzed separatlyegrarate ROC plots plotted. For the
hospital-acquired (Glue Grant) data sets, infecsicores were standardized (converted mto
scores) once for the whole cohort as opposed tmaaing the different time-bins separately to
show changes over time in the same patients. Thetionz scores were then analyzed for
significance using repeated-measures analysisr@nee. ROC curves were plotted for the

individual time-bins treated as separate dataisdate multicohort analysis.

For the Glue Grant data sets, two time-courseyaaalof infectiorz score were carried
out for both the buffy coat and neutrophil data sEtrst, the average infectiarscore was
compared over time using linear regression forgpdgi within +/- 24 hours of infection and for
non-infected patients. Repeated-measures analiyg&iance was used to compare infected and
non-infected groups to each other and to testi@istgnificance of changes over time. Next,
boxplots were constructed for each time windowhgheat the infectioz scores for the patients
in that time window who were never infected wermpared to patients at >5 days prior to their
day of diagnosis with infection, 5-1 days prioriagnosis, or +/- 24 hours of diagnosis. For
each time point (except for the 0-1 day windowg titend in infectiorz score across the
different groups was tested with thenckheere trend (JT) teShe infectiornz scores at the
admission time point ([0,1) ) were tested as theaues variable in multiple linear regression,

examining the contributory effects of both injugysrity score and time to infection.



Validation

The final gene set was tested in several validataorts completely separate from the
discovery cohorts. The sorted-cells cohort of theeGrant was broken into time bins, and
AUCs were calculated separately for each timeMote that no infections within +/- 1 day of
diagnosis were captured in this cohort after 1&deym the time of injury, so the [18,24) day

bin is never shown.

The validation cohorts included three data setse¢kamined trauma patients over time
(GSE6377, GSE12838, and EMEXP3001), all of whonetiged infections (mostly ventilator-
associated pneumonia). These data sets do notlenchntrols, and so they were compared to
the Glue Grant non-infected patients as a baselinese three validation data sets and the Glue
Grant buffy coat non-infected samples were firs¢dirly scaled by a factor of the geometric
mean of four housekeeping gen€APDH, ACTN1, RPL9, KARS) (58). The data sets were then
joined on overlapping genes, and batch-correctésldmsn data sets using the ComBat empiric
Bayes batch-correction tool, with parametric prigRsPackage svap9). The ComBat
correction was controlled for day after injury ¢bat relative differences between days stay
relatively different). The infectiom score was then calculated for the joined datg aatsthe
validation data sets were plotted against the loesge from the non-infected Glue Grant cohort.
Patients within +/- 24 hours of their diagnosisrdéction in the validation data sets were then
compared to day-matched ComBat-co-normalized ntecied Glue Grant buffy coat patients,

and ROC curves were constructed.

All other data sets found in the initial searchttallow for comparison between healthy
or SIRS/trauma and sepsis patients were usedrfmisiclass discrimination validation. All data
sets obtained from whole blood or neutrophils &@s. Studies carried out in PBMCs were
selected for only those that examined SIRS/traumdasapsis patients. Data sets using PBMC
samples that did not include both a sterile SIRfigrand a sepsis group were excluded. All
peripheral blood healthy vs sepsis patient datawsete grouped into a single violin plot and
tested jointly for separation (Wilcoxon rank-sunmjce they were all being used to make the
same comparison. ROC curves were carried out dniadtzidual data set separately to show

the discriminatory capability of the infectiarscores within each data set.



Glue Grant SIRS Evaluation

To evaluate the effectiveness of SIRS as screaritegia for infection in the Glue Grant
cohort, all patients were classified as either meeted or within +/- 24 hours of infection, with
infection as defined above. Patients were cense2dchours after infection diagnosis. SIRS
criteria were defined according to standard inteéonal guidelines (Temperature <36C or >38C,
respiratory rate >20 or PaC02<32, total WBC <4,00612,000, and HR >90). Patients missing
any criteria were excluded. Each criterion wasest@s a binary variable for each patient for
each day. Logistic regression was run on the dattaWith and without inclusion of thescore,
and ROC AUC was calculated for both models. Thenvealels were then compared using the

continuous net reclassification index (R packagali_tABEL).
Gene Set Evaluation

The final gene set was evaluated for transcripigator binding sites using two online
tools, EncodeQT60) and PASTAA 61). Positive and negative genes were evaluated sehar
since they are hypothesized to be under sepamuéatery control. The EncodeQT tool was
used with 5000 upstream and 5000 downstream basefimam transcription start site. A similar
analysis was carried out with PASTAA, examining tegion -200 base pairs from transcription
start site, only for those factors which were conseé for both mouse and human. The top ten

significant transcription factors were recordedtoth analyses.
Cell-Type Enrichment Tests

