SUPPLEMENTARY FIGURES

Supplementary Figure 1

Supplementary Figure 1. Neither knockdown using alternative RNAi lines, nor mutation of *MBDlike* enhances the Yki eye-specific overexpression phenotype. (a-e) Adult eye phenotypes of F₁ flies carrying *GMR-Gal4*, *UAS-Yki*^{S168A} transgenes crossed to a control RNAi line (β galactosidase RNAi VDRC GD51446) (a), and *MBDlike* RNAi lines Bloomington TRiP 38239 (b), 44105 (c), 35347 (d) and VDRC GD9261 (e). (f,g) Adult eye phenotypes of *MBDlike* wild type (f) or mutant (g) flies carrying a *GMR-yki* transgene.

Supplementary Figure 2

Supplementary Figure 2. Neither transgene insertion at 40D, nor *tiptop* overexpression enhances *dMyc* and *InR* eye-specific overexpression phenotypes.

Adult eye phenotypes of F_1 flies carrying *GMR-Gal4* and either *UAS-EYFP* (**a-d**), *UAS-InR* (**e-h**), or *UAS-dMyc* (**i-l**) transgenes crossed to; VDRC genetic background (**a, e, i**), $40D^{UAS}$ (**b, f, j**), *UAS-GFP* (**c, g, k**), *UAS-tio* (**d, h, l**).

Supplementary Figure 3

Supplementary Figure 3. Analysis of site occupancy in KK RNAi lines targeting known Hippo pathway components.

PCRs were performed as described in Methods¹ and run on 2% agarose gel. Numbering according to Supplementary Table 1. H₂O: water control. VDRC: VDRC genetic background.

Supplementary Figure 4

control

40DUAS

е

X - Gal4 or X - Gal4, UAS - XX

40D^{UAS}

F1 Assess for dominant phenotype

Supplementary Figure 4. The 40D^{UAS} line can be used to determine whether screening system is affected by transgene integration at 40D in VDRC KK RNAi lines.

(a,b) F1 flies carrying *Nubbin-Gal4* and VDRC genetic background (control) (a) or 40D^{UAS}
(b).

(c,d) F1 flies carrying *Hedgehog-Gal4* and VDRC genetic background (control) (c) or $40D^{UAS}$ (d).

(e) A typical screening line will harbour a *Gal4* driver of interest, and optionally a *UAS*driven transgene. Shown is a schematic representation of a cross to the $40D^{UAS}$ line described in this manuscript. Based on whether the F1 progeny of this cross shows a dominant phenotype(s), researchers can assess whether VDRC KK RNAi lines are suitable for their experiments and/or genetic screens.

SUPPLEMENTARY TABLE 1

	Transformant	Construct	Gene CG	Gene	pKC26	pKC26
	ID	ID	number	symbol	integrated at	integrated at
					non-annotated	annotated
					pKC43 (30B)	pKC43 (40D)
1	104523	109756	CG4005	yki	X	X
2	106174	101055	CG12072	wts	X	X
3	101323	107562	CG33193	sav	X	X
4	107645	108458	CG14217	Tao	Х	X
5	108254	107857	CG17090	HipK	X	Х
6	105093	113571	CG5651	pix	X	X
7	104169	101704	CG11228	hpo	X	
8	106507	111409	CG33967	kibra	X	
9	109281	100573	CG4114	ex	Х	
10	101497	108877	CG8544	sd	Х	
11	108863	101190	CG3352	fat	X	
12	108260	108304	CG11009	Wbp2	X	

SUPPLEMENTARY TABLE 2

Gal4 driver	Control	$40D^{UAS}$	
Actin NP		pupal lethal	
Tubulin	NP	pupal lethal	
Eyeless	NP	NP	
GMR	NP	NP	
Dorsal	NP	smaller, held out wing	
Patched	NP	smaller wings, held up and out	
Fringe	NP	small, deformed, held back wing	
Lozenge	NP	NP	
Serrate	NP	smaller, held out wing	
Hedgehog	NP	smaller, held out wing	
Engrailed	NP	held back wing	
Scalloped	NP	small, held out wing	
Apterous	mildly curled wing	small, deformed wing	
Rotund	NP	smaller, held out wing	
MS1096	NP	small, deformed, held back wing	
Nubbin	NP	small, uninflated wing	
32B	NP	small, held back wing	
71B	NP	smaller, held up wing	
Spalt major	NP	smaller, held out wing	
<i>C5</i>	NP	NP	
Pannier	NP	NP	
Myosin 1A	NP	NP	

Twist	NP	NP
dNab	NP	NP
Elav	NP	NP

(NP: no phenotype)

SUPPLEMENTARY METHODS

Drosophila genetics

Male flies from the Bloomington TRiP and VDRC 'GD' RNAi collections, the VDRC genetic background (GD60100), $40D^{UAS}$, w;;UAS-GFP and w;;UAS-tio² strains were crossed to w; GMR-Gal4, UAS-Yki^{S168A}-YFP/TM6B ³, w;;GMR-Gal4, UAS-EYFP/TM6B, w;;GMR-Gal4, UAS-Myc/TM3, or w;GMR-Gal4, UAS-InR/CyO virgin female flies.

For the experiment described in Supplementary Figure 1f,g, genotypes were *w*; *GMR-Yki/+* and *w*; *GMR-Yki/+*; *MBDlike*¹. Flies carrying the *MBDlike*¹ allele (*P{EPgy2}MBD-like*^{EY04582})⁴ were from Bloomington, USA. Flies carrying the *GMR-Yki* transgene have been described in⁵.

To generate the genotypes in Supplementary Figure 4 and Supplementary Table 2, we crossed $40D^{UAS}$ or VDRC genetic background (GD60100) virgin females to males carrying the indicated Gal4 drivers.

At least 30 adult eyes of 1-2 day old females were assessed.

SUPPLEMENTARY REFERENCES

- 1 Green, E. W., Fedele, G., Giorgini, F. & Kyriacou, C. P. A Drosophila RNAi collection is subject to dominant phenotypic effects. *Nature methods* **11**, 222-223, doi:10.1038/nmeth.2856 (2014).
- 2 Denholm, B. *et al.* The tiptop/teashirt genes regulate cell differentiation and renal physiology in Drosophila. *Development* **140**, 1100-1110, doi:10.1242/dev.088989 (2013).
- Poon, C. L., Lin, J. I., Zhang, X. & Harvey, K. F. The sterile 20-like kinase Tao-1 controls tissue growth by regulating the Salvador-Warts-Hippo pathway. *Developmental cell* **21**, 896-906, doi:10.1016/j.devcel.2011.09.012 (2011).
- 4 Marhold, J., Kramer, K., Kremmer, E. & Lyko, F. The Drosophila MBD2/3 protein mediates interactions between the MI-2 chromatin complex and CpT/A-methylated DNA. *Development* **131**, 6033-6039, doi:10.1242/dev.01531 (2004).
- 5 Huang, J., Wu, S., Barrera, J., Matthews, K. & Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. *Cell* **122**, 421-434, doi:10.1016/j.cell.2005.06.007 (2005).