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Supplementary Fig. 1: Connectome harmonics of an example subject given by the eigenvectors of
the graph Laplacian of the human connectome. Connectome harmonics yield frequency-specific spatial
patterns of synchrony across distributed cortical regions shown in ascending order of natural frequency.
The color indicates the amplitude of the standing wave and is equivalent to the phase of the oscillation
at a particular cortical location for the corresponding natural frequency.
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Supplementary Fig. 2: Similarity between the connectome harmonics corresponding to 40 lowest
frequencies and the default mode, control, dorsal attention and ventral attention networks in [1]. The
similarity is measured by mutual information (displayed as filled color data points) and compared to those
of the randomized harmonics (displayed as unfilled black data points). For all 10 subjects statistically
significant difference is found between the mutual information values of the connectome and randomized
harmonics for the default mode network and one particular connectome harmonic (in the range of the
9th eigenmode, ∓2 due to individual differences, highlighted by the red band in the left column, p-values:
∗ < 0.05, ∗∗ < 0.02 estimated using Monte Carlo simulations with 2000 randomized trials per subject,
after multiple comparison correction for the false discovery rate (FDR)[2]). For control, dorsal attention
and ventral attention networks larger individual differences in the mutual information values are observed.
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Supplementary Fig. 3: Similarity between the connectome harmonics corresponding to 40 lowest
frequencies and the visual, somato-motor and limbic networks in[1]. The similarity is measured by mutual
information (displayed as filled color data points) and compared to those of the randomized harmonics
(displayed as unfilled black data points). P-values: ∗ < 0.05, ∗∗ < 0.02 estimated using Monte Carlo
simulations with 2000 randomized trials per subject, after multiple comparison correction for the false
discovery rate (FDR)[2]).
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Supplementary Fig. 4: Predictive power of the connectome harmonics corresponding to 40 lowest
frequencies and the default mode, control, dorsal attention and ventral attention networks in[1]. The
predictive power of connectome harmonics for RSNs is measured by F-measure - harmonic mean of recall
and prediction - (displayed as filled color data points) and compared to those of the randomized harmonics
(displayed as unfilled black data points). P-values: ∗ < 0.05, ∗∗ < 0.02 estimated using Monte Carlo
simulations with 2000 randomized trials per subject, after multiple comparison correction for the false
discovery rate (FDR)[2]).



5
Visual Limbic Somatomotor

0 10 20 30 40

0.2

0.4

0.6

F
−

m
e
a
s
u
re

**
** **

**

0 10 20 30 40

0.2

0.4

0.6

0 10 20 30 40

0.2

0.4

0.6

**
*

**

**

0 10 20 30 40

0.2

0.4

0.6

F
−

m
e
a
s
u
re ** ** **

0 10 20 30 40

0.2

0.4

0.6

0 10 20 30 40

0.2

0.4

0.6

** *
** **

0 10 20 30 40

0.2

0.4

0.6

F
−

m
e

a
s
u

re

**
** **

0 10 20 30 40

0.2

0.4

0.6

0 10 20 30 40

0.2

0.4

0.6

** **

0 10 20 30 40

0.2

0.4

0.6

F
−

m
e
a
s
u
re

*
****

**

** **

0 10 20 30 40

0.2

0.4

0.6

0 10 20 30 40

0.2

0.4

0.6

*

0 10 20 30 40

0.2

0.4

0.6

F
−

m
e

a
s
u

re

*
** **

**

0 10 20 30 40

0.2

0.4

0.6

0 10 20 30 40

0.2

0.4

0.6

* * * *
**

0 10 20 30 40

0.2

0.4

0.6

F
−

m
e
a
s
u
re ** **

** **

0 10 20 30 40

0.2

0.4

0.6

0 10 20 30 40

0.2

0.4

0.6

**
*

**

**

0 10 20 30 40

0.2

0.4

0.6

F
−

m
e
a
s
u
re

**
** **

0 10 20 30 40

0.2

0.4

0.6

* *

0 10 20 30 40

0.2

0.4

0.6
**

0 10 20 30 40

0.2

0.4

0.6

F
−

m
e

a
s
u

re **
**

** **

0 10 20 30 40

0.2

0.4

0.6

0 10 20 30 40

0.2

0.4

0.6

* ***

0 10 20 30 40

0.2

0.4

0.6

F
−

m
e
a
s
u
re

**
**

**** **

0 10 20 30 40

0.2

0.4

0.6

* **

0 10 20 30 40

0.2

0.4

0.6

****
*

** ** **

0 10 20 30 40

0.2

0.4

0.6

Eigenmode number

F
−

m
e
a
s
u
re

* * *
** **

0 10 20 30 40

0.2

0.4

0.6

Eigenmode number
0 10 20 30 40

0.2

0.4

0.6

Eigenmode number

*** **

Supplementary Fig. 5: Predictive power of the connectome harmonics corresponding to 40 lowest
frequencies and the visual, limbic and somato-motor networks in[1]. The predictive power of connectome
harmonics for RSNs is measured by F-measure - harmonic mean of recall and prediction - (displayed
as filled color data points) and compared to those of the randomized harmonics (displayed as unfilled
black data points). P-values: ∗ < 0.05, ∗∗ < 0.02 estimated using Monte Carlo simulations with 2000
randomized trials per subject, after multiple comparison correction for the false discovery rate (FDR)[2]).
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Supplementary Fig. 6: Connectome harmonic patterns of 10 subjects that best match the default
mode network (top row).
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Diffusion of excitation Diffusion of inhibition Combined activity RD waves

