
4π-periodic Josephson supercurrent

in HgTe-based topological Josephson junctions

– Supplementary Information –

1.5 μm

Nb electrode HgTe 
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Nb electrodeA) B)

Supplementary Figure 1. SEM pictures of two typical devices - (A) Colorized SEM picture

highlighting the HgTe mesa (in red) and the Nb electrodes (in blue), in the lateral junction

geometry presented in Fig.1 (main text). (B) Close-up on the junction itself. Nb sidewalls are

visible on the electrodes, and are a consequence of sputter deposition on the sidewalls of the

resist pattern used to define contacts.
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Supplementary Figure 2. Excess current and midgap states - (A) The I-V curve of the 150

nm junction is presented in blue and red line (for the two sweep directions). Two asymptotes

are presented as a grey line, that do not cross the origin, demonstrating the presence of an

excess current. Two horizontal dashed line have been added as guidelines and represent possible

onsets at eV ' ∆Nb and eV ' 2∆Nb. (B) Excess current Iexc(V ) = I − V/Rn as a function

of voltage V . Inflexions are visible around V ' 1.4 mV and V ' 2.4 mV. At high bias,

Iexc(V )→ I∞exc = 5.3 µA.
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Supplementary Figure 3. Frequency dependence of the Shapiro response - The differential

conductance dI/dV is plotted as a colorscale, as a function of the dc voltage V and rf current

drive Irf for different frequencies. The progressive appearance of the initially (partially) missing

n = 1 step is observed. At high frequencies (f ≥ 6.2 GHz), subharmonic steps n = 1/2, 3/2, 5/2...

become visible. 3



0 1 2 3 4 5 6

0

1

2

3

4

5

6

N
or

m
.

v
ol

ta
ge

V
[h

f
/2

e]

DC current I [µA]

f = 13.2 GHz

n = 1/2

n = 3/2

Supplementary Figure 4. Subharmonic steps - We present an I-V curve obtained under

rf irradiation at f = 13.2 GHz. The subharmonic structure (clearly visible in the differential

resistance dV/dI in Supplementary Fig.3) is related to the appearance of subharmonic steps

with index n = 1/2, 3/2.... Here in particular, one observes the steps n = 1/2 and n = 3/2.
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Supplementary Figure 5. Weak reduction of the n = 3 step - (A) The differential resistance

dV/dI is plotted as a colorscale, as a function of the dc and rf current drives I and Irf for a

frequency of f = 3 GHz. A weak suppression of the third step (n = 3) is observed for low

rf currents. (B) The step amplitudes are extracted by binning voltages (see main text) and

presented for steps 0 to 4 (with an offset of 200 nA for n = 1, 2 and 400 nA for n = 3, 4). As

commonly observed in our samples, the first step (red line) if fully suppressed before the crossing

point. More interestingly, the amplitude of the third step (cyan line) is reduced as compared

with our usual observations. In particular, it remains smaller than the amplitude of the fourth

step (presented in magenta)
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Supplementary Figure 6. Effect of hysteresis on Shapiro steps - The differential resistance

dV/dI is plotted as a colorscale, as a function of the dc and rf current drives I and Irf for a

frequency of f = 3 GHz, at the base temperature of the dilution refrigerator T = 12 mK (A) and

at T = 800 mK (B). The asymmetry in the figure signals a strong hysteretic behavior in the I-V

curve (see main text, Fig.2). The wide white arrow (A) symbolizes the sweep direction of the

dc bias current I. In the hysteretic region, low index n Shapiro steps are not visible. However,

for high rf power, hysteresis vanishes and Shapiro steps reappear. The typical splitting of the

n = 1/n = 2 steps is in particular still observable. In contrast, all steps (apart from the missing

n = 1) are visible at T = 800 mK, and no asymmetry is observed.
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Supplementary Figure 7. Shapiro steps on a shunted device - (A) I−V curves in the shunted

configuration, at temperature T = 12 mK. A measurement in the absence of rf irradiation is

shown as a black line. The low voltage regime with dV/dI < 0 corresponds to an unstable region

when a pure current bias is applied. The colored lines present data measured under irradiation

at f = 4.2 GHz. The rf current is increased progressively from indigo to yellow lines. (B) and

(C) Histogram of the voltage and differential conductance dI/dV as a function of DC voltage

V and rf current Irf . As shown in the standard current bias configuration, a clear vanishing of

the n = 1 Shapiro step is observed.
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Supplementary Figure 8. Magnetic field dependence - (A) Critical current Ic as a function

of the perpendicular magnetic field B. The typical diffraction pattern of the supercurrent is

observed. (B) The ratio Q12 is presented as a blue line, as a function of the perpendicular

magnetic field B. It follows the same oscillations as the critical current Ic. The grey area

between the dashed lines show the region in which the ratio Q12 falls, as evaluated by a RSJ

model.

