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1 SUPPLEMENTARY MATERIAL
1.1 Numerical Approximation of the Distributed Model

For the time discretization of the model

0
a—? = —I(u,w) + div(DVu) (1)
u u
Iu,w) = G(u—1up) (1 — —) (1 — —) + n1(u — up)w (2)
0
a—ttu = 2 (u—up —n3w), 3)
we consider a uniform mesh in the time variable ¢ and define " = nAt for n = 0, ..., N with the time

step At = T/N and ¢ € [0, T]. In the following u" denotes the discrete evaluation of u at time ¢". Next we

apply the backward Euler method to the time derivative obtaining:

8u ntl n+1
E(t )~

u"mt ="
At
Applying this to (1)) we are left with the problem

" — AtV(DVUTH) = — AT Aru™.
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For the finite dimensional approximation in space we first set up the variational formulation of our problem
(). Let H(9) be the Sobolev space over £ C R?. Then the variational formulation of (T]) is

Given u’, w® € L?(Q) and I € L*(Q x (0,T))
find u" ™! € V}, such that for all t € (0,7) :

/un+1¢j+At/ DYV, :At/ u"; —At/ " Vo € Vi
Q Q Q &

)

foreachn =0,..., N — 1. Let T be a triangulation of {2, which implies 2 = UKeTh K. We define h as
the maximum diameter of the triangles. For reasons of simplicity we assume that every triangle K can
be obtained by applying a suitable invertible affine map to a reference triangle K, thus K = TK(K ). The
corresponding finite element spaces are defined as

Xy = {vn € CUQ)|vy i 0 Tx € PLVK € Ty}

where P is the space of polynomials of degree less than or equal to one. For a more detailed introduction
to finite element methods see (Quarteroni and Valli, [1997).

For the approximation of our problem we apply the Galerkin method selecting the finite dimensional space
Vi, = X%J and its basis {p;(x)|j = 1,..., Ni,}, where N, is the dimension of V},. With this we can set

Ny,
=1

Following the Green formula of integration we can deduce from the variational formulation (4):

Nh

Np,
Zuz’tl /}(g@i(l’)ng(x)dx—i—AtZuzjl Z /[((VQOZ(l’))TDVSO](x)dw:
i=1 i=1

KeTy, KeTy

(&)

zyéwm%mn.

KeTy

Np Np
AtZu’,ﬁfji Z /K@Z-(x)goj(x)dx—AtZ[ﬁH
i=1

=1 KeTy,
Defining the mass and stiffness matrix as M = (m;;) and S = (s;;) with
7%=Z/wMMMxmi%=Z/Nmm%wmm
KeT, 'K ket VK

the finite element approximation reads

(M + AtS)u™ = Mu™ — AtM T
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The integrals in mass and stiffness matrix are evaluated by a third order Gauss rule. The equation for the
recovery variable w in (3) can be solved explicitly as follows

t x t

w(t) = w(to)+/772(u—UO)eXp /772773016 dz | exp —/772773(133'

to to to

O) exp (—man3(t — to)) -

uUu—u

3

U — Ug

= + (w(to) -

N3

For the full discretisation of the model (1) - (3) we use an implicit-explicit (IMEX) scheme to advance
from " to t"*1: the recovery variable w™*! is updated by solving explicitly (after linearization around
u™) equation (3) in (0, At) and plugged into the expression of I (u,w) for the computation of u"!. The
overall procedure can be summarized as follows

Given u™ and w",

n __ no__
update: il = LU0 (w” v uo) exp (—n2n3At)
n3 n3

update: I = 1", w
solve: A = My — AtM !
where A := M + AtS, where M and S are the classical finite elements mass and stiffness matrices.
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2 SUPPLEMENTARY TABLES AND FIGURES
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Supplementary Figure 1. The structural compartments (A) and the location of the lobes (B) on the lateral
and medial surface of the cerebral cortex (left hemisphere).




	Supplementary Material
	Numerical Approximation of the Distributed Model

	Supplementary Tables and Figures