σEE = σEI = 1

αEE = αEI = 5 −
σIE = σII = 5

αIE = αII = 7

= →

σEE = σEI = 1

αEE = αEI = 10 −
σIE = σII = 5

αIE = αII = 8

= →

σEE = σEI = 1

αEE = αEI = 10 −
σIE = σII = 5

αIE = αII = 10

= →

Supplementary Fig. 7: Reaction-diffusion models creating non-linear wave patterns in steady states.
Competition between an activator and an inhibitor diffusing at different speeds σ and strength α reacting
with each other provides a mechanism for the self-organization of reaction-diffusion waves.
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a

b

0

Supplementary Fig. 8: Analysis of the effect of parameter change on frequency of oscillations of
the neural field model. (a) Linear stability analysis of the neural field model in terms of connectome
harmonics. The red regions correspond to the diffusion parameters in the phase space that algebraically
satisfy the necessary condition for oscillations, i.e., the critical Hopf regime, plotted as a function of the
analyzed diffusion parameter and the eigenvalue of the connectome harmonic. Connectome harmonics
within the red region can be activated by the neural field model for the given parameter set (for each plot,
αEE, αIE, αEI, αII are varied individually while fixing the remaining parameters to the following default
values dE = 2, dI = 2, σEE

2 = 6, σIE
2 = 10, σEI

2 = 10, σII
2 = 50. As this is only a necessary, but not

sufficient condition, numerical solutions were obtained and the Fourier frequency spectrum from a total
of 240 numerical simulations, shown in (b). The power of each frequency is the averaged over all nodes
in the system. We observe regions where temporal oscillations with certain dominant frequency (red)
and its higher harmonics (yellow) are present, i.e., the region satisfies the super-critical Hopf regime,
as well as where no oscillations are present (dark blue), i.e., the regions which may satisfy the sub-
critical Hopf regime but do not lead to stable oscillatory behavior. However, no significant change in
the dominant frequency of temporal oscillations is observed for variations of the α{EE,IE,EI,II} values the
analyzed parameter range indicating the change in the temporal oscillations is mainly caused by variations
of the diffusion speed, given by the σ{EE,IE,EI,II}

2 values in the neural field model (see Fig. 3 in the main
article).
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Supplementary Fig. 9: Seed-based correlation analysis of the neural field patterns. (a) to (d) show
the resulting neural field patterns while the excitatory activity is gradually decreased and inhibitory
activity is gradually increased. Structured correlation patterns are observed for all 4 set of neural field
parameters, where the complexity of the spatial correlation patterns decreases gradually with the decrease
of excitation and increase of inhibition from (a) to (d). For the parameter set yielding low frequency,
high amplitude oscillations as observed in loss of consciousness, a decoupling between the anterior and
posterior cortex is observed in the correlation patterns (d). (e) Seed-locations illustrated on the cortex.
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Supplementary Fig. 10: Illustration of stable and unstable states and Lypunov analysis. (a) illustrates
the stable and unstable states of a system on the pendulum example. (b) shows the distance measure L(t)
versus the time from perturbation t− t∗ where t∗ is the time of perturbation in our numerical simulation
for one example parameter set. Before the perturbation (gray dotted line at t− t∗ = 0) L(t) is identical
to 0. L(0) shows how far the perturbed system altered from the underlying stable steady state. After
perturbation, i.e. when t− t∗ > 0, L(t) approaches 0 showing the system is Lyapunov stable.
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Supplementary Table 1: Parameters used for numerical simulations of neural field model in the phase
space analysis.

Parameter Value Definition

∆t 0.01 Time Step

T 150 Final Time

αEE ∈ [0.25, 15] Diffusive strength

αEI ∈ [0.25, 15] Diffusive strength

αIE ∈ [0.25, 15] Diffusive strength

αII ∈ [1, 45] Diffusive strength

σ2
EE ∈ [250, 310] Diffusive speed

σ2
EI ∈ [290, 370] Diffusive speed

σ2
IE ∈ [290, 340] Diffusive speed

σ2
II ∈ [260, 310] Diffusive speed

dE 2 Excitatory decay rate

dI 2 Inhibitory decay rate

Fc 2000 Use last Fc steps for Fourier Analysis

Fp
100
∆t Maximum frequency plotted for Fourier Analysis



Supplementary Note 1: Neural Field Model and generalisedWilson-
Cowan equations

Neural field models based on Wilson-Cowan equations are a variant of reaction-diffusion systems[3] orig-
inally introduced by Turing as a mathematical model for morphogenesis [4]. Based on the principle
that mutual interactions between the elements of a system can result in self-organization and pattern
formation, reaction-diffusion models have provided valuable insights into the mechanisms underlying the
emergence of non-linear waves in several biological processes[5]. The interacting elements in a reaction-
diffusion system can vary form discrete entities like molecules to circuits of cellular signals[5]. The
interactions themselves can also be provided by a variety of mechanisms, e.g., a diffusion-like mechanism
spreading the activity of interacting elements[4, 5], a series of direct cell-to-cell signals[6] or neuronal
interactions[7]. When an asymmetry between the different spatial propagation of elements exists, such
as the differences in diffusion rates of reactant chemicals[4], different spatial ranges of excitatory and
inhibitory connections between neural populations[8] or different intra-cellular reaction speeds of the ex-
citatory and inhibitory neural activity[6], the activity of the system can evolve spontaneously towards
periodic patterns and self-organization occurs (Supplementary Fig. 7).

Here, we first describe a variant of the neural field model of cortical dynamics given by Wilson-Cowan
equations[9] and then derive the extension of these equations to the 3D connectome model.