8



0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

3.5

0 5 10 1530

35

40

45

50

55

0

1

2

3

4

5

Temperature T [K] Temperature T [K]

A) B)

I c
&

I r
[µ

A
]

Ic

Ir

R
es

is
ta

n
ce

R
n

[⌦
]

E
x
c.

cu
rren

t
I
e
x
c

[µ
A

]

Supplementary Figure 9. Temperature dependence - (A) Temperature dependence of the

critical and retrapping current Ic and Ic. The hysteretic region is seen for T < 800 mK typically,

for which Ic < Ic. (B) Temperature dependence of the excess current Iexc and normal state

resistance Rn. The superconducting phase transition in the Nb contacts is seen here as a shift in

the resistance Rn, and typically takes place at Tc ' 8 K. Simultaneously, the excess current Iexc

exhibits a jump from zero to a finite value, thus reflecting the presence of Andreev reflections

at the interfaces of the junction for temperatures T < Tc.
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Supplementary Figure 10. Fit of the critical current vs. temperature - (A) Experimental

data for the critical current Ic(T ) as a function of temperature T is presented as blue + symbols,

for the 150 nm JJ. The solid line is obtained using Supplementary Eq.(1) for three-dimensional

topological Josephson junctions, with ∆i = 0.35 meV, N = 117, Z = 0.1. (inset) Complete

temperature range. Beyond 1K, data is taken as the fridge warms up, resulting in inaccurate

measurements of T . The fit departs from experimental data as the perturbative model breaks

down. (B) The temperature dependence of Ic(T ) is presented for the 400 and 600 nm junctions,

in red and green respectively. Experimental data is showed as + symbols while solid lines present

fits with parameters ∆i = 0.13 meV, N = 48, Z = 1 (600 nm) and ∆i = 0.13 meV, N = 33, Z =

1 (400 nm).
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Supplementary Figure 11. DC characterization of Josephson junctions with graphene

weak link - (A) Normal state resistance Rn of a graphene-based junction as a function of

back-voltage Vg. The Dirac point is clearly indicated by a maximum around Vg ' −1V . (B)

Colormap of the differential resistance dV/dI as a function of the back-gate voltage Vg and

dc drive current I. The supercurrent is visible as a black region (dV/dI ' 0) over the whole

back-gate range, ranging from a few tens of nA around the Dirac point up to 1.8 µA for large

gate voltages.
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Supplementary Figure 12. Shapiro response in graphene-based junctions - The differential

conductance dI/dV is plotted as a colorscale, as a function of the dc voltage V and rf current

drives Irf for two different frequencies, f = 7 GHz (A) and 5.5 GHz (B). The data has been taken

at the base temperature of the dilution refrigerator (T = 25 mK), close to the Dirac point. All

Shapiro steps are visible, up to |n| > 12.
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Supplementary Figure 13. Simulated Shapiro response of a conventional Josephson

junction - In the framework of the RSJ model, we obtain colormaps of the bin counts as a

function of the voltage bins (in normalized units) and rf current drive Irf . For a high frequency

(f = 0.4fJ,A) the results obtained resembles that of Supplementary Fig.3C in the main text.

All steps are clearly visible and appear one by one as Irf increases. As frequency f is decreased

(f = 0.2fJ for B, f = 0.1fJ for C) the pinch-off of the supercurrent is moved to higher powers.

One also observes a decreasing period in the oscillating pattern.
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Supplementary Figure 14. Simulated Shapiro response with a 4π-periodic term - Col-

ormaps of the bin counts as a function of the voltage (in normalized units) and rf current drive

Irf , in the presence of a small 4π-periodic contribution (such that f4π = 0.15fJ), and extracted

amplitudes of step n = 0 to n = 4, as a function of the rf current drive Irf . At high frequency

(f = 0.5fJ > f4π for A), all steps are visible, and the result is very similar to the one ob-

tained without 4π-periodic modes. As the frequency is decreased (f = f4π = 0.15fJ for B and

f = 0.05fJ for C), the amplitude of the odd steps decreases, in particular the n = 1 step which

is completely suppressed at low power. Simultaneously, the oscillatory pattern (high power)

develops anomalies, with very pronounced first minima on the odd steps.
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Supplementary Figure 15. Effect of the CPR - Investigated current-phase relations and

simulated I-V curves in the presence of rf excitation. As a blue line, the sinusoidal 2-periodic

supercurrent I2π sinφ, in red and green, single-mode-like supercurrent with transmission τ = 0.8

and 0.99 respectively (A). In panel (B), an additional 4π-periodic contribution is added, with

amplitude I4π = 0.15I2π. While all steps are visible in the I-V curve in the absence of 4-periodic

modes, odd steps are missing or strongly suppressed when they are present. The exact CPR

plays a small role in the crossover from the 4π-dominated regime to the conventional one when

frequency is increased.
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Supplementary Figure 16. Effect of Landau-Zener transitions - A typical spectrum of

gapped 2π-periodic Andreev levels is presented as a function of the superconducting phase

difference φ. In the presence of Landau-Zener transitions at the anticrossings (represented as

green arrows for φ = π, 3π, ...), some energy levels with small gap δ (high transmission) could

contribute as a 4π-periodic component in the supercurrent.
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Supplementary Figure 17. Landau-Zener transitions in the RSJ model - (A) Evolution of

the Shapiro step n = 2: I-V curves obtained for different values of the Landau-Zener probability

P are plotted, with a focus on the n = 2 Shapiro step. When P = 1, the second step (n = 2)

is fully developed and reaches the expected quantized value hf/e. For P < 1, it progressively

deteriorates: the voltage departs from the quantized value hf/2e, and the plateau becomes less

visible. (B) Time evolution of phase difference φ(t) and voltage V (t): The phase difference

φ(t) (red line, in units of π) and voltage V (t) (blue line, in units hf/2e) across the junction is

calculated via RSJ equations and plotted as a function of time t in units of the rf period 1/f .

