Supplementary Information

Detecting O_2 binding sites in protein cavities

Ryo Kitahara^{1,*}, Yuichi Yoshimura², Mengjun Xue², Tomoshi Kameda³, Frans A. A. Mulder^{2,*}

¹College of Pharmaceutical Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu 525-8577, Japan, ²Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark, ³Biotechnology Research Institute for Drug Discovery, Advanced Industrial Science and Technology, 2-43 Aomi, Koto, Tokyo 135-0064, Japan

Supplementary materials: Discussion, Figure S1-S9, Table S1, and Movie S1-S3

Discussion

Diffusion of O₂ into protein solution in the NMR tube.

Supplementary Figure S1 shows time-dependent changes in ¹H NMR spectra of ¹⁵N labeled T4 lysozyme L99A when the oxygen concentration decreased from 1.8 mM to 0.27 mM over 18.7 hours at 298 K. A well-separated peak of L121 H δ_1 changed its frequency (about 0.05 ppm) during 18.7 hours. We consider that this is due to the slow rate of diffusion of O₂ into protein solution in the NMR tube (inner diameter: 4 mm). Indeed, the time to reach equilibrium could be shortened when shaking or increasing surface area was employed (data not shown). Out of safety considerations, we did not shake the pressurized NMR tube in the present experiments.

The potential of O₂, N₂ and Ar gas molecules binding to protein cavities.

The mole fraction solubilities of O_2 , N_2 , and Ar in water at 298 K are 2.3×10^{-5} , 1.2×10^{-5} , and 2.5×10^{-5} , respectively¹. All values refer to the partial pressure of gas at one atmosphere. The van der Waals radius of Ar is 188 pm, whereas the length of the major axis of O_2 and N_2 are 218 pm and 226 pm, respectively, indicating that all three gases would fit to similar size cavities. However, in determining whether these gases possess affinity for protein cavities, their polarizability needs to be considered. It is known, for example, that the polarizability of noble gases is correlated to their affinity to protein cavities. Because electric dipole polarizabilities of N_2 and Ar are similar to that of oxygen (N_2 :1.74, Ar: 1.64, O_2 : 1.57 in units of 10^{-24} cm³)², they should be as likely to interact with the cavities as O_2 .

Figure S1. Time-dependent changes in ¹H NMR spectra of ¹⁵N labeled T4 lysozyme L99A, when the oxygen concentration decreased from 1.8 mM to 0.27 mM over 18.7 hours at 298 K. The peak of L121 H δ_1 is indicated.

Figure S2. ¹H/¹⁵N HSQC spectra obtained for ¹⁵N labeled T4 lysozyme L99A at 2 bar (corresponding to 2.8 mM) and 5 bar (corresponding to 7.0 mM) Ar.

Figure S3. ${}^{1}\text{H}/{}^{13}\text{C}$ CT HSQC spectra obtained for ${}^{15}\text{N}/{}^{13}\text{C}$ labeled T4 lysozyme L99A at 3 bar (corresponding to 2.0 mM) and 7 bar (corresponding to 4.6 mM) N₂.

Figure S4. ¹H longitudinal relaxation rate constants, R_1 , for amide protons at 0 mM (Ar 2 bar, open circles) and 6.4 mM (O₂ 5 bar, closed circles) O₂ against residue number. Error bars from curve fitting are included. Changes in crosspeak intensities of D89 in ¹H/¹⁵N HSQC spectra as a function of recovery delay are shown in the inset.

Figure S5. Predicted ΔR_1 for amide protons due to paramagnetic relaxation at each binding site (1-5) as a function of distance. ΔR_1 from each binding site 1-5 is explained in Figure 4b.

Figure S6. ¹⁵N (a) and ¹H (b) line-widths of crosspeaks of the residues around the enlarged cavity in the refocused ¹H/¹⁵N HSQC spectra. The legend included in panel b is also applicable to panel a.

Figure S7. A series of snapshots showing egress of O₂ molecule from T4 lysozyme L99A. O₂ molecules showing egress from cavity 3 are indicated by filled triangles. The D, G, H, and J helices are labeled. The picture was prepared using VMD 1.9.2.

Figure S8. Estimation of the rotational correlation time for O₂ in cavity 4. A(t) and $A(t+\tau)$ are direction vectors joining the two oxygen atoms at time t and $t+\tau$, respectively. $<(A(t)\bullet A(t+\tau))/(A(0)\bullet A(0)) >$ shows rotational correlation function of O₂ molecule. Assuming single-exponential (blue) or bi-exponential (green) decays, the rotational correlation times of O₂ were estimated to be 0.6±0.1 ps or 0.164±0.006 ps and 1.41±0.02 ps, respectively.

Figure S9. ¹H/¹³C constant time HSQC spectra of ¹³C/¹⁵N labeled T4 lysozyme (WT*) at different oxygen concentrations from 0.27 mM to 8.9 mM. Positive and negative crosspeaks are presented by same color. Methyl groups showing significant changes in ¹H/¹³C chemical shift and a loss of crosspeak intensities on L99A variant are indicated. Asterisks show methyl groups which exhibit significant change in chemical shifts and/or crosspeak intensities in L99A but not in WT* protein.