Let E(x, t) and I(x, t) correspond to the activity; i.e. local spatio-temporal averages of membrane-
potentials, of the excitatory and inhibitory neurons at the cortical location x ∈ R3 at time t. Following
the Wilson-Cowan equations[9, 8], time evolution of the excitatory and inhibitory neural firing rates
satisfy the following non-linear differential equations[8]:

τs
∂E(x, t)

∂t
= −dEE(x, t) + S(αEEDEE[E(x, t)]− αIEDIE[I(x, t)]) (1)

τs
∂I(x, t)

∂t
= −dII(x, t) + S(αEIDEI[E(x, t)]− αIIDII[I(x, t)]). (2)

where DEE, DIE, DEI and DII denote the diffusion (spatial propagation) operators of excitatory (E) and
inhibitory activities (I), each separately acting on excitatory and inhibitory populations with names (EE,
IE) and (EI, II) respectively. Here S denotes the sigmoidal activation function (SAF),

S(r) =
1

1 + e−r
, (3)

and τs is a characteristic time scale that speeds up or slows down the evolution of the system. In the
rest of the supplementary material, without loss of generality, we will set τs = 1 sec. for the simplicity of
the presentation. However, it is important to note that the neural field model can be adapted to another
frequency range of oscillations by changing the value of τs.

In continuous 2D domain, these diffusion operators can be replaced by integration against the diffusion
(Gaussian) kernels G(x, y, σ) with corresponding standard deviations σ{EE\IE\EI\II} (Supplementary Fig.
7)[9, 8]:
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DEE[u(x, t)] =

∫
Ω

G(x, y;σEE)u(x, t)dy, (4)

DIE[u(x, t)] =

∫
Ω

G(x, y;σIE)u(x, t)dy, (5)

DEI[u(x, t)] =

∫
Ω

G(x, y;σEI)u(x, t)dy, (6)

DII[u(x, t)] =

∫
Ω

G(x, y;σII)u(x, t)dy, (7)

where Ω ⊂ R3, σEE, σEI denote the spatial ranges of excitatory activity acting on excitatory and inhibitory
neural populations, respectively. Similarly, σIE, σII denote the spatial ranges of inhibitory activity acting
on excitatory and inhibitory neural populations.

Supplementary Note 2: Diffusion on the human connectome

To compute the diffusion operators D{EE\IE\EI\II} on a 3D graph model of the human connectome, we
draw on the evolution of the diffusion equation on the graph. To this end, we form the connectome graph
and compute the symmetric graph Laplacian explained in Methods Section of the main article.

We now derive the diffusion equations on the graph that are analogous to the Gaussian diffusion
kernels in the continuum. We do this by first considering the diffusive process in some small time ∆t on
vertex vi. The explicit time discretisation of the diffusion equation

du(vi, t)

dt
= ∆Gu(vi, t) (8)

is
u(vi, t+∆t) = u(vi, t) + ∆t∆Gu(vi, t) + o(∆t) (9)

where ∆t is small.
We expand u(vi, t) with respect to the orthogonal Laplacian eigenfunctions ψj (these eigenfunctions

will also be used to conduct the linear stability analysis in Supplementary Notes 4 and 5):

∆Gψj(vi) = λjψj(vi), ∀vi ∈ V (10)

with λj , j ∈ {1, ..., n} being the corresponding eigenvalues of ∆G . Please note that the eigenvalues of the
continuous Laplace operator are infinite and countable, whereas the eigenvalues of the graph Laplacian
∆G is limited by the number of nodes n of the graph G. This expansion gives us:

u(vi, t) =
n∑

j=1

βj(t)ψj(vi). (11)

where β(t) is some scalar function of time. Using Eq. (11) and negating the o(∆t) term, we may rewrite
Eq. (9) as

u(vi, t+∆t) = (1 + ∆t∆G)

n∑
j=1

βj(t)ψj(vi) (12)

=
n∑

j=1

βj(t)(1 + ∆tλj)ψj(vi). (13)
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We now observe how the diffusive process operates over the characteristic time τ , which corresponds
to the Gaussion kernel G(x, y;σ) with the standard deviation σ in 2D continuous setting. Note that

N = τ/∆t denotes the number of discrete time steps and τ = σ2

2 . To evaluate u(vi, t + τ) we simply
expand Eq. (13) giving:

u(vi, t+ τ) =

n∑
j=1

βj(t+ τ −∆t)(1 + ∆tλj)ψj(vi) (14)

=
n∑

j=1

βj(t+ τ − 2∆t)(1 + ∆tλj)
2ψj(vi) (15)

...

=
n∑

j=1

βj(t)(1 + ∆tλj)
Nψj(vi). (16)

In the reaction-diffusion equations, we are interested in the diffusion process occurring between the time
t and t+ τ , which denote the times of reactions in the discrete setting. In a purely diffusive process, one
would consider the diffusion between the time t0 = 0 and t0 = τ and thus the Eq. (16) would correspond
to

u(vi, τ) =
n∑

j=1

βj(0)(1 + ∆tλj)
Nψj(vi). (17)

To see how this discrete approximation limits to the continuum Gaussian graph diffusion operator,
∆t→ 0, we let ∆t = 1/η and consider the limit of the ∆t term in the right hand side of Eq. (17):

lim
η→∞

(1 + ∆tλj)
t

∆t = lim
η→∞

(1 +
1

η
λj)

ηt (18)

=

(
lim
η→∞

(1 +
1

η
λj)

η

)t

(19)

= eλjt (20)

= e
λjσ

2

2 . (21)

We can then approximate the diffusion operators on the 3D graph with the exponential propagator
as:

DEE[u(vi, t)] =
n∑

j=1

βj(t)e
λjσ

2

2 ψj(vi), (22)

with corresponding definitions for (EE), (EI), (IE), (II). Please note that due to the particular graph
Laplacian used in the simulations, (see Methods in the main article), all λi ≤ 0. Thus, higher frequen-
cies corresponding to larger negative eigenvalues get more attenuated/damped than lower frequencies,
consistent with the continuous form of the diffusion process.