The estimation of the voltage V |3π at φ(t) = 3π (anticrossing) enables a proper evaluation of

the Landau-Zener transition probability.
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L (nm) Ic (µA) Rn (Ω) fJ (GHz) f4π (GHz) I4π (nA) ∆i (meV) i0 (nA) N4π

A 150 3.3† 33 53 4.5-5 250-300 0.35 90 3

B 400 0.29 158 22 4 55 0.1-0.15 25-40 2

C 600 0.44 165 35 4 50 0.1-0.15 25-40 1-2

D 150 1.5 82 59 3-4 75-100 0.2-0.25∗ 50-65 1-2

E 200 4.4 52 110 4-5 160-200 0.4-0.5∗ 100-130 1-2

F 200 5.2 56 138 4-5 150-190 0.4-0.5∗ 100-130 1-2

Supplementary Table I. Summary of measured and estimated parameters - In this table,

we present the parameters measured or estimated on 6 different devices: length L, critical current

Ic, normal state resistance Rn, Josephson characteristic frequency fJ, crossover frequency f4π,

4π-periodic supercurrent, induced gap ∆i, maximum current per channel i0, number of 4π-

periodic modes.
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SUPPLEMENTARY NOTE 1 : ADDITIONAL CHARACTERIZATION MEA-

SUREMENTS

A. Excess current

The excess current in our data is indeed strikingly present in all our samples. We

take it as an additional indication of the systematic reproducibility of our data within a

large variety of samples of different fabrication runs and measured in different cryostats

at different locations. The excess current in a Josephson junction is obtained for voltages

beyond 2∆, as discussed by Blonder et al.2, and reaches in principle twice the value for a

NS contact. However, the amplitude of the excess current depends on elastic scattering at

the interfaces and as such is not a sufficient measure. The presence of gapless modes can

in principle be detected by a halved onset on the excess current: the asymptotic regime

is reached for a bias eV on the order of the gap ∆ and not 2∆ in the conventional case.

To analyze more precisely this behavior, we plot in the right panel of Supplementary

Fig.2 the difference Iexc(V ) = I −V/Rn, with Iexc(V )→ I∞exc for eV � 2∆Nb. We observe

two inflexions around V ' 1.4 mV and V ' 2.4 mV, that could be related to ∆Nb and

2∆Nb. However, these features are relatively weak, and no clear transition at eV ' ∆Nb

is observed.

The fact that we cannot observe a clear asymptotic regime at ∆ is however not un-

expected as the previous model is only directly applicable to N-S contacts, in which a

single superconducting contact is involved and thus the dynamics of Josephson effect is

not present. In a Josephson S-S contact, the observed currents and voltages below 2∆

are mixed with the time-averaged quantities of the Josephson effect. The I-V curve thus

reveals a time-averaged part due to the Josephson effect and a static part due to the

Andreev reflection processes. To get experimental access to the excess current part, it

is necessary to separate these contributions. The contributions due to the Josephson ef-

fect are strongest at V = 0 and at finite voltages close to V = 0 but gradually decay

in amplitude with increasing voltage. In contrast the excess current is present out to
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high voltages beyond 2∆ and perhaps beyond ∆. Careful experimental work is therefore

needed to disentangle these two processes from the experimental data. Furthermore, the

theory has been developed for nanowires (single-band and short junction limit) with a

simple representation of induced superconductivity, by a unique gap ∆. The fact that our

system is a 2D surface state rather than a nanowire is expected to have little consequence.

However, we expect to have a very different density of states due to the presence of two

superconducting gaps in proximity with each other (the bulk Nb gap ∆Nb and the induced

gap ∆i). The literature5,6 shows for example the presence of features at both ∆Nb and

∆i, as well as different densities of states in regions of energy ∆i < ε < ∆Nb and ε > ∆Nb.

The onset of the excess current in our measurements is of the same order of magnitude

as ∆Nb ' 1 meV, and the role of the induced gap (evaluated around ∆i ' 0.1− 0.4 meV)

remains experimentally not accessible.

B. Temperature dependence

We present in Supplementary Fig.9 the temperature dependence of four quantities. In

Supplementary Fig.9A, the critical current Ic and retrapping current Ic are shown (in

red and blue dots respectively). Both decay on a typical scale of 1-2 K. The hysteretic

region, characterized by Ic > Ir takes place at roughly T ≤ 800 mK in most samples.