GEO was searched for gene expression profileBrotal samples of relevant immune
cell types. The search was limited to only sampleson Affymetrix platforms, to ensure
platform effect homogeneity. All data sets usedengmwnloaded in RAW format and gcRMA
normalized separately. For each sample, the meamltiple probes mapping to the same gene
was taken as the gene value. Genes not presdhsangles were thrown out. For multiple
samples all corresponding to the same cell tymentean of the samples was taken as the final
value, thus creating a single vector for eachtgpk. To obtain & score for a gene set in each
cell type vector, we took the geometric mean of plositive’ genes’ expression, and subtracted
from it the geometric mean of the ‘negative’ ger@gression, times the ratio of negative genes

to positive genes (same procedure as for the infeetscore). These scores are then



standardized across all cell types, such thatdbeesepresents the number of standard
deviations away from the group mean. This thusesgmts how enriched a given gene set is in a

given cell type, relative to other tested cell type

A total of 18 GEO data sets that matched criteeee used: GSE39882), GSE5099
(63), GSE8668€4), GSE1129265), GSE1245346), GSE1398767), GSE1487948),
GSE1574369), GSE1602070), GSE16836711), GSE2475972), GSE2849073), GSE28491
(73), GSE3177374), GSE3451575), GSE3804376), GSE3988977), GSE42519798),
GSE4991079); see Supplemental Table 8 for cell type mappiegjgh matrix.

Two gene sets were tested in this manner: botkrtiee set of genes found to be
significant after the initial multicohort analysemd the subset of genes found to be most
diagnostic after forward search. Figure 7 showszttore (enrichment for the given gene set)
in each cell subtype (black dots), as well as afgdokfor the overall distribution of scores

(shown in red).
Statistics and R

All computation and calculations were carried outhe R language for statistical
computing (version 3.0.2). Significance levelspevalues were set at 0.05, and analyses were
two-tailed, unless specified otherwise.
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Supplemental Figure 1. Labelled PCA comparing hedlfty controls, SIRS/trauma patients,
and sepsis patientsA. Healthy controls and SIRS/trauma and sepsieipEtappear to be
largely separable in the transcriptomic space, wfitty a minimal non-separable set. B. The
same labelled PCA is shown, with labels updata@éflect patients in recovery from non-
infectious SIRS/trauma and patients with hospitajeered sepsis; the ‘late’ group (>48 hours

after hospital admission) is much harder to sepait 1316 combined from 15 studies.
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Supplemental Figure 2. Violin plots for the data s&s included in the discovery multicohort
analysis.(A) Data sets comparing SIRS/ICU/trauma to sepaigents at admission. (B) Glue
Grant Buffy Coat cohorts, comparing non-infectediima patients to sepsis patients at matched

time points. Error bars show middle quartiles. Riea from Wilcoxon rank-sum test.
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Binary SIRS Criteria Only

Estimate |Std. Erro|] z value | Pr(>|z])
(Intercept) -1.77613 | 0.47528| -3.737 | 0.000186[***
SIRS.Temp 1.0799 | 0.34552| 3.125 | 0.001776[*
SIRS.Resp 0.02356 | 0.32952( 0.072 | 0.942998
SIRS.WBC 0.55216 | 0.3269 | 1.689 | 0.0912
SIRS.HR 0.05884 | 0.44389( 0.133 | 0.894549

Binary SIRS criteria PLUS Infection z score

Estimate [Std. Erro] z value | Pr(>|z|)
(Intercept) -1.5709 | 0.5361 | -2.93 | 0.00338 [**
Infectionz score 1.2989 | 0.2446| 5.309 | 1.10E-O7[**
SIRS.Temp 1.2583 | 0.3925| 3.206 | 0.00134 [**
SIRS.Resp -0.1986 0.37 -0.537 | 0.59152
SIRS.WBC 0.3003 | 0.3664 | 0.82 0.41237
SIRS.HR -0.4683 | 0.5141 | -0.911 | 0.36229
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Supplemental Figure 6. Linear models of SIRS critaa and the infectionz score.(A)