Supplementary Note 3. Relation of Wilson-Cowan equations to
connectome harmonics

We use the neural field equation given in[9] as such equations can typically be derived from an underlying
stochastic process and used in the network setting[10]. This approach allows for the derivation of master
equations which yield physically consistent oscillatory behavior across the network[11]. Systems consisting
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of a network of coupled oscillators are also effective models of macro-scale cortical dynamics which assume
all nodes are natural oscillators[12, 13]. In contrast, reaction-diffusion dynamics can be derived from
first principles without assuming oscillations. In such systems, the oscillatory behavior is an emergent
phenomena.

To determine the necessary and sufficient conditions for the self-organization of spatial-temporal
patterns, i.e., oscillatory networks, we will analyse first the stability of any homogeneous solution and
then how small perturbations from a stable homogeneous solution evolve. This is a standard dynamical
systems approach and the reader is advised to consult[14] for detailed explanation and analysis.

Let Ē, Ī be a homogeneous state, i.e., Ē(vi, t) = Ē(vj , t) for all vi, vj for any given t. In a homogeneous
steady state, there is no net diffusion at any location. We consider the behavior of E through analysis of

the temporal derivative dE(vi,t)
dt for all vi ∈ V. Specifically we substitute Ē(vi, t) and Ī(vi, t) into the set

of master equations Eqs. (1) and (2) for all vi ∈ V;

dĒ(vi, t)

dt
= −dEĒ(vi, t) + S(αEEDEE[Ē(vi, t)]− αIIDIE[Ī(vi, t)]). (23)

As Ē and Ī is a homogeneous solution, DEE[Ē(vi, t)] = DIE[Ī(vi, t)] = 0 and the right most term is simply

S(0) =
1

1 + e0
=

1

2
. (24)

Thus

dĒ(vi, t)

dt
= −dEĒ(vi, t) +

1

2
(25)

> 0 if Ē(vi, t) <
1

2dE
, or < 0 if Ē(vi, t) >

1

2dE
. (26)

So we have positive growth for initial conditions below 1
2dE

and negative growth for initial conditions

above 1
2dE

. An identical approach may be used for Ī(vi, t). This shows that any homogeneous state will
converge onto the homogeneous steady state

E0(vi, t) =
1

2dE
, I0(vi, t) =

1

2dI
, ∀vi. (27)

To determine the stability of the state E0(vi, t) = 1
2dE

, I0(vi, t) = 1
2dI

we consider a small, non-

homogeneous perturbation, E∗ and I∗, from E0(vi, t), I
0(vi, t);

E∗(vi, 0), I
∗(vi, 0) > 0. (28)

The homogeneous steady state E0(vi, t), I
0(vi, t) is unstable if

dE∗(vi, t)

dt
> 0 and

dI∗(vi, t)

dt
> 0 for E∗(vi, 0), I

∗(vi, 0) > 0 (29)

and if
dE∗(vi, t)

dt
< 0 and

dI∗(vi, t)

dt
< 0 for E∗(vi, 0), I

∗(vi, 0) < 0. (30)

The state of the system may be described as the sum of the perturbation E∗ and the steady state E0,

E(vi, t) = E0(vi, t) + E∗(vi, t). (31)
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The temporal behaviour is then given by

dE(vi, t)

dt
=

d(E0(vi, t) + E∗(vi, t))

dt

= −dEE0(vi, t)− dEE
∗(vi, t)

+S(αEEDEE[E
0(vi, t) + E∗(vi, t)]− αIIDIE[I

0(vi, t) + I∗(vi, t)]). (32)

As E0(vi, t) is a steady state dE0(vi,t)
dt = 0. Thus we have the identification

dE(vi, t)

dt
=
dE∗(vi, t)

dt
, (33)

and Eq. (32) becomes:

dE∗(vi, t)

dt
= −dEE0(vi, t)− dEE

∗(vi, t)

+S(αEEDEE[E
0(vi, t) + E∗(vi, t)]− αIIDIE[I

0(vi, t) + I∗(vi, t)])

= −1

2
− dEE

∗(vi, t) + S(αEEDEE[E
∗(vi, t)]− αIIDIE[I

∗(vi, t)]) (34)

as E0(vi, t) =
1

2dE
, from Eq. (27), and

DEE[E
0(vi, t) + E∗(vi, t)] = DEE[E

0(vi, t)] +DEE[E
∗(vi, t)] = DEE[E

∗(vi, t)] (35)

as DEE[E
0(vi, t)] = 0.