	O ₂ (3	bar) ^a	N ₂ (3	bar) ^a			
Group	R_1/s^{-1}	Error	R_1/s^{-1}	Error	$\Delta R_1/\mathrm{s}^{-1}$	Error	Distance/Å ^c
M1ε	1.49	0.04	0.95	0.06	0.54	0.07	19
$I3\gamma_2$	2.4	0.5	1.3	0.4	1.1	0.7	11
$I3\delta_1$	2.5	0.16	1.5	0.13	1.0	0.2	14
M6ε	1.12	0.09	0.6	0.11	0.6	0.14	11
$L7\delta_1$	2.6	0.3	2.4	0.3	0.2	0.5	13
$L7\delta_2$	2.5	0.16	2.5	0.15	0.0	0.2	13
Ι9γ2	2.2	0.2	1.9	0.18	0.3	0.3	19
I9δ ₁	1.9	0.19	1.6	0.3	0.3	0.3	20
$L13\delta_1$	2.0	0.11	1.6	0.12	0.4	0.17	26
$L15\delta_1$	3.0	0.2	2.7	0.14	0.3	0.3	30
I17γ ₂	2.8	0.16	2.2	0.13	0.7	0.2	30
I17 δ_1	2.1	0.2	1.5	0.17	0.6	0.3	29
$I27\delta_1$	2.0	0.19	1.9	0.10	0.2	0.2	29
I27γ ₂	2.7	0.3	2.5	0.19	0.2	0.3	25
Ι29γ2	1.6	0.19	1.2	0.3	0.4	0.3	19
$I29\delta_1$	1.7	0.19	1.4	0.2	0.3	0.3	22
$L32\delta_1$	2.1	0.10	1.7	0.08	0.5	0.13	21
$L32\delta_2$	2.6	0.10	2.3	0.14	0.3	0.17	19
$L33\delta_2$	3.8	0.4	2.6	0.3	1.2	0.5	26
$L33\delta_1$	3.4	0.4	3.6	0.6	-0.2	0.7	25
$T34\gamma_2$	3.0	0.2	3.0	0.3	0.0	0.4	27
$L39\delta_1$	2.7	0.2	2.4	0.2	0.3	0.3	35
L398 ₂	3.5	0.2	2.3	0.13	1.2	0.3	31
A41β	4.1	0.3	4.1	0.3	0.0	0.5	32
Α42β	2.3	0.18	2.1	0.2	0.2	0.3	29
$L46\delta_1$	3.0	0.3	2.4	0.3	0.6	0.4	28
$L46\delta_2$	2.9	0.5	2.6	0.4	0.3	0.6	30
Α49β	2.7	0.16	2.2	0.17	0.5	0.2	26

Ι50γ2	2.6	0.17	2.0	0.15	0.6	0.2	31
I50δ ₁	2.6	0.16	1.4	0.17	1.2	0.2	28
$T54\gamma_2$	2.3	0.15	1.9	0.10	0.4	0.18	33
V57γ _{1&2}	2.93	0.06	2.33	0.05	0.60	0.08	35
Ι58γ2	1.9	0.16	1.7	0.16	0.2	0.2	30
$I58\delta_1$	2.0	0.2	1.8	0.3	0.2	0.3	27
Τ59γ2	3.0	0.11	2.4	0.14	0.6	0.18	34
Α63β	2.6	0.3	2.3	0.3	0.3	0.4	25
$L66\delta_1$	3.0	0.3	2.0	0.2	1.0	0.4	24
L668 ₂	3.3	0.2	1.9	0.16	1.4	0.3	24
$V71\gamma_2$	2.9	0.2	2.4	0.16	0.6	0.3	15
Α73β	4.4	0.3	2.0	0.12	2.4	0.4	16
Α74β	4.2	0.6	2.4	0.5	1.8	0.8	11
V75γ ₁	4.6	0.3	2.6	0.18	2.0	0.3	11
$V75\gamma_2$	3.8	0.3	1.7	0.19	2.1	0.4	11
Ι78γ2	32	10	1.2	0.17	31	10	4.6
$I78\delta_1$	21	6	0.9	0.12	20	6	5.5
$L79\delta_2$	3.7	0.3	1.8	0.14	1.9	0.3	8.4
Α82β	3.2	0.16	2.2	0.12	1.0	0.2	12
$L84\delta_1$	15	1.8	2.5	0.6	12	1.9	5.7
$L84\delta_2$	b		2.9	0.2			4.3
V87γ ₁	e		2.6	0.5			4.2
V87 ₂	8.3	0.3	1.2	0.11	7.1	0.3	5.4
$L91\delta_2$	9.9	0.8	1.0	0.19	8.9	0.8	7.2
Α93β	3.9	0.3	2.9	0.19	0.9	0.3	14
V94 γ ₁	1.7	0.16	1.3	0.17	0.5	0.2	11
V94 ₂	2.1	0.14	1.4	0.13	0.7	0.19	14
Α97β	4.2	0.4	2.5	0.4	1.7	0.6	12
Α98β	3.6	0.4	1.4	0.3	2.1	0.5	6.9
Α99β	b		3.5	0.8			3.6
I100γ2	3.4	0.3	1.7	0.3	1.7	0.4	9.9
I100 δ_1	4.1	0.3	1.2	0.14	2.9	0.3	9.4

