Integrated Microfluidic Lectin Barcode Platform for High-Performance Focused Glycomic Profiling

Yuqin Shang¹, Yun Zeng², and Yong Zeng^{1,3*}

1. Department of Chemistry, University of Kansas, Lawrence, KS 66045;

2. College of Water Resource and Hydropower, Sichuan Agricultural University, Ya'an, Sichuan 625014, P.R. China

3. University of Kansas Cancer Center, Kansas City, KS 66160

* Corresponding author.

Tel: (785) 864-8105; Fax: (785) 864-5396; E-mail: yongz@ku.edu

	Lectins	Origin	Binding specificity	
1	PNA	Arachis hypogaea	Gal β1-3 GalNAcα-Thr/Ser (T antigen)	
2	LCA	Lens culinaris	Fucα1-6GlcNAc and α-Man, α-Glc	
3	SBA	Glycine max	Terminal GalNAc (especially GalNAcα1- 3Gal)	
4	AAL	Aleuria aurantia	Terminal α Fuc and ±Sia-Le ^x	
5	MAL II	Maackia amurensis II	Siaa 2-3Gal	
6	SNA	Sambucus nigra	Siaα2-6Gal/GalNAc	
7	PHA-L	Phaseolus vulgaris	Tri- and tetra-antennary complex oligosaccharides	
8	ECA	Erythrina cristagalli	Lac/LacNAc	
9	RCA120	Ricinus communis	Galactose, Lac/LacNAc	
10	DSL	Datura stramonium	(GlcNAc) _n , polyLacNAc and LacNAc (NA3, NA4)	
11	GSL-II	Griffonia simplicifolia	Agalactosylated N-glycan	
12	ConA	Canavalia ensiformis	α -Man (inhibited by presence of bisecting GlcNAc), α -Glc, complex-type <i>N</i> -glycans	
13	GNA	Galanthus nivalis	non-substituted α 1-3 and α 1-6 Man	
14	UEA-I	Ulex europaeus	Fucα1-2LacNAc	
15	VVL	Vicia villosa	α -, β -linked terminal GalNAc and GalNAc α - Thr/Ser (Tn)	
16	WGA	Triticum unlgaris	GlcNAc β 1-4GlcNAc β 1-4GlcNAc, β -GlcNAc and multivalent Sia	

Table S1. List of Lectins used in this work and their glycan binding specificities.

Vendor	MeridianLifeScience	MeridianLifeScience	Fitzgerald Industries
Catalog No.	A86928H	A97180H	30-AC21
Source	Human ovarian adenocarcinoma tissue	Ovarian carcinoma cell line	Ascitic fluids from ovarian cancer patients
Purity/ Purification	>50% pure by SDS-PAGE	Known Contaminants: CA19-9= 124 Units/mL(<0.1%) CA15-3= 2.15 Units/mL(<0.1%)	>95% pure
Concentration	650,000 Units/mL	83,840 Units/mL	750,000 Units/mL
Format & Buffer	Liquid in PBS (pH7.4) with 3% sucrose and 0.05% NaN3	Liquid in PBS (pH7.4 ± 0.2) with 0.1% NaN3	Liquid in PBS (pH7.2) with 3% sucrose and 0.05% NaN3

Table S2. Datasheet of three commercial CA125 protein samples used in this work

Figure S1. Scheme of the microplate-based lectin assay using horseradish peroxidase-conjugated streptavidin and the QuantaRed HRP substrate (ADHP) for absorbance or enhanced chemifluorescent detection.

Figure S2. Effects of different blocking solutions, Carbo-Free (Vector) and UltraBlock (AbD Serotec), on the background and binding of two biotinylated glycoproteins and one control protein $(1 \ \mu M)$ using six lectins deposited in a 384-well microtiter plate.

Figure S3. Concentration titration of the standard protein/glycoproteins using Con A and SNA confirms the blocking effectiveness of the Carbo-Free solution and suggests no inhibition on lectin-glycan binding, in contrast to the UltraBlock solution.

Figure S4. Quantitative detection of three standard protein and glycoproteins using various lectins. Assay conditions: buffer, TBST (20 mM Tris (pH 7.6), 150 mM NaCl, and 0.05% Tween 20), blocking buffer, Carbo-Free; HRP-STV, 1.5 mg/ml; overnight binding; QuantaRed fluorescence detection.

Figure S5. Comparison of blocking performance of a mixture of hIgG and lactose (top) and rIgG (bottom) for glycan profiling of hTf. The hIgG and lactose mixture blocker inhibits specific glycan binding for SNA and AAL.