Then, by taking the Taylor series expansion of S(c) about 0, i.e., S(c) = 1
2 + c

4 +O(c), we arrive at

dE∗(vi, t)

dt
≈ −1

2
− dEE

∗(vi, t) +
1

2
+
αEEDEE[E

∗(vi, t)]− αIIDIE[I
∗(vi, t)]

4
(36)

= −dEE∗(vi, t) +
αEEDEE[E

∗(vi, t)]− αIEDIE[I
∗(vi, t)]

4
. (37)

Similarly for I, we obtain

dI∗(vi, t)

dt
≈ −dII∗(vi, t) +

αEIDEI[E
∗(vi, t)]− αIIDII[I

∗(vi, t)]

4
. (38)

The perturbations E∗(vi, t) and I
∗(vi, t) are defined over the basis of Laplacian eigenfunctions:

E∗(vi, t) =
N∑
j=1

βE
j (t)ψj(vi) I∗(vi, t) =

N∑
j=1

βI
j (t)ψj(vi). (39)

It is important to note that these eigenfunctions ψj are the connectome harmonics discussed in the
main article. Eq. (39) states that any excitatory or inhibitory state can be reconstructed through
the a finite number of eigenfunctions. In Fig. 2 and Supplementary Figs. 2-5, we showed that the
oscillatory functional networks of the human brain in resting state directly correspond to a small number
of connectome harmonics.
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Supplementary Note 4: Necessary conditions for pattern forma-
tion

We now analyse the behaviour of β
E/I
j (t) to determine which, if any, eigenmodes are unstable and will

dominate to give patterns. We substitute this perturbation into the master equations Eqs. (37) and (38):

∂

∂t

N∑
j=1

βE
j (t)ψj(vi) = −dE

N∑
j=1

βE
j (t)ψj(vi)

+

αEEDEE

[
N∑
j=1

βE
j (t)ψj(vi)

]
− αIEDIE

[
N∑
j=1

βI
j (t)ψj(vi)

]
4

, (40)

∂

∂t

N∑
j=1

βI
j (t)ψj(vi) = −dI

N∑
j=1

βI
j (t)ψj(vi)

+

αEIDEI

[
N∑
j=1

βE
j (t)ψj(vi)

]
− αIIDII

[
N∑
j=1

βI
j (t)ψj(vi)

]
4

. (41)

As the eigenfunctions are orthogonal (i.e. the matrix of all ψ is linearly independent) we can look
at each eigenfunction individually. To simplify our analysis, we replace the diffusion term with its
propagator, Eq. (22). The time evolution of each eigenfunction is then given by the linearised equation

∂βE
j (t)ψj(vi)

∂t
≈ −dEβE

j (t)ψj(vi) +
αEEβ

E
j (t) exp

(
λj

σ2
EE

2

)
ψj(vi)− αIEβ

I
j (t) exp

(
λj

σ2
IE

2

)
ψj(vi)

4
,

∂βI
j (t)ψj(vi)

∂t
≈ −dIβI

j (t)ψj(vi) +
αEIβ

E
j (t) exp

(
λj

σ2
EI

2

)
ψj(vi)− αIIβ

I
j (t) exp

(
λj

σ2
II

2

)
ψj(vi)

4
. (42)

We can rewrite the system of equations defined in Eqs. (42) as

∂

∂t

(
βE
j (t)
βI
j (t)

)
=

 −dE + αEEe

(
λj

σ2
EE
2

)
4 −αIEe

(
λj

σ2
IE
2

)
4

αEIe

(
λj

σ2
EI
2

)
4 −dI − αIIe

(
λj

σ2
II
2

)
4

(
βE
j (t)
βI
j (t)

)
(43)

(44)

or equivalently in the matrix format given by

∂

∂t
β̄j(t) = Hjβ̄j(t). (45)

To obtain a patterned system, i.e., different vertices have different concentrations across the graph,
we require that any perturbation away from the homogeneous steady state to grow. Formally we require
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the determinant of Hj > 0;

det (Hj) =

−dE +
αEEe

(
λj

σ2
EE
2

)
4


−dI −

αIIe

(
λj

σ2
II
2

)
4

+
αIEe

(
λj

σ2
IE
2

)
4

αEIe

(
λj

σ2
EI
2

)
4

= dEdI − dI
αEEe

(
λj

σ2
EE
2

)
4

+ dE
αIIe

(
λj

σ2
II
2

)
4

− αEEαIIe

(
λj

σ2
EE+σ2

II
2

)
16

+
αIEαEIe

(
λj

σ2
IE+σ2

EI
2

)
16

> 0, (46)

or equivalently if

16dEdI − 4dIαEEe

(
λj

σ2
EE
2

)
+ 4dEαIIe

(
λj

σ2
II
2

)
− αEEαIIe

(
λj

σ2
EE+σ2

II
2

)
+ αIEαEIe

(
λj

σ2
IE+σ2

EI
2

)
> 0. (47)

We note that this is a necessary but not sufficient condition for obtaining patterned systems.

Supplementary Note 5: Necessary condition for oscillations

To obtain an oscillatory steady state, we require the eigenvalues of Hj to have imaginary components or
equivalently, tr(Hj)

2 − 4 det(Hj) < 0. The point in phase space where the eigenvalues become imaginary
is known as a Hopf bifurcation. Using the definition of Hj in Eq. (45); the necessary condition for
oscillations is:

tr (Hj)
2 − 4 det (Hj) =

−dE − dI +
αEEe

(
σ2
EE
2 λj

)
4

− αIIe

(
σ2
II
2 λj

)
4


2

− 4

dEdI − dI
αEEe

(
λj

σ2
EE
2

)
4

+ dE
αIIe

(
λj

σ2
II
2

)
4

− αEEαIIe

(
λj

σ2
EE+σ2

II
2

)
16

+
αIEαEIe

(
λj

σ2
IE+σ2

EI
2

)
16



=

−dE + dI +
αEEe

(
σ2
EE
2 λj

)
4

+
αIIe

(
λj

σ2
II
2

)
4


2

− αEIαIEe

(
λj

σ2
IE+σ2

EI
2

)
4

(48)

< 0. (49)

It is very important to note that this condition is a necessary but not a sufficient condition for
oscillations. This is due to the different behavior of sub- and super-critical Hopf regimes. A Hopf regime
permits at least two points in phase space, an oscillatory one and a stationary one. One of these points
is stable whilst the other is unstable. A point in phase space is stable if different perturbations in the
phase space converge in some finite period of time. The unstable point is a steady state however any
perturbation will push it out of this state.

