Deficiency in DGCR8-dependent canonical microRNAs causes infertility due to multiple abnormalities during uterine development in mice

Yeon Sun Kim¹, Hye-Ryun Kim¹, Hyongbum Kim², Seung Chel Yang¹, Mira Park¹, Jung Ah Yoon³, Hyunjung J Lim⁴, Seok-Ho Hong⁵, Francesco J DeMayo⁶, John P Lydon⁶, Youngsok Choi¹, Dong Ryul Lee^{1,3}, Haengseok Song^{1,3,*}

 ¹Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Korea
²Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
³Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
⁴Department of Veterinary Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 143-701 Korea
⁵Department of Internal Medicine, School of Medicine, Stem Cell Institute, Kangwon National University, Chuncheon, Kangwon 200-701, Korea
⁶Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas,

USA

*Correspondence should be addressed to: H Song, Ph.D. (<u>hssong@cha.ac.kr</u>) at Department of Biomedical Science, CHA University (Tel: 82-31-881-7150, Fax: 82-31-881-7249). Figure S1. Gross histology and gonadotropin production in Dgcr8^{d/d} mice. Gross histology (a) and RT-PCR results for FSH β and LH β subunits (b) expressed in the pituitary of Dgcr8^{d/d} mice. The bottom panel in (a) shows higher-magnification images of the boxed area in the top panel. Scale bar: 50 μ m.

Figure S2. Histologic examination for acute immune responses in reproductive organs of Dgcr8^{d/d} **mice injected with oil.** (a) Gross morphology of female reproductive organs in Dgcr8^{t/f} and Dgcr8^{d/d} mice 12 h after oil injection into uterine horns at post-hCG 9 h. Scale bar: 5 mm. (b) Histological analyses of female reproductive organs shown in (a). Note that there are no inflammatory cells such as neutrophils and eosinophils presented in Figure 3. Scale bar: 100 μm.

Figure S3. Expression profiles of miRNA biogenesis factors in mouse uterus. RT-PCR (a) and realtime RT-PCR (b) analyses for relative mRNA levels of miRNA biogenesis factors by E_2 (200 ng) and/or P_4 (2 mg) in the uteri of ovariectomized mice at different time points (n=5 for each group). Egr1 and Ltf were used as positive controls for early and late estrogen responses, respectively. Areg and Hoxa10, and Ptgs1 were for P_4 and E_2+P_4 responses, respectively.

Figure S4. Analyses of E₂-dependent expression of miRNA biogenesis components via nuclear estrogen receptor(s). Expression patterns of Dicer, Argo2 and Xpo5 were analyzed by RT-PCR (a) and realtime RT-PCR (b-d) to examine whether nuclear estrogen receptor(s) are involved in E₂-dependent expression of these genes. Ovariectomized mice were treated with ICI 182, 780, a nuclear estrogen receptor antagonist, 30 min before E₂ (200 ng) treatments and sacrificed 3 h after E₂ administration (n=4 to 7 for each group). Unpaired Student *t*-test, *=p<0.05.

Figure S5. TUNEL assays for the uterine sections of 3- and 5-week-old Dgcr8^{d/d} mice.

(a) Microscopic images for apoptotic cells (green) counterstained with DAPI (blue) in uterine sections from Dgcr8^{t/f} and Dgcr8^{d/d} mice. Note that uteri of both Dgcr8^{t/f} and Dgcr8^{d/d} mice at 3 and 5 weeks of age were negative in the TUNEL assays. Scale bar: 50 μ m. (b) Realtime RT-PCR for expression of apoptosis marker genes (Bcl2I11, Aldh1a3, and Fas) in the uteri of 3-and 5-week-old Dgcr8^{t/f} and Dgcr8^{d/d} mice.

b

а

а

b

ICI

oil

E₂

E₂+ICI

E₂

oil

E₂+ICI

ICI

