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Supplemental Methods

Bonus Task and Monetary Compensation

At the end of the session, participants completed the bonus game to win money. This
game comprised 9 trials requiring the participant to use information learned in the ICT. On
each trial, a letter was shown flanked by two decks from the ICT. The participant was asked
to report which deck was most likely to yield the displayed letter. The proportion of correct
responses (M = 69.36%; SE = 3.45%) determined monetary compensation. In total, we paid
participants a base rate of $30 plus their earnings in the bonus game, yielding a mean

payment of $47.70.

Behavioral Analyses

We used MATLAB R2014a (The MathWorks, Inc., Natick, MA) and Stata 13.1
(StataCorp, College Station, TX) for behavioral analyses. One of our analyses focused on
characterizing the magnitude of feedback in the ICT. Although the concept of feedback is
clear within the ACT (i.e., variable levels of points), a similar construct is not readily
apparent within the ICT, which presents letters that occur with varying probabilities. Given
the structure of the ICT, however, we utilized a classic information-theoretic approach to
estimate the amount of information conveyed by the receipt of a given letter in the ICT 1.
Here, the information of a received outcome—expressed in units of bits, where bits = -

log2(p)—is based on the subjective probability of that outcome occurring given past
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experience. The number of occurrences of an event (e.g., drawing a K from Deck 1) relative
to other possible events (e.g., drawing a D or X from Deck 1) determines the subjective
probability p of that event; for example, p = Nx / (Np + Nk + Nx). Because no events have
occurred prior to the first trial, we assume the expectations are flat for each event (N =1,
which yields p = 33%). If the participant draws a K from Deck 1 on the first trial, then the
history of Deck 1 is updated simply through counting (Np = 1; Nk = 2; Nx = 1). Drawing
another K from Deck 1 on the second trial would therefore be less informative (bits = -
log2(2/(1+2+1)) than drawing a D or X from Deck 1 (bits = -logz(1/(1+2+1)). Thus, an
event that has occurred with regularity (high p) carries fewer bits than an event that has
not occurred with regularity (low p). We examined the behavioral effects of points
(affective reward properties) and bits (informative reward properties) using a two
(feedback type: affective or informative) by three (magnitude: low, medium, high) repeated
measures analysis of variance. This analysis excluded the “No Feedback” condition because
our key question here is, given feedback, how does the feedback magnitude influence
choice. (We note that we included the no feedback condition within our neuroimaging
analyses to facilitate comparisons of parametric responses across both tasks 2.) All
reported p-values have been adjusted (using the Huynh-Feldt episilon) to account for

violations of sphericity.

Skin Conductance Recordings and Analyses

We recorded galvanic skin responses using AcqKnowledge software (BIOPAC
Systems Inc). Isotonic gel electrodes were attached to the intermediate phalanges on the
first and second digits of the left hand. Data were recorded using a sampling rate of 200 Hz.
We used Ledalab and MATLAB to process and analyze the data. Raw data were
downsampled by a factor of 20 and smoothed with a kernel of 10 samples to attenuate
noise resulting from concurrent fMRI scanning. We quantified event-locked skin
conductance responses (SCRs) as the trough-to-peak amplitude difference of the largest
response within a window spanning 0.5 s to 5 s after the onset of feedback. We used a
minimal response criterion of 0.001 pS; responses below this threshold were scored as “0”.
Prior to analysis, SCRs were square-root transformed to reduce skewness and were z-

transformed within subjects to facilitate comparisons across subjects. In addition, we also
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excluded subjects who failed to reliably show task-evoked GSR responses (i.e., a minimum
of a 30% response rate across trials). This criterion identified 14 subjects who could be

included in the final SCR analyses.

Neuroimaging Data Acquisition

Neuroimaging data were collected using a 3T Siemens MAGNETOM Trio scanner
(equipped with 12 channels) at the Rutgers University Brain Imaging Center (RUBIC).
Functional images sensitive to blood-oxygenation-level-dependent (BOLD) contrast were
acquired using a single-shot T>*-weighted echo-planar imaging sequence with slices
parallel to the axial plane [GRAPPA with R = 2; repetition time (TR): 2000 ms; echo time
(TE): 30 ms; matrix 68 x 68; field of view (FOV): 204 mm; voxel size 3.0 x 3.0 x 3.0 mm; 37
slices (10% gap); flip angle: 90°]. We also collected By field maps (TR: 402 ms; TE1: 7.65
ms; TE2: 5.19 ms; flip angle: 60°) using the same slice prescription and voxel dimensions as
the functional images. High-resolution structural scans covering the whole brain (TR: 1900
ms; TE: 2.52 ms; matrix 256 x 256; FOV: 256 mm; voxel size 1.0 x 1.0 x 1.0 mm; 176 slices;
flip angle: 9°) were acquired to facilitate coregistration and normalization of functional

data.