Beyond this temperature, Ic = Ir and no hysteresis is observed in the I − V curve. In

Supplementary Fig.9B, the excess current Iexc and the normal state resistance Rn of the

junction are plotted as a function of temperature T . First, the resistance Rn (red dots)

exhibits a jump (from 31 Ω to 51 Ω) indicating the superconducting transition of the

bulk Nb contacts. These measurements were taken in a dilution fridge for which stable

temperature control was only possible below 1 K. Higher temperature measurements were

collected while the system warmed up allowing only a few reliable measurement points

such that the exact transition temperature is not known. From other measurements

during cool down, we obtain a critical temperature around Tc ' 8 K, slightly smaller than

that of pure high-quality Nb (9.2 K) and compatible with the measurements presented
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here. Simultaneously, the excess current is measured and exhibits a jump from zero to a

finite value (around 4 µA) as the Nb contacts become superconducting. This signals the

presence of Andreev reflections at both interfaces of the junctions for all temperatures

T < Tc.

The temperature dependence of the junction with L = 150 nm presented in Supple-

mentary Fig.9 can be analyzed using the approach developed by Tkachov et al.1. Each

mode (indexed by the transverse component of the wavevector ky) is described by an

angle-dependent transmission Tθ where sin θ = ky/kF. The distribution of transmission

Tθ reflects Klein tunneling through a barrier (characterized by a parameter Z in a BTK-

like approach2), with topological protection of the mode ky = 0 (Tθ=0 = 1). This model

also takes into account induced superconductivity in the HgTe reservoir using a McMillan

tunneling approach3, which allows for the evaluation of the induced gap ∆i. Unfortu-

nately, this perturbative approach breaks down for high temperature when the induced

gap ∆i becomes comparable to the Nb gap ∆Nb (that decreases with temperature).

Ic(T ) =
eΓ

4~
∑
ky

sinφ cos θ
Tθ(1− γ + 5

2
γ2 − 3

2
γ2Tθ sin2 φ

2
)

1− Tθ sin2 φ
2

tanh Γ
(1− γ + γ2)(1− Tθ sin2 φ

2
)1/2 + 1

2
γ2(1− Tθ sin2 φ

2
)3/2

2kBT
(1)

Tθ =
cos2 θ

1− sin2 θ/(1 + Z2)
, γ = Γ/∆Nb, ∆i = Γ(1− γ +

3

2
γ2)

Supplementary Eq.(1) has three fit parameters: the tunneling strength Γ (or equiva-

lently the induced gap ∆i), the barrier parameter Z and the number of modes N . As seen

on Supplementary Fig.10A, the agreement below 1 K is very good for the L = 150 nm

junction, but the fit diverges rapidly at high temperature. We obtain the following fitting

parameters Γ = 0.4 meV,∆i = 0.35 meV, Z = 0.1, N = 117. The number of modes is

then in agreement with independent estimates from Hall bar measurements, and yields

an estimate of ∆i that can be used to estimate the number of 4π-periodic modes (see

Supplementary Table 1).

For longer junctions (L = 400− 600 nm), the agreement is not as good as for the 150

nm long junction presented here. The evaluation of the temperature scale over which
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the decay of Ic is observed gives an estimate of ∆i = 0.1 − 0.15 meV lower than for the

junction with L = 150 nm. The amplitude of the critical current Ic decreases rapidly with

length, and yields a number of modes N < 50 which seems unreasonably small given the

estimate of the density from a separate Hall-bar, or from the value of N in the 150 nm

long device on the same sample. It could indicate that these junctions depart from the

short junction limit l � ξ where ξ is the coherence length in the system. The natural

coherence length ξ0 = ~vF
π∆i

is typically between 250 and 1000 nm in our system4. For

systems with mean free path l ∼ ξ0, the relevant length is in fact ξ =
√
ξ0l in the range

of 250 to 550 nm which is compatible with our findings.

SUPPLEMENTARY NOTE 2 : ADDITIONAL RESULTS ON HgTe-BASED

JUNCTIONS

A. Frequency dependence and half-integer steps

In Supplementary Fig.3, we present datasets measured for a different sample than the

one presented in the main text with length L = 400 nm. In particular, we show the

transition from a doubled Shapiro step (at f = 3.34 GHz) to a regime in which the first

step is fully recovered. At high frequencies (for f ≥ 6.2 GHz), we observe the appearance

of new half-integer steps, at voltages given by the step indexes n = 1/2, 3/2, 5/2, .... To

visulaize more clearly the subharmonic steps, we introduce a different way of visualizing

our data. The differential conductance dI/dV is plotted as a colorscale, as a function of

the dc voltage V and rf current drive Irf . Thus, Shapiro steps appear as maxima (dI/dV

diverges) for constant voltages, similarly to what is seen in the bin counts presented in the

main text. In such plots, the information on the step amplitude is lost, but subharmonic

steps of small amplitudes become more visible.

At f = 3.34 GHz, the first step (n = 1) is partially suppressed, but is recovered as

frequency increases. The change in the oscillatory pattern is also clearly visible: at low

frequency, fast oscillations follow a long region in which step n = 0 (supercurrent) is
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present. As f is increased, oscillations start earlier and with a larger period. These

features are accounted for by the RSJ model presented in section ??. More interestingly,

half-integer subharmonic steps (n = 1/2, 3/2, 5/2...) become clearly visible on the right

panels (for f ≥ 6.2 GHz).