An illustrative example of the different types of steady state can be observed by a rigid pendulum
which will converge to its stable state, with all weight at the lowest possible point, after some finite time.
This is the stable point of the system. The unstable point in this system is to perfectly balance the
pendulum at the top of its cycle, where the pendulum is at its highest point. The pendulum may stay
there if not pushed. However any small perturbation, i.e. a breath of wind, will push it out of this steady
state. It is impossible for the pendulum to stay there for a long time. Hence such a point is known as
unstable (see Supplementary Fig. 10).
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If the stable point is oscillatory, the set of parameters can be described as belonging to a super-critical
Hopf regime. If the stable point in phase space is stationary, then any perturbation will converge to this
stationary steady state in some finite time. In this case, the parameter set is described as belonging to a
sub-critical Hopf regime. A stable oscillatory state can be observed through the oscillatory behaviour of
the state space variables, E(vi, t) and I(vi, t), in the long time limit.

Due to the complexity and high dimensionality of the system we do not have an algebraic form to
determine which parameters allow for super-critical Hopf regimes. We can only numerically test different
parameters sets satisfying Eq. (49) to obtain oscillatory behavior. As shown in Fig. 3 in the main article
and Supplementary Fig. 8, we observe a direct relationship between the entire Hopf regime and region
of observed oscillations.

Supplementary Methods

Comparison to resting state networks:

We quantitatively evaluate of the agreement between each connectome harmonic ψj and each of the
7 resting state networks f{RSN} with RSN ∈ {default mode network, control network, dorsal attention
network, ventral attention network, visual network, limbic network, somato-motor network} using two
different measures: mutual information and F-measure.

An important challenge for the quantitative comparison between the connectome harmonics and the
resting state networks is introduced by the fact that the reference resting state networks are labeled as
binary patterns, given by indicator functions f{RSN} : V → {0, 1} with

f{RSN}(vi) =

{
1 if vi ∈ RSN

0 otherwise,
(50)

whereas the connectome harmonics ψj are smooth functions ψj : V → [−1, 1]. This induces a non-linear
relation between the resting state networks and the connectome harmonics. To address this challenge,
we utilize two different measures.

Mutual information:

First, we evaluate the similarity between each connectome harmonic and each of the 7 resting state
networks using mutual information, an information theoretical measure quantifying the non-linear de-
pendence of two random variables, computed as

MI(ψj , f{RSN}) =
∑
vi∈V

p
(
ψj(vi), f{RSN}(vi)

)
log

p (ψj(vi), fRSN(vi))

p(ψj(vi)) · p(fRSN(vi))
, (51)

where p
(
ψj(vi), f{RSN}(vi)

)
denotes the joint probability distributions of the random variables ψj and

fRSN and p(ψj) and p(fRSN) denote the marginal entropies of ψj and fRSN, respectively.
Mutual information measures the mutual dependence of the two random variables (MI(X,Y ) = 0 if X

and Y are independent, whereas the maximum value of MI(X,Y ) depends on the individual entropy values
of X and Y ) and offers the advantages of capturing non-linear relations and being model independent
(no parametric model is assumed for X or Y ). Thus, mutual information provides a suitable measure to
evaluate the similarity of an indicator and a smooth function, as in the case of resting state networks and
connectome harmonics.
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F-measure:

In the second evaluation, we turn the smooth connectome harmonics into binary indicator functions
defined as:

Ψj(vi) =

{
1 if ψj > 0

0 otherwise,
(52)

and utilize the information retrieval measure, called F-measure, to simultaneously quantify the recall
and precision of the binarized connectome harmonics’ prediction of the resting state networks. To this
end, for each comparison (between one binarized connectome harmonic pattern Ψj and one resting state
network f{RSN}) we compute the confusion matrix for each vertex vi ∈ V as follows:

R
e
st
in
g
st
a
te

n
e
tw

o
rk

Connectome harmonic value
Ψj(vi) = 1 Ψj(vi) = 0

f {
R
S
N
}(
v i
)
=

1

True
Positive

False
Negative

f {
R
S
N
}(
v i
)
=

0

False
Positive

True
Negative

Then we compute the recall (R), precision (P) and F-measure (FM) - a harmonic mean between the
precision and recall - values for each comparison as:

R(Ψj, f{RSN}) =

∣∣{vi|Ψj(vi) = 1 ∧ f{RSN}(vi) = 1}
∣∣∣∣{vi|Ψj(vi) = 1 ∧ f{RSN}(vi) = 1}

∣∣+ ∣∣{vi|Ψj(vi) = 0 ∧ f{RSN}(vi) = 1}
∣∣ ,

P(Ψj, f{RSN}) =

∣∣{vi|Ψj(vi) = 1 ∧ f{RSN}(vi) = 1}
∣∣∣∣{vi|Ψj(vi) = 1 ∧ f{RSN}(vi) = 1}

∣∣+ ∣∣{vi|Ψj(vi) = 1 ∧ f{RSN}(vi) = 0}
∣∣ ,

FM(Ψj, f{RSN}) =
2 · R(Ψj, f{RSN}) · P(Ψj, f{RSN})

R(Ψj, f{RSN}) + P(Ψj, f{RSN})
.