Additional Controls for Head Motion

Given that brain connectivity results can be severely distorted by head motion, we
applied additional corrections and controls for head motion that are commonly used by
other groups (for review, 3). These additional preprocessing steps were carried out using

tools from FSL (FMRIB Software Library version 5.0.4; http://www.fmrib.ox.ac.uk/fsl) 4.

First, we identified motion spikes using an FSL tool called fsl_motion_outliers. We used two
metrics for assessing motion spikes: 1) root-mean-square (RMS) intensity difference of
each volume relative to a reference volume (the first time point); and 2) frame-wise
displacements computed as the mean RMS change in rotation/translation parameters
relative to a reference volume (the first time point). For each metric, we used a boxplot
threshold (i.e., 75t percentile plus 1.5 times the interquartile range) applied to the metric
values within a run to classify volumes as spikes. All spikes were then removed via

regression 35, This procedure removed an average of 7.6% of volumes (range: 0 to 16%).
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Importantly, following removal of motion spikes, no subjects exhibited extreme average
volume-to-volume head motion (M = 0.047 mm; range: 0.021 to 0.081 mm) or maximum
volume-to-volume head motion (M = 0.118 mm; range: 0.045 to 0.367 mm). Second, non-
brain material was removed from the functional images ¢, and the entire 4D dataset was
grand-mean intensity normalized using a single multiplicative factor. Finally, to remove
low frequency drift in the MR signal, we used a high-pass temporal filter with a 100 second
cutoff (Gaussian-weighted least-squares straight line fitting, with sigma = 50 s). Notably,
applying the temporal filter after removing motion spikes minimizes ringing artifacts >7:2.
We further preprocessed our data by filtering out artifacts identified in an
independent component analysis (ICA) °. For each dataset, we conducted a probabilistic
independent component analysis 10 as implemented in MELODIC (Multivariate Exploratory
Linear Decomposition into Independent Components) Version 3.10, part of the FSL
software package. Prior to estimating each ICA, input data were demeaned and the variance
was normalized across voxels. The number of dimensions was estimated using the Laplace
approximation to the Bayesian evidence of the model order 10. The whitened observations
were then decomposed into sets of vectors that describe signal variation across the
temporal domain (time-courses) and across the spatial domain (maps) by optimizing for
non-Gaussian spatial source distributions using a fixed-point iteration technique 1. We
normalized the estimated component maps by dividing the maps by the standard deviation
of the residual noise. Normalized component maps were then submitted to a classifier to
automatically label components as signal and noise °. Independent components labeled as
noise were then filtered from each dataset using regression °. Finally, we also regressed out
residual variance tied to motion parameters and extended motion parameters (i.e., squares,
temporal differences, and squared temporal differences) 3. Taken together, these additional
controls for head motion are helpful in mitigating concerns that our connectivity results

are influenced by subtle differences in head motion 3.

Convolution within the Psychophysiological Interaction Analyses
To form the PPI regressor in each model, we multiplied the (convolved)
physiological regressor of interest by the (convolved) regressor modeling the normalized

participant-specific feedback magnitude (i.e., the 1st-order parametric term from our
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parametric model). Although it has been argued that it is important to form the PPI
regressor using deconvolved regressors 12, we note that our approach—which is typical
within the FSL package 13—assumes that the shape of the hemodynamic response function

is comparable for the task and physiological regressors.

Statistical Thresholding

Except where noted, all z-statistic images were thresholded and corrected for
multiple comparisons using an initial cluster-forming threshold of z > 3.1 followed by a
corrected cluster-extent threshold of p < 0.05 14. Statistical overlay images were created
using MRIcroN and MRIcroGL. As Brodmann labels do not depict anatomical variation 13,
we show probabilistic anatomical labels for activation maxima using the Harvard-Oxford

cortical and subcortical atlases.
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