As discussed in ref.7, it can be reproduced from the RSJ equations by adding a ca-

pacitive shunt in the circuit (RCSJ model8). Another possible mechanism is given by the

presence of higher order harmonics in the current-phase relation. As a sinφ/2 term can

suppress the odd steps, a sin 2φ term generates subharmonic steps. While the geometric

capacitance is believed to be negligible (see estimate in ref.9), a non-sinusoidal current

phase relation has clearly been established recently in our junctions4.

For the sake of completeness, we present in Supplementary Fig.4 a dataset measured

at f = 13.2 GHz, on the junction with a length L = 150 nm presented in main text. The

I-V curve establishes the presence of two weak half-integer steps at n = 1/2 and 3/2.

B. Summary of measured devices

In Supplementary Table 1, we summarize the parameters of 6 devices for which a com-

plete set of data has been collected. Parameters are as follows : length L, critical current

Ic, normal state resistance Rn, Josephson frequency fJ = 2eRnIc
h

, crossover frequency f4π,

4π-periodic contribution to the supercurrent I4π, induced gap ∆i, maximum current per

mode i0 = e∆i

~ , and finally number of 4π-periodic modes. Starred (∗) values indicate de-

vices for which the temperature dependence of the critical current has not been measured

precisely, so that ∆i is only estimated from the value of Ic at base temperature, with large

error bars. Despite a wide range of parameters explored, all junctions yield an estimated

number of 4π-periodic modes between 1 and 3. † indicates the critical current of the

junction with L = 150 nm presented in the main text at the time when the Shapiro steps

have been measured. A previous cool-down of the sample yielded Ic = 5.6 µA as presented

in the main text (Fig.2). Aging of the sample has been observed in several samples and

could explain this discrepancy.

23



C. Weak reduction of the n = 3 step

In Supplementary Fig.5A, we present the colormap of the bin counts obtained on a 200

nm long junction (not presented in the main text), as a function of the dc and rf drives

I and Irf . The measurement is taken at f = 3 GHz and 800 mK. For this frequency, we

observe the complete suppression of the first Shapiro step. Again, the first oscillation is

strongly disturbed as detailed in the main text. More surprisingly, a weak but distinct

suppression of the third step n = 3 can be seen for low rf currents. It is emphasized by

plotting the amplitude of each pair of steps (Supplementary Fig.5B). First, as described

in the main text, the amplitude of the first step (red line) is fully suppressed up to the

crossing point where the n = 0 region vanishes, while the second step (green line) is fully

visible. Then, the amplitude of the n = 3 step (cyan line) is smaller than the amplitude

of the n = 4 one (purple line) while the opposite is usually expected from RSJ models.

This could constitute evidence of a missing or suppressed third step, clearly observed

only in one sample. However, other irregularities in the higher order steps are sometimes

visible (see Fig.3 in the main article), so that this evidence has to be considered carefully.

D. Hysteresis, bias instability and Shapiro steps

In Supplementary Fig.6, we present two datasets measured on the same junction as

the one presented in section C at two different temperatures. To emphasize the role

of the control parameters (dc and rf currents I and Irf), we now plot the differential

resistance dV/dI as a colormap, as a function of these two parameters. On the left

panel, measurements were obtained at f = 3 GHz at the base temperature of the dilution

refrigerator (T = 12 mK). On the right panel, measurements were obtained in the same

conditions (f = 3 GHz) except for the temperature, here set high enough to suppress the

hysteresis (T ' 800mK).

Shapiro steps are identified as black regions where dV/dI ' 0, while blue lines between

black regions emphasize transitions between the different plateaus. A simultaneous read-
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ing of the voltage V gives access to the step index n (a few of them are indicated directly

on Supplementary Fig.6). The dc current is swept in the direction indicated by the white

arrow (from negative towards positive bias). At T = 12 mK, the very clear asymmetry

at low rf excitations is a signature of the hysteresis observed in the I-V curve presented

in the main text. The bistable dynamics that leads to hysteresis prevents the develop-

ment of the phase-locked dynamics responsible for the Shapiro steps. Consequently, the

latter are missing in the hysteretic region. In contrast, all steps are clearly visible at

higher temperature (T ' 800 mK), except for the n = 1 step which is fully suppressed at

f = 3 GHz.

It is possible to make a clear distinction between missing steps due to hysteresis and

the missing n = 1 step attributed to a 4π-periodic supercurrent. First, as can be seen

on Supplementary Fig.6, hysteretic switchings present vertical tangents (similar to ref.10)

while the doubled Shapiro step always exhibits a finite slope. Second, hysteresis is char-

acterized by an asymmetry depending on the sweep directions, which is not the case of

the missing step in our measurements. Third, the anomalous splitting of the n = 1/n = 2

steps beyond the pinch-off of the supercurrent (corresponding to the dark fringe in the bin

counts, discussed in the main text) that accompanies a missing n = 1 step remains visible

at all temperature regardless of the presence of hysteresis for low rf powers. For these

reasons, it appears clear that one can safely neglect hysteresis as the origin of the missing

n = 1 step. To avoid any problem, most measurements were performed at a temperature

high enough to suppress the hysteresis (typically 450 to 800 mK).