Thus the recall R(Ψj, f{RSN}) and precision P(Ψj, f{RSN}) values correspond to

Recall =
number of true positives

number of true positives + number of false negatives

and

Precision =
number of true positives

number of true positives + number of false positives

respectively and the F-measure approaches 1 when both, recall and precision of the prediction are opti-
mized simultaneously.
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Monte-Carlo simulations:

To determine whether the measured mutual information and F-measure values of the connectome har-
monics for predicting the resting state networks were significantly different from the harmonics (Laplacian
eigenfunctions) of a cortical network model with random white matter connections, we performed Monte
Carlo simulations[2, 15] (2000 simulations per subject). Monte Carlo simulations base on the nonpara-
metric randomization test and assume the independence of the observations, which is fulfilled in our data
due to the independence of individual subjects and of the Laplacian eigenfunctions.

For each subject, we replaced the total number of long-range connections determined by the DTI
fiber tractography by the same number of random connections, while preserving the local connections
determined by the shape of the cortical surface of that subject. This results in a cortical network
model that preserves the topology of the subjects cortical surface and thus the local connections, while
the long-range connections are fully randomized. The preservation of the cortical anatomy enables the
vertex-to-vertex comparison of the harmonics of the randomized cortical network model to the reference
resting state networks. For each subject’s simulation we estimated the harmonics of the randomized
cortical network model following the same methodology for computing the connectome harmonics. We
then computed the mutual information and the F-measure values for randomized harmonics and each
resting state network, as described above. We evaluated the mutual information values of connectome
harmonics and randomized harmonics for individual subjects as well as for mutual information and F-
measure values averaged across all 10 subjects.

For individual subject analysis, we computed the p-values for the null hypothesis that the randomized
harmonics predict the resting state networks with the same accuracy (measured in terms of mutual
information and F-measure) for each subject separately and applied the false discovery rate correction to
correct for multiple comparisons[2, 15].

For the group analysis, we averaged the mutual information and F-measure values of connectome
harmonics across 10 subjects and compare to those of the randomized harmonics again averaged across
10 subjects. To form a group averaged simulation, we randomly choose one of 2000 randomized harmonics
set for each subject and average the mutual information and F-measure values across all subjects. We
performed a total number of 500.000 group-averaged simulations and computed the p-values after applying
the false discovery rate correction to correct for multiple comparisons[2, 15].

Reconstruction error:

The orthogonality of the connectome harmonics implies that a linear combination of these eigenfunctions
can be used as a function basis to represent any spatial pattern of neural activity. Furthermore, using
the connectome harmonics - eigenvectors of the connectome Laplacian - as a function basis provides a
natural extension of the Fourier transform. The classical (1D) Fourier transform decomposes of a signal
into a linear combination of the eigenfunctions of the Laplace operator on the interval [0, 2π] with cyclic
boundary conditions, i.e., Laplacian applied to a circle[16].

To analyze the spatial frequency-content of the resting state networks, we performed a spectral trans-
form to the connectome harmonic basis Ψ = {ψj}nj=1 and computed the normalized reconstruction
error[17] for the spatial patterns of each individual resting state network as:

ϵR(f{RSN}) =

√√√√√∑
vi∈V

∣∣∣f{RSN}(vi)− g{RSN}(vi)
∣∣∣2∑

vi∈V
∣∣f{RSN}(vi)

∣∣2 , (53)

where g{RSN} denotes the RSN pattern reconstructed from the connectome harmonic basis Ψ = {ψj}nj=1:

g{RSN} =
m∑
j=1

⟨
f{RSN}, ψj

⟩
ψj . (54)
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Although the binary nature of the reference networks theoretically necessitates the use of the whole
spectrum eigenmodes (m = n) for reconstruction - the same way that a square wave can only be re-
constructed using the sine waves with infinite many frequencies, sharp decreases in the reconstruction
errors are observed within 0.1% of the spectrum (low frequency range) (Fig. 2d, main article). The
steepest decrease of the default mode network’s reconstruction error occurred for the frequency band
that also showed significant similarity and predictive power in mutual information and F-measure values,
respectively (highlighted by the red column in Fig. 2d main article) while for the visual, somato-motor
and limbic networks the decrease of the reconstruction error remained large but constant within 0.1% of
the spectrum (Fig. 2d, main article). Slower convergence was observed for the reconstruction errors of
higher cognitive networks within the range of 1.2% of the spectrum (low frequency range) suggesting the
reliance of these networks on a broader range of the frequencies (Fig. 2d, main article). These results
confirm our previous findings while providing a novel analytical language of cortical activity based on
the classical Fourier transform, that can be utilised to quantify any activity pattern including task-based
event related designs.

Phase space analysis:

To analyse the temporal behaviour of the system described in Eqs. (1) and (2), we numerically solve
the master equation on a the graph representation of the human connectome. We use a simple explicit
numerical scheme with step size ∆t and solved for times t ∈ [0, T ].

The Maximal Lyapunov exponent (MLE) is typically used to check for numerical convergence. This
value quantifies the rate of separation of close trajectories. A negative exponent means that two separate
trajectories will converge whilst a positive exponent means that they diverge. We were not able to obtain
the MLE analytically due the high dimensionality of the system. Hence we tested the convergence of
different trajectories numerically. If the trajectories diverge, the system is either chaotic and/or the
numerical method is unstable. If they converge, the system is non-chaotic and the numerical method
is stable. We tested our neural field model for different parameter regimes by randomly perturbing
the solution at a long time point and observing the resultant trajectory. Comparison of the perturbed
trajectories to the original trajectory showed their convergence for ∆t = 0.01 and also further confirmed
for ∆t < 0.01.

