Supplementary Files

Nonvolatile modulation of electronic structure and correlative magnetism of L1₀-FePt films using significant strain induced by shape memory substrates

Chun Feng¹*, Jiancheng Zhao¹*, Feng Yang²*, Kui Gong^{1,3}, Shijie Hao², Yi Cao¹, Chen Hu¹, Jingyan

Zhang¹, Zhongqiang Wang², Lei Chen², Sirui Li², Li Sun⁴, Lishan Cui² & Guanghua Yu¹

¹Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China. ² State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China. ³ Centre for the Physics of Materials and Department of Physics, McGill University, Montreal, Quebec H3A2T8, Canada. ⁴ Department of Mechanical Engineering and Texas Center for Superconductivity (TcSUH), University of Houston, Houston, Texas 77204, USA.

Correspondence and requests for materials should be addressed to L.S. (<u>lsun4@uh.edu</u>) or L.S.C. (<u>lsun4@uh.edu</u>) or L.S.C. (<u>lsun4@uh.edu</u>) or L.S.C.

* These authors contributed equally to this work.

Figure S1

Figure S1 Dynamic thermomechanical analysis (DMA) curves of the pure SMA substrates. (a) Pre-loading 6%, recoverable macro-strain ϵ_{M} = -2.7%; (b) Pre-loading 8%, ϵ_{M} = -3.5%; (c) Pre-loading 10%, ϵ_{M} = -5.0%; (d) Pre-loading 12%, ϵ_{M} = -5.5%.

Figure S2

Figure S2 In-plane (along the strain) and out-of-plane hysteresis loops of the lattice strain treated

L1₀-FePt(10 nm) film. (a) ϵ_L = 0%; (b) ϵ_L = -0.48%; (c) ϵ_L = -0.78%; (d) ϵ_L = -1.63%; (e) ϵ_L =

-2.18%.

Figure S3 In-plane (along the strain) and out-of-plane hysteresis loops of the lattice strain treated

L1₀-FePt(15 nm) film. (a) ϵ_L = 0%; (b) ϵ_L = -0.48%; (c) ϵ_L = -0.78%; (d) ϵ_L = -1.63%; (e) ϵ_L =

-2.18%.

Figure S4

Figure S4 In-plane (along the strain) and out-of-plane hysteresis loops of the lattice strain treated

L1₀-FePt(20 nm) film. (a) ϵ_L = 0%; (b) ϵ_L = -0.48%; (c) ϵ_L = -0.78%; (d) ϵ_L = -1.63%; (e) ϵ_L =

-2.18%.

Figure S5

Figure S5 First-principles calculation results for larger strains ranging from 0% to 5%. (a) DOS of spin-up (\uparrow) and spin-down (\downarrow) electrons in L1₀-FePt films, the dashed line stands for Fermi level. When ε_L =-5%, the spin distribution shift by 0.5eV comparing with the ε_L =0% case. (b) Variations of magnetic moment (MM) and total SOC strength (ξ_{total}) with ε_L . The ξ_{total} increases from 746 meV (ε_L = 0%) to 769 meV (ε_L = -5%) with a considerable variation of 23 meV.

Figure S6

Figure S6 Variations of experimental magnetization in strain treated L1₀-FePt films with ϵ_{L} . *t* represents the thickness of the L1₀-FePt layer.