Logistic regression models for Glue Grant patievith both SIRS data and microarray data
available. SIRS criteria are represented as bimangbles. First model shows SIRS criteria in
combination; the second model adds the infectiscore. Significance codes: p < 0.001 “***;
0.01 **; 0.05 . (B) Boxplots are shown of gdicted log odds of infection for patients as

output by the logistic regression models in (A).
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Supplemental Figure 7. The infectiorz score in non—time-matched data set$¢A) Four data
sets compared SIRS/ICU/trauma patients to sepsenp@at non-matched time points. These
data sets tested neutrophils (GSE5772, N=93), wiioled (EMTAB1548, N=73), and PBMCs
(GSE9960, N=30; EMEXP3621, N=10). See Table 7 dathker data set details. (B) Violin plots
for the non-matched time-point data sets. Erros saow middle quartiles. Tested with
Wilcoxon rank-sum test.
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Supplemental Figure 8. Comparison of the infectiorz scores in patients with acute

infections to healthy controls and patients with atoimmune diseasesGSE22098 compares
healthy controls to patients with acute autoimmunflammation or acute infections. The
infectionz score shows good discrimination of infection frboth healthy patients and those
with autoimmune inflammation. (A) Violin plots; emrbars show middle quartiles. Patients with
autoimmune inflammation vs. those with sepsis testigh Wilcoxon rank-sum test. (B) ROC
plot of autoimmune patients or healthy controlsseptic patients.
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Supplemental Figure 9. Ingenuity Pathway Analysisesults for the 11-gene seGenes that

are part of the 11-gene set are circled in grie®;andJUN are circled in red.



Systematic Search

26 data sets identified

Time-Matched SIRS/trauma patients
VS. sepsis patients

9 whole-blood cohorts remaining

\ 4

Leave-One-Data set-Out Analysis
Hedge’s g and Fischer’s sum of logs
FDR threshold g < 0.01

563 genes remaining

y

Inter-data set Heterogeneity
threshold p > 0.01

447 genes remaining

A 4

Summary Effect Size Threshold
ES > 1.5 fold

82 genes remaining

l

Forward Search on weighted AUC
for all discovery cohorts

11 genes remain

Supplemental Figure 10: Schematic of the entire iigrated multicohort analysis.



Supplemental Table 1. Summary spreadsheet of all thasets referenced in the manuscript.

Attached as separate Excel file.

Supplemental Table 2. Design matrix of individual penotypes for multicohort analysis.
Includes accession numbers, clinical time-points, iafection status (attached as separate CSV
file).

Supplemental Table 3. Summary statistics for the 8genes that passed significance,
heterogeneity, and effect-size filtering after muitohort analysis.Attached as separate CSV
file.

Supplemental Table 4. Probe-level data for all 11emes in the diagnostic set for all patients
in the multicohort analysis. The first page is all probe-to-gene mappings. fbHewing pages
show normalized probe (or probeset) expressionfdatach of the 12 cohorts in the

multicohort analysis (attached as separate Exed! fi



A. Repeated-measures ANOVA

Buffy Coat — DISCOVERY SET

DF Sum Sq| Mean Sq| F valug P value
Time since injury 1 38.84 38.84 65.182  2.85E-14  **¥
Infection Status 1 59.83 59.83 100.413< 2e-16 | ***
Time:Infection status 1 0.97 0.97 1.635 0.202
Residuals 251 149.56| 0.6
Neutrophils — VALIDATION SET

DF Sum Sq| Mean Sq| F valug P value
Time since injury 1 3.33 3.33 4.822 2.92E-02 *
Infection Status 1 32.32 32.32 46.743 8.32E-{11 **¢¥
Time:Infection status 1 1.41 1.41 2.044 0.1543
Residuals 214 147.99| 0.69
B. Linear Regression
Buffy Coat — DISCOVERY SET

Estimate | Std Error T stat P value
(Intercept) -0.281325 0.188184 -1.495 0.13639
Injury Severity Score (ISS) 0.020220  0.006067 3.33 0.00101 *
Eventual Infection 0.913283 0.275058 3.32 0.00106 * *
ISS:Eventual Infection -0.019907 0.008214 -2.4283 0162 *
Residual standard error: 0.7764 on 215 degreageddm
F-statistic: 7.484 on 3 and 215 DF, p-value: 86603
Neutrophils — VALIDATION SET
Estimate | Std Error | T stat P value

(Intercept) -0.740711 0.241641 -3.07 0.00253 **
Injury Severity Score (ISS) 0.029675 0.007585 3.91 0.000132 Frx
Eventual Infection 1.1357 0.372217 3.051 0.002645 * *
ISS:Eventual Infection -0.030582 0.011067 -2.763 006353 i

Residual standard error: 0.8582 on 170 degreageddm

F-statistic: 6.19 on 3 and 170 DF, p-value: O5XX®

Supplemental Table 5. Linear models of infection sre in the Glue Grant data.(A)

Repeated-measures ANOVA of Glue Grant cohorts exiagnithe effects of time since injury

and infection status on infectiascore. (B) Linear regression of admission timaep(day O-

to-1 since injury) infection score data versusipjseverity score and infection status.
Significance levels: P less than: 0.001 ***; @.0*"; 0.05 “*'.