Fourier analysis:

After obtaining T/∆t + 1 temporal values for each node in the network, we perform a discrete Fourier
transform on last Fc values for each node given in the matrix E. We obtain

FE = fft(E(:, end− Fc : end)) (55)

where FE is the power spectrum and the fft function in Matlab was used to perform the discrete Fourier
transform. Only these last values are used as the system was found to be in some stable state by that
time. Whether this stable state is oscillatory or stationary is determined by the parameter set.

The power spectrum was then averaged across all nodes, i.e.,

mean E = mean(abs(FE(:, 2 : Fp ∗ ∆t)), 1). (56)

The first index is not considered as that corresponds to the stationary steady state.
This average power spectrum was plotted for varying values of the diffusion parameters α{EE,IE,EI,II}

and σ2
{EE,IE,EI,II} (see Fig. 3 in the main article and Supplementary Fig. 8). This was compared to regions

where Eq. (49), the necessary condition for oscillation, was satisfied for varying values of λ, the eigenvalue
of the Laplacian of the system.
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Supplementary Fig. 8 shows how variations in α affect the necessary condition for oscillations obtained
analytically (Eq. (49)) and the frequency of temporal oscillations in numerical solutions of the neural
field equations (Eqs. (1), (2)) on the human connectome as discussed above. The red regions in Fig.
8A correspond to the diffusion parameters in the phase space that algebraically satisfy the necessary
condition for oscillations, i.e., the critical Hopf regime, plotted as a function of the analysed diffusion
parameter and the eigenvalue of the connectome harmonic. Connectome harmonics within the red region
can be activated by the neural field model for the given parameter set (for each plot, αEE, αIE, αEI, αII

are varied individually while fixing the remaining parameters to the following default values dE = 2,
dI = 2, σ2

EE = 6, σ2
IE = 10, σ2

EI = 10, σ2
II = 30). Numerical solutions obtained by the Fourier frequency

spectrum are shown in Supplementary Fig. 8b. We observe regions where temporal oscillations with
certain dominant frequency (red) and its higher harmonics (yellow) are present, i.e., the region satisfies
the super-critical Hopf regime, as well as where no oscillations are present (dark blue), i.e., the regions
which may satisfy the sub-critical Hopf regime but do not lead to stable oscillatory behaviour. However,
unlike variations of the diffusion speed, given by the σ{EE,IE,EI,II} values in the neural field model (see
Fig. 3 in the main article), we did not observe significant change in the dominant frequency of temporal
oscillations for variations of α{EE,IE,EI,II} in the analysed parameter range.

Correlation analysis of neural field patterns:

For the analyzed range of the parameter space, we observed a decrease in the frequency of coherent
oscillations when inhibitory activity is increased, modeled by faster diffusion of inhibition in the neural
field model. In contrast, the dominant frequency increased with decreasing inhibitory or increasing
excitatory activity (see Fig. 3b in the main article). This relationship between the frequency of temporal
oscillations and the excitation-inhibition balance shows remarkable overlap with the neurophysiological
changes observed during the loss and recovery of consciousness.

Neurophysiological evidence suggests that drug- or sleep-induced loss of consciousness is associated
with increasing inhibitory or decreasing excitatory activity, which is accompanied by a transition from the
low amplitude, high-frequency patterns to low frequency coherent oscillations in cortical activity[18, 19].
Recent work also shows changes in the spatial patterns of correlated oscillations, in particular gradual
decoupling between the posterior and anterior midline nodes of the default mode network during loss of
consciousness[20, 21].

To asses whether similar spatial changes occur in the correlation patterns of the neural field model, we
performed seed-based correlation analysis on the numerical simulations for four different seed locations
selected from the medial prefrontal cortex (MPC), posterior cingulate cortex (PCC), lateral parietal
(LP) area, and middle temporal (MT) area. We observed spatial changes in the correlation patterns for
decreasing excitatory and increasing inhibitory activity (Supplementary Fig. 9). In paricular, we found a
decoupling between the anterior and posterior cortices for increased inhibitory and decreased excitatory
activity (Supplementary Fig. 9d) which was also accompanied by slow oscillations in cortical activity
(Fig. 3, main article, Supplementary Movies 1-4). This particular relation between the spatio-temporal
frequency of neural field patterns and the excitation-inhibition balance remarkably overlaps with the
neurophysiological changes observed during the loss and recovery of consciousness.

Testing the robusness of the neural field model to perturbations:

We tested the robustness of the neural field model in face of perturbations through Lyapunov’s first
method[22]. This method involves perturbing the system at some time t∗ and observing whether the
perturbed system converges to the original system. If this is the case, the system may be called Lyapunov
stable.

As an analogy, one can consider the case of a simple rigid pendulum. To determine if the state of
weight at the bottom is stable, we may move the weight from this state and observe the behaviour. It
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is clear that the weight goes back to the bottom. Thus, the state where the weight is at the bottom is
stable. If the weight is at the top, any small perturbation will push it away from that state and it will
settle at the bottom after some time changing the (unstable) state of the system Supplementary Fig. 10a.

As the neural field model is oscillatory for the parameter sets we are concerned with, we must define
a measure which determines the distance between two states. We first perturb the system separately
10 times by white noise at time t∗. We then take the absolute value of the difference at each node at
each time step and taking the maximum difference. This is known as a L-infinity norm and is commonly
used in stability analysis as it looks at the worst case rather than an average case. At each time step we
compare all differences across the 10 perturbed systems and again take the worst case. This quantity is
defined to be L(t). We plot the distance measure L(t) over time and observe whether it goes to 0 or some
very small value. In Fig 10b we see that L(t) goes to some very small value and is bounded demonstrating
that the system is Lyapunov stable.
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