E. Shapiro steps on a shunted device

Furthermore, it is in fact possible to rule out bias instabilities as a possible mechanism

for the missing n = 1 step. By adding a shunt resistance in parallel with the junction, one

can indeed suppress hysteresis11 and work in a configuration that approaches the voltage

bias regime. To do so, we add a 10 Ω resistor in series with the junction, and shunt

these two elements with a 1 Ω resistor. Thus, the current flowing through the junction
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is accessed by measuring the voltage across the 10 Ω resistor, together with the voltage

across the junction.

Results obtained at the base temperature of the fridge (12 mK) and with an rf ex-

citation at 4.2 GHz are shown in Supplementary Fig.7. First, the black solid line in

Supplementary Fig.7A represents the I − V curve in the absence of rf irradiation. We do

not detect in this configuration any instability. At low voltages, one sees that dV/dI < 0.

In this region, a pure current bias generates bias instability and hysteresis, which is here

suppressed by the shunt resistance. When the rf irradiation is switched on (colored plain

lines), Shapiro steps become visible in the I − V curves. As previously, the step n = 1 is

clearly suppressed at low rf excitation (blue lines). Increasing the rf drive (from blue to

yellow lines), one sees the n = 1 step is recovered at high drive amplitude as previously.

Supplementary Fig.7 B and C present the voltage histograms and differential resistance

dI/dV as a function of the normalized DC voltage V and rf current Irf . Shapiro steps

are visible as previously as maxima following horizontal lines. As for the measurements

shown in the main text, the first step n = 1 is fully suppressed up to the oscillating

regions. Though the contrast is not as good, the ”dark fringe” at finite voltage described

in the main text is also visible.

F. Magnetic field dependence

Further investigations of the anomalous Shapiro response have been carried out in the

presence of perpendicular-to-plane magnetic fields. First, when the I-V curve is mea-

sured without rf irradiation, a Fraunhofer-like diffraction pattern of the critical current

is observed (plotted as a red line in Supplementary Fig.8, upper panel). In the junc-

tion presented here, the pattern is slightly distorted (probably due to flux-trapping in

the magnet). The periodicity in the magnetic field has been evaluated from undistorted

patterns in various other samples. It corresponds to a conventional periodicity as previ-

ously reported on similar samples9, and as expected for ballistic systems with such aspect

ratios12,13.
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The observation of Shapiro steps in the presence of the magnetic field reveals that the

anomalous doubling of the first step is only observed when the critical current is high

enough, namely only at the center of the central lobe (B . 0.3 mT) and to a lesser extent

at the centers of the second and third lobe. The ratio Q12 of the first (n = 1) and second

(n = 2) step widths (as introduced in the main text) is plotted as a function of the

magnetic field in Supplementary Fig.8 (as a blue line, lower panel). The plot reproduces

the variations observed in the critical current: the reduction of the first step is distinctly

observed for high critical currents, yielding low values for Q12, while Q12 increases for

low critical currents near the minima of the Fraunhofer pattern. This behavior can be

understood by assuming a constant value of the 4π-supercurrent fraction I4π/Ic: the

frequency f4π rapidly decreases when Ic decreases, so that a correct observation of the

anomalous step is not possible according to the criterion f < f4π.

One could expect that a small magnetic field induces a splitting of the Andreev bound

states. This would consequently weaken the effect of Landau-Zener transitions (see section

C) and allow us to exclude or confirm Landau-Zener transitions as responsible for the

anomalous Shapiro response. Given the large g-factor in HgTe (around g ' 20 for bulk

HgTe), this effect could show up at relatively weak fields. To generate a splitting of 0.01∆i

that significantly alters Landau-Zener transitions, a typical magnetic field B0 is required,

with gµBB0 ' 0.01∆i, yielding B0 ' 3.5 mT. The presence of a week magnetic field

does not seem to suppress the 4π-periodic contribution. It thus does not reveal any clear

signature of energy splitting of the Andreev spectrum. This supports an interpretation

based on the presence of a topological Andreev bound state. Indeed the latter is predicted

to have no spin-degeneracy and therefore the level crossing at phase differences π, 3π, etc.

should persist even in the presence of a magnetic field on the TI.
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SUPPLEMENTARY NOTE 3 - ADDITIONAL RESULTS ON GRAPHENE-

BASED JUNCTIONS

A. Typical properties of the graphene-based junctions

In this section, we briefly present measurements of the Shapiro response of graphene-

based devices. First, graphene flakes on hexagonal Boron-Nitride are fabricated by a van

der Waals stacking method. Superconducting contacts are patterned by standard electron

beam lithography and Niobium is deposited by magnetron sputtering. The geometry of

the presented devices is similar to the one used for the HgTe devices, with the graphene

weak link width ranging between 1.5 µm and 2.5 µm, and the length between 200 nm and

300 nm.

The graphene flake exhibit densities between −2.5× 1012 cm−2 and 2.5× 1012 cm−2,

which can be tuned by the means of a back-gate. In the left panel of Supplementary

Fig.11, we present the extracted normal state resistance Rn of the device as a function of

the back-gate voltage Vg. The mobility approaches 3000 - 8000 cm2 V−1 s−1. Close to the

Dirac point, this corresponds to a mean free path of around 50 nm. Consequently, these

devices are not in the ballistic limit but are relatively close to it.