Gram Positive vs Gram Negative

Gram Gram
N, Gram | N, Gram | Negative Positive T P
Stud T . .. DF Outcome
v Negative | Positive Mean Mean Statistic value
Score Score
GSE9960 18 17 0.32 0.12 0.58 33.0 0.5672 . Not
different
GSE13015- Higher
gpl6106 32 13 0.64 -0.13 3.10 31.0 0.0041 Gram Pos
GSE33341 19 32 0.83 0.77 0.34 42.4 0.7336 . Not
different
GPSSS 56 87 0.26 0.61 244 | 1281 | 00162 | HiEher
Unique Gram Neg
Bacterial vs Viral
. Viral
N, . Bacterial R
. N, Viral . Infection T P
Study Bacterial . Infection . DF Outcome
. Infection Mean Statistic value
Infection Mean Score
Score
Not
GSE20346 26 19 0.64 0.56 0.29 39.3 0.7770 .
different
Not
GSE40012 74 25 0.48 0.52 -0.22 76.4 0.8230 .
different
GSE40396 8 35 1.07 0.25 267 | 12.7 | 00194 | B3cterial
Higher
GP.SSSI 143 16 0.47 0.04 1.74 17.9 0.0994 . Not
Unique different

Supplemental Table 6. Comparison of infectiorz score across infection typesShown are the

infection classes present in the studied datafeetshich n > 20 within 1 day of infection

diagnosis. Student’s t-tests were used for compasisp <0.05 was considered significant.




A

ENCODEQT -
POSITIVE GENES +/- 5000 bp
Total
Genes POSITIVE POSITIVE
Factor : Observed Q-value
with Factor Rank
Genes
Factor
Max 14735 6 0.00E+00
ENCODEQT -
NEGATIVE GENES +/- 5000 bp
Total
Genes NEGATIVE NEGATIVE
Factor : Observed Q-value
with Factor Rank
Genes
Factor

No Significant Transcription Factor InteractionsufRd (g < 0.05)




PASTAA - Positive Genes

- 200 bp from TSS,

conserved
human/mouse
Rank Matrix Transcription Association P-Value
Factor Score
1 ZBRK1_01 N/A 3.353 1.28E-03
2 PAX_Q6 Pax-1, Pax-2 2.967 3.70E-03
3 IRF_Q6_01 Irf-1, Irf-10 2.72 6.74E-03
4 CREL_01 C-rel 2.647 7.42E-03
5 GATA4_Q3 Gata-4 2.522 1.02E-02
6 PAX4_03 Pax-4a 2.522 1.02E-02
7 PPAR_DR1_Q2 Ppar-alpha, Ppar-beta | 2.521 1.02E-02
8 STATS5A_04 Stat5a 2.503 1.02E-02
9 PTF1BETA_Q6 N/A 2.372 1.43E-02
10 MYB_Q3 C-myb 2.371 1.43E-02
- 200 bp from TSS,
PASTAA - Negative Genes conserved
human/mouse
Rank Matrix Transcription Association P-Value
Factor Score
1 KAISO_01 N/A 3.264 1.28E-03
2 PAX5_01 Pax-5 3.236 1.28E-03
3 TCF11_01 Lcr-f1 3.066 1.78E-03
4 STRA13_01 Stral3 2.823 4.06E-03
5 HNF4ALPHA_Q6 Hnf-4 , Hnf-4alpha 2.473 9.47E-03
6 ARNT_02 Arnt 2.346 1.31E-02
USF_Q6 Usfl, Usf2a 2.346 1.31E-02
8 PAX4_01 Pax-4a 2.221 1.70E-02
9 TFIII_Q6 Tfii-i 2.22 1.70E-02
10 AP1_Q6_01 Fosb, Fra-1 2.204 1.70E-02

Supplemental Table 7.In silico transcription factor binding analyses foe thl-gene set. The
positive and negative genes in the 11-gene setavekyzed separately using (A) EncodeQT or
(B) PASTAA. For EncodeQT, default settings wereduser PASTAA, input was -200 base

pairs from transcription start site, searching amaserved human/mouse sequences. P-values

are from hypergeometric tests; Q-values were Beinjadochberg corrected.




Supplemental Table 8: Design matrix for cell type mrichment analyses.Shown are all GEO

data set IDs, GSM IDs, and cell type names for sachple (attached as separate CSV file).

Supplemental Video. Rotation of a time—course-labetl PCA of trauma patients.The

rotation of a 3D representation of the first thceenponents from a time-course labelled PCA
(same as in Figure 2), showing the ‘corkscrew’ reatf the progression of gene expression over
time since injury in multiple data sets (attachedeparate file).



