

*Supplementary Material***:**

Geometry shapes propagation: assessing the presence and absence of cortical symmetries through a computational model of cortical spreading depression

Julia M. Kroos*, Ibai Diez, Jesus M. Cortes, Sebastiano Stramaglia and Luca

Gerardo-Giorda

*Correspondence: Julia M. Kroos BCAM – Basque Center for Applied Mathematics, Alameda de Mazarredo 14, E48009 Bilbao, Basque Country – Spain jkroos@bcamath.org

1 SUPPLEMENTARY MATERIAL

1.1 Numerical Approximation of the Distributed Model

For the time discretization of the model

$$
\frac{\partial u}{\partial t} = -I(u, w) + \text{div}(D\nabla u) \tag{1}
$$

$$
I(u, w) = G(u - u_0) \left(1 - \frac{u}{u_{th}} \right) \left(1 - \frac{u}{u_p} \right) + \eta_1 (u - u_0) w \tag{2}
$$

$$
\frac{\partial w}{\partial t} = \eta_2 \left(u - u_0 - \eta_3 w \right),\tag{3}
$$

we consider a uniform mesh in the time variable t and define $t^n = n\Delta t$ for $n = 0, \ldots, N$ with the time step $\Delta t = T/N$ and $t \in [0, T]$. In the following u^n denotes the discrete evaluation of u at time t^n . Next we apply the backward Euler method to the time derivative obtaining:

$$
\frac{\partial u}{\partial t}(t^{n+1}) \sim \frac{u^{n+1} - u^n}{\Delta t}.
$$

Applying this to [\(1\)](#page-0-0) we are left with the problem

$$
u^{n+1} - \Delta t \nabla (D \nabla u^{n+1}) = -\Delta t I^{n+1} + \Delta t u^n.
$$

For the finite dimensional approximation in space we first set up the variational formulation of our problem [\(1\)](#page-0-0). Let $H^1(\Omega)$ be the Sobolev space over $\Omega \subset \mathbb{R}^2$. Then the variational formulation of (1) is

Given
$$
u^0, w^0 \in L^2(\Omega)
$$
 and $I \in L^2(\Omega \times (0, T))$
find $u^{n+1} \in V_h$ such that for all $t \in (0, T)$:

$$
\int_{\Omega} u^{n+1} \phi_j + \Delta t \int_{\Omega} D \nabla u^{n+1} \nabla \phi_j = \Delta t \int_{\Omega} u^n \phi_j - \Delta t \int_{\Omega} I^{n+1} \phi_j, \forall \phi_j \in V_h
$$
(4)

for each $n = 0, \ldots, N - 1$. Let \mathcal{T}_h be a triangulation of Ω , which implies $\Omega = \bigcup_{K \in \mathcal{T}_h} K$. We define h as the maximum diameter of the triangles. For reasons of simplicity we assume that every triangle K can be obtained by applying a suitable invertible affine map to a reference triangle \hat{K} , thus $K = T_K(\hat{K})$. The corresponding finite element spaces are defined as

$$
X_h^1 = \{ v_h \in C^0(\Omega) | v_{h|K} \circ T_K \in \mathbb{P}_1, \forall K \in \mathcal{T}_h \}
$$

where \mathbb{P}_1 is the space of polynomials of degree less than or equal to one. For a more detailed introduction to finite element methods see [\(Quarteroni and Valli, 1997\)](#page-2-0).

For the approximation of our problem we apply the Galerkin method selecting the finite dimensional space $V_h = X_h^1$ and its basis $\{\varphi_j(x) | j = 1, \ldots, N_h\}$, where N_h is the dimension of V_h . With this we can set

$$
u_h^n = \sum_{i=1}^{N_h} u_{h,i}^n \varphi_i(x).
$$

Following the Green formula of integration we can deduce from the variational formulation [\(4\)](#page-1-0):

$$
\sum_{i=1}^{N_h} u_{h,i}^{n+1} \sum_{K \in \mathcal{T}_h} \int_K \varphi_i(x) \varphi_j(x) dx + \Delta t \sum_{i=1}^{N_h} u_{h,i}^{n+1} \sum_{K \in \mathcal{T}_h} \int_K (\nabla \varphi_i(x))^T D \nabla \varphi_j(x) dx =
$$
\n
$$
\Delta t \sum_{i=1}^{N_h} u_{h,i}^n \sum_{K \in \mathcal{T}_h} \int_K \varphi_i(x) \varphi_j(x) dx - \Delta t \sum_{i=1}^{N_h} I_h^{n+1} \sum_{K \in \mathcal{T}_h} \int_K \varphi_i(x) \varphi_j(x) dx.
$$
\n(5)

Defining the mass and stiffness matrix as $M = (m_{ij})$ and $S = (s_{ij})$ with

$$
m_{ij} = \sum_{K \in \mathcal{T}_h} \int_K \varphi_i(x) \varphi_j(x) dx \quad \text{and} \quad s_{ij} = \sum_{K \in \mathcal{T}_h} \int_K (\nabla \varphi_i(x))^T D \nabla \varphi_j(x) dx
$$

the finite element approximation reads

$$
(M + \Delta tS)u^{n+1} = Mu^n - \Delta tMI^{n+1}.
$$

The integrals in mass and stiffness matrix are evaluated by a third order Gauss rule. The equation for the recovery variable w in [\(3\)](#page-0-0) can be solved explicitly as follows

$$
w(t) = \left(w(t_0) + \int_{t_0}^t \eta_2(u - u_0) \exp\left(\int_{t_0}^x \eta_2 \eta_3 d\xi\right) dx \right) \exp\left(-\int_{t_0}^t \eta_2 \eta_3 d x\right)
$$

=
$$
\frac{u - u_0}{\eta_3} + \left(w(t_0) - \frac{u - u_0}{\eta_3}\right) \exp(-\eta_2 \eta_3 (t - t_0)).
$$

For the full discretisation of the model (1) - (3) we use an implicit-explicit (IMEX) scheme to advance from t^n to t^{n+1} : the recovery variable w^{n+1} is updated by solving explicitly (after linearization around u^n) equation [\(3\)](#page-0-0) in $(0, \Delta t)$ and plugged into the expression of $I(u, w)$ for the computation of u^{n+1} . The overall procedure can be summarized as follows

Given u^n and w^n ,

update:
$$
w^{n+1} = \frac{u^n - u_0}{\eta_3} + \left(w^n - \frac{u^n - u_0}{\eta_3}\right) \exp(-\eta_2 \eta_3 \Delta t)
$$

update:
$$
I^{n+1} = I(u^n, w^{n+1})
$$

solve:
$$
Au^{n+1} = Mu^n - \Delta t M I^{n+1}
$$

where $A := M + \Delta t S$, where M and S are the classical finite elements mass and stiffness matrices.

REFERENCES

Quarteroni, A. and Valli, A. (1997). *Numerical Approximation of Partial Differential Equations* (Springer-Verlag Berlin Heidelberg), 2 edn.

2 SUPPLEMENTARY TABLES AND FIGURES

Supplementary Figure 1. The structural compartments (A) and the location of the lobes (B) on the lateral and medial surface of the cerebral cortex (left hemisphere).