In the right panel of Supplementary Fig.11, we present the differential resistance dV/dI

of one junction as a colormap, as a function of the back-gate voltage Vg and dc drive current

I. The supercurrent then appears as a dark region (dV/dI ' 0), while the normal state

exhibits finite values of dV/dI. The devices show a supercurrent over the whole back-gate

range, yielding supercurrents of a few tens of nA around the Dirac point and up to 1.8 µA

for large gate voltages.

B. Shapiro response of the graphene-based junctions

In this section we present two typical sets of data taken on the graphene-based junctions

(see Supplementary Fig.12). The differential conductance dI/dV is plotted as a colorscale,
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as a function of the dc voltage V and rf current drive Irf for two frequencies (f = 7 GHz

and 5.5 GHz). Despite fluctuations in the measurements (originating in fluctuations of

the offset of one of our amplifiers), clear Shapiro steps are visible at the expected voltages

Vn = nhf/2e. As frequency is lowered, the steps become less discernible but no sign of a

vanishing n = 1 step is observed in these sets.

Measurements have been carried out for different values of the back-gate voltage (Dirac

point, high n or p doping) and down to 4 GHz (for which the steps are hardly visible) but

no sign of a missing n = 1 step has ever been spotted. Since no 4π-periodic modes are

expected in the graphene junction, the crossover frequency is expected to be f4π = 0 in this

system. These measurements establish an experimental upper boundary f4π � 4 GHz.

Given the characteristic Josephson frequency of the device fJ ' 72 GHz, this sets an

upper boundary of I4π � 75 nA.

SUPPLEMENTARY NOTE 4 : ELEMENTS OF MODELING

A. Standard RSJ model with a 2π-periodic supercurrent

The results shown here are obtained using the RSJ model presented in Methods, with

a 2π-periodic sinusoidal current-phase relation IS(φ) = Ic sinφ. The results obtained by

Russer14 are reproduced. The global visual agreement with our measurements is good,

except the missing first step not accounted for in the standard RSJ model. In particular,

the increasing frequency of oscillations (with respect to the rf current needed for the

pinch-off of the supercurrent) is clearly observed.

In the lower panels, the step amplitudes for n = 0, 1, 2, 3, 4 are plotted as a function of

the rf current amplitude Irf . Again, one observes the effect of the excitation frequency f .

As f decreases, the width of the first lobe gets much larger than the widths of the other

lobes. Moreover, these graphs also show that the step amplitudes (hence their visibility)

decrease (with respect to the critical current). This phenomenon, clearly observable in our

measurements (lower panels of Fig.3, main text), limits our measurements to f ≥ 2 GHz.
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B. Extended RSJ model with a 4π-periodic contribution:

Simulations have also been carried out when adding a 4π-periodic contribution follow-

ing Dominguez et al.15. We present in this section our results : the appearance of the

doubled step is qualitatively well described as in the previous reference, but a quantitative

agreement has not been obtained yet. The results are presented below in the following

manner. First, we show that the addition of a 4π-periodic contribution I4π sinφ/2 to a

sinusoidal 2π-periodic current-phase relation (CPR) I2π sinφ is responsible for the dis-

appearance of all odd steps at low frequency f < f4π, in a comparable way to what we

experimentally observe on the first step n = 1. Then the marginal effect of the 2π-periodic

CPR is illustrated by comparing I-V curves in the presence of rf irradiation for a few dif-

ferent CPRs. No generic 2π-periodic CPR is found to show missing odd steps, while the

addition of a small 4π-periodic term enforces the disappearance of odd steps regardless

of the 2π-periodic term.

a. Effect of frequency on a 2π+4π-periodic supercurrent: We simulate the effect of a

small 4π-periodic contribution I4π sinφ/2. In Supplementary Fig.14, we show the effect of

frequency on a CPR of the form I4π sinφ/2 + I2π sinφ by plotting for different frequencies

the histograms of the voltage as function of the rf current Irf (upper panels) and the

amplitudes of steps n = 0 to n = 4 (lower panels). The parameters are I2π = 1, I4π = 0.15,

so that f4π = 0.15fJ. For a high frequency f > f4π (left, f = 0.5fJ), all steps are visible,

and the 2D plot is similar to the one obtained without 4π-periodic contribution. As

frequency is lowered (center, f = f4π = 0.15fJ, and right, f = 0.05fJ), the amplitude of

odd steps progressively decreases, and these odd steps are completely suppressed at low

power. The simulated behavior of the n = 1 step is very similar to the one experimentally

observed, and thus reinforces our interpretation. Though the crossover is not very sharp,

it happens for f = f4π (= 0.15fJ in the case of Supplementary Fig.14). One also observes

that the oscillatory pattern (at high power) is also progressively modified from a 2π- to a

4π-dominated pattern. In particular, odd steps show a very pronounced first minimum.