M102ε	23	7	0.7	0.3	22	7	4.4
V103 ₇₁	4.9	0.3	2.9	0.19	2.0	0.3	8.5
V103 ₂	e		1.8	0.5			5.4
M106ε	2.4	0.2	0.6	0.15	1.8	0.3	7.9
Τ109γ2	3.4	0.19	2.6	0.13	0.8	0.2	13
$V111\gamma_1$	e		2.4	0.19			3.3
V111 ₂	10	2	2.3	0.4	8	2	5.7
Α112β	4.5	0.3	2.0	0.2	2.5	0.4	8.6
Τ115γ2	3.8	0.3	3.0	0.16	0.9	0.3	9.9
$L118\delta_1$	3.6	0.16	2.4	0.3	1.3	0.3	5.6
L1188 ₂	b		2.1	0.5			3.8
M120ε	1.14	0.04	0.6	0.03	0.58	0.05	8.2
$L121\delta_1$	b		2.4	1			3.5
$L121\delta_2$	2.8	0.18	2.0	0.12	0.9	0.2	3.7
Α129β	8.8	0.7	1.6	0.2	7.2	0.8	3.5
Α130β	9.3	0.9	2.3	0.2	6.9	0.9	4.1
V131y1	3.2	0.11	2.44	0.09	0.7	0.14	9.8
$V131\gamma_2$	1.70	0.08	1.45	0.09	0.3	0.12	8.6
$L133\delta_1$	12	3	2.6	0.4	9	3	3.5
$L133\delta_2$	4.7	0.8	3.2	0.3	1.4	0.9	3.7
Α134β	2.6	0.2	1.8	0.2	0.8	0.3	8.8
$T142\gamma_2$	3.5	0.4	2.8	0.5	0.7	0.6	16
Α146β	3	1	4	2	-1	2	10
$V149\gamma_1$	3.6	0.3	1.5	0.17	2.2	0.3	7.6
V149 ₂	2.3	0.3	1.5	0.3	0.8	0.4	9.8
Ι150γ2	6.0	0.6	1.5	0.2	4.5	0.6	4.5
$I150\delta_1$	2.6	0.4	1.2	0.3	1.4	0.4	6.8
Τ151γ2	2.88	0.08	2.39	0.08	0.5	0.12	9.7
Τ152γ ₂	2.7	0.4	2.4	0.5	0.3	0.6	9.3
Τ155γ2	2.8	0.17	2.3	0.2	0.6	0.3	9.2
Τ157γ2	2.8	0.2	2.3	0.17	0.5	0.3	13
A160β	2.28	0.09	2.1	0.14	0.2	0.17	11

$L164\delta_1$	3.1	0.13	2.5	0.10	0.6	0.16	d
$L164\delta_2$	2.70	0.07	2.20	0.07	0.5	0.10	d

^aAbsolute pressure consisting of gauge pressure plus atmospheric pressure.

^bCrosspeaks severely broadened at 3.8 mM O₂.

^cDistances from the closest xenon (one of sites 1-5) to each hydrogen in the L99A crystal structure at 8 atm xenon pressure (PDB ID, 1c6k). Hydrogen atoms were added to the crystal structure by using the WHATIF server.

^dAtomic position is not available.

^ePeaks are overlapped with other peaks.

Movie S1. MD simulation of 100 nanoseconds (example 1). An O₂ molecule was inserted in both cavities 3 and 4 of the crystal structure of L99A T4 lysozyme (PDB ID; 1c6k). The movie consists of 500 snapshots taken every 0.2 nanoseconds.

Movie S2. MD simulation of 100 nanoseconds (example 2). An O₂ molecule was inserted in both cavities 3 and 4 of the crystal structure of L99A T4 lysozyme (PDB ID; 1c6k). The movie consists of 500 snapshots taken every 0.2 nanoseconds.

Movie S3. MD simulation of 100 nanoseconds (example 3). An O₂ molecule was inserted in both cavities 3 and 4 of the crystal structure of L99A T4 lysozyme (PDB ID; 1c6k). The movie consists of 500 snapshots taken every 0.2 nanoseconds.

References

- 1. Miller, T.M. CRC Handbook of Chemistry and Physics, 95th Edition, Vol. 95. (CRC Press, 2014).
- Scharlin, P., Battino, R., Silla, E., Tunon, I. & Pascual-Ahuir, J.L. Solubility of gases in water: Correlation between solubility and the number of water molecules in the first solvation shell. *Pure Appl. Chem.* **70**, 1895-1904 (1998).