The dark fringe we experimentally observe in the oscillatory pattern is understood as
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the result of the progressive towards a pattern with a halved number of oscillations, thus

yielding progressively suppressed lobes.

b. Effect of the CPR Though the presence of a small 4π-periodic contribution

I4π sinφ/2 is found necessary to observe vanishing odd steps, the exact description of the

2π-periodic supercurrent does not influence much the Shapiro response. To illustrate this

finding, we focus on three different CPR. The first one is a standard I2π sinφ contribution

(obtained for a tunnel junction for example), as in the previous paragraph. For the other

two, we assume that the current is carried as a single mode of transmission τ = 0.8 and

0.99 respectively. The skewness of the CPR increases with transmission. The current

carried by such a mode is then given by τ sinφ/
√

1− τ sin2 φ/2. We normalize all CPRs

such that Ic = I2π = 1. Supplementary Fig.15 shows in the upper panels the CPR and

in the lower panels an I-V curve in the presence of rf irradiation, for a low frequency

f = 0.05fJ = f4π/3. On the left side, the CPR contains only this 2π-periodic supercur-

rent, and the obtained I-V curves exhibits all integer steps and do not depend on the

exact CPR. When a 4π-periodic supercurrent is added, all odd steps are suppressed or

reduced. The CPR matters marginally, and only seem to control the exact detail of the

transition from the 2π- to the 4π-dominated regime : the transition is slightly faster for

a skewed CPR.

C. Evaluation of Landau-Zener probabilities

If some Andreev bound states have very high transmission (or small energy gap δ, see

Supplementary Fig.16), non-adiabatic Landau-Zener processes may be responsible for an

additional 4π-periodic contribution to the supercurrent. Namely, some gapped 2π-periodic

Andreev levels would behave as effective 4π-periodic modes, in the absence of true 4π-

periodic modes. To our knowledge, studies of the effect of Landau-Zener transitions on

the dynamics of Josephson junctions are scarce15–19 in general and systems with multiple

Andreev levels have not been explored yet. We thus use a single mode approximation15,

and crudely assume that one level (with lowest gap δ) has a predominant role in Landau-
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Zener processes.

Following Dominguez et al.15, we include in our simulations stochastic Landau-Zener

transitions at the anticrossings, with a probability P , and partially reproduce their results.

The exact motion of the phase difference is hard to picture, but the general trend can be

understood on a heuristic basis. The phase will undergo shifts of 4π (per period of the

drive) in the case of a Landau-Zener transition and only 2π in the absence of transitions.

On average this results in a non-universal Shapiro step that is neither hf/2e nor hf/e.

These two values are recovered for P = 0 and P = 1 respectively. The results of our

simulations are presented in Supplementary Fig.17A, in which a close-up of the n = 2

Shapiro step is presented, for different values of P . As Dominguez et al., we observe

a splitting of the step for P close to 1, with voltage plateaus that deviate from the

quantized value hf/e until the split steps are eventually less discernible for P . 0.7. Our

experimental results do not show any splitting or deviation to the quantized value, with

an accuracy of a few percents. This indicates that the probability must be P > 0.97

(P = 1 being equivalent to having a fully gapless mode).

From the previous model, one can estimate the importance of the Landau-Zener tran-

sitions. First, we solve the RSJ equation, and obtain the phase φ(t) and its derivative

φ̇(t) ∝ V (t) as a function of time t. The parameters are chosen such that the junction

lies on the first Shapiro step (V = 〈V (t)〉 = hf
2e

). In that case, a high probability of

Landau-Zener transitions would lead the junction to exhibit a doubled step.

A typical plot of φ(t) and V (t) is shown in Supplementary Fig.17B, with φ(t) as a red

line and V (t) ∝ φ̇(t) as a blue line for the following parameters: I = 0.5 Ic, Irf = 0.8 Ic, f =

0.2 fJ. One first observes that the phase φ follows an anharmonic motion synchronized

with the excitation drive at frequency f : during one period of duration 1/f , the phase φ

increases by 2π, yielding an averaged voltage V = hf/2e as expected for the first Shapiro

step. Equivalently, one can calculate the average of V (t) and obtain V = 〈V (t)〉 = hf
2e

.

Then, we access the time t for which φ reaches the anticrossing (for φ(t) = 3π for example)

and read the derivative of the phase φ̇|3π at this point or equivalently the voltage V |3π.
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Finally, the Landau-Zener probability P is obtained from the following equation15:

P = exp
(
− 2π

δ2

∆i~φ̇

)
This assumes a generic pair of Andreev bound state with energy ε±(φ) = ±

√
δ2 + ∆2

i cos2 φ/2.

For the graphs presented here, we obtain V |3π ' 6.4 hf
2e

. This yields a probability

P > 0.98 if δ < 6 µeV. The most stringent constraint is obtained for the lowest frequencies

accessible in the experiment (2 GHz). With the criterion P > 0.97, we obtain δ . 9 µeV for

∆i = 0.12 meV (L = 400 and 600 nm), and δ . 18 µeV for ∆i = 0.35 meV (L = 150 nm).

This corresponds to a transmission
√

1− (δ/∆i)2 ≥ 0.994 in both cases.
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mann, and L.W. Molenkamp. Josephson Supercurrent through the Topological Surface States

of Strained Bulk HgTe. Physical Review X, 3:021007, 2013.

10 H. Courtois, M. Meschke, J. Peltonen, and J. Pekola. Origin of Hysteresis in a Proximity

Josephson Junction. Physical Review Letters, 101:067002, 2008.

11 M. Chauvin. The Josephson Effect in Atomic Contacts. PhD thesis, Univeristé Pierre et
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