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1. Chemistry and Spectroscopy 

1.1. General 
AMPP synthesis 
AMPP was synthesized as previously described[1] and spectra matched those 
reported. 
 
Peptide synthesis  
Peptide synthesis was performed on a CEM Liberty 1 Peptide Synthesizer with a 
CEM Discovery Microwave using standard Fmoc-protected solid phase peptide 
synthesis protocols. Detailed information to peptide synthesis, resin, coupling 
reagents and conditions can be found in 1.3.  
 
Reversed-phase HPLC  
Analytical RP-HPLC was performed on Jasco devices (PU- 2080 Plus, LG-2080-
02-S, DG-2080-53 and MD-2010 Plus) with a Phenomenex Luna column (C18, 5 
μm, 250x4.6 mm). As eluent, a water/acetonitrile gradient containing 0.1% TFA 
was used with a 1 mL/min flow rate. Semi-preparative RP-HPLC was performed 
on Jasco devices (PU-2087 Plus, LG-2080-02-S and UV-2075 Plus) with a 
Phenomenex Luna column (C18, 5 μm, 250x20 mm). ). The same eluent was 
used as for RP-HPLC, but with a 20 mL/min flow rate.  
 
NMR 
NMR spectra were recorded in 35% aqueous trifluoroethanol-d3 (TFE-d3) on a 
BRUKER Avance III HD 800 instrument and calibrated to residual solvent peaks 
(1H/13C in ppm): TFE-d3 (3.88/126.3). To prevent thermal back relaxation during 
long carbon and 2D experiments, LirAzo was pre-illuminated to obtain the cis-
isomer and the NMR tube was equipped with a fibre optic coupled to a 
Polychrome V (Till Photonics) monochromator to deliver constant UV irradiation. 
Spectra were necessarily acquired without spinning the probe. Multiplicities are 
abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, br = broad, 
m = multiplet. Spectra are reported based on appearance, not on theoretical 
multiplicities derived from structural information. 
 
HRMS 
High-resolution electrospray ionization (ESI) mass spectra were obtained on a 
Varian MAT 711 MS instrument operating in either positive or negative ionization 
modes. 
 
UV/Vis 
UV/Vis spectra were recorded on a Varian Cary 50 Bio UV-Visible 
Spectrophotometer using Helma SUPRASIL precision cuvettes (10 mm light 
path) equipped with a Polychrome V (Till Photonics) monochromator.  
 
CD 
CD measurements were recorded on a Jasco 810 instrument with a Jasco CDF-
4265 Peltier-Element and Tris buffer (50 mM, pH = 7.4) as solvent. The cuvettes 
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were of 1 mm thickness. For baseline correction, a pure buffer spectrum was 
recorded. Sample concentrations were calculated via the specific absorption at 
323 nm, with εazobenzene = 25,000 L mol-1cm-1. The recorded spectra were 
processed with Origin 8.0 and smoothed using a 30-point Savitzky-Golay-Filter 
 

1.2. Peptide synthesis 
A solid-phase Fmoc-Glycine-Wang LL resin (Novabiochem®), pre-loaded with 
0.36 mmol/g amino acid, was used. The peptides were synthesized in 0.1 mmol 
scale with the standard coupling reagents HBTU/HOBt·H2O 0.5 M in DMF, 
activated with DIPEA 2 M in NMP. Amino acids were coupled in a tenfold excess 
(2 M solutions) as Fmoc-protected compounds with standard residual protecting 
groups. Fmoc deprotection was achieved by treatment with 20% piperidine in 
DMF. AMPP building blocks were coupled in a 1.5-fold excess with the coupling 
reagents HATU/HOAt (1.5 eq.) 0.5 M in DMF activated with NMM (5 eq.) in DMF. 
Coupling conditions are summarized in SI Table 1. After coupling of all 
compounds, the resin-bound peptide was transferred into a Merrifield reactor 
followed by global deprotection with TFA/phenol/triisopropylsilane/H2O (88:5:2:5) 
solution within 2 h. The solvent was then precipitated in 180 mL chilled diethyl 
ether and stored overnight at -38 °C. The precipitated peptide was centrifuged 
and after decantation of the solution, the residue was dried and purified with RP-
HPLC to yield the desired peptides.  
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1.3. HPLC traces of Lira and LirAzo peptides 

 

Above are analytical HPLC traces of a) Lira and b) LirAzo using a gradient 
MeCN/H2O = 10/90 ! 100/0 within 40 min. 

 

1.4. Photoswitching of LirAzo peptide 

cis-/trans-Isomerization was assessed by UV/Vis spectroscopy following the π-
π*-band (330 nm) and double-exponential fitting of the slopes (Wavemetrics Igor 
v6.2). τ-Values are given in Supplementary Table 1 and represented in 
Supplementary Figure 2. 
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1.5. NMR Spectra of Lira and cis/trans-LirAzo peptides 

1.5.1. Lira 

 

1H- (top) and 13C- (bottom) NMR spectra of Lira peptide. 
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1H,1H-COSY (top) and 1H,1H-NOESY (bottom) NMR spectra of Lira peptide. 
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1.5.2. trans-LirAzo 

 

 

 1H- (top) and 13C- (bottom) NMR spectra of trans-LirAzo peptide. 
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1H,1H-COSY (top) and 1H,1H-NOESY (bottom) NMR spectra of trans-LirAzo.  
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1.5.3. cis-LirAzo 

 

 

1H- (top) and 13C- (bottom) NMR spectra of cis-LirAzo peptide. 

 



 
 

10 

 

 

1H,1H-COSY (top) and 1H,1H-NOESY (bottom) NMR spectra of cis-LirAzo. 
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Selected aromatic signals of 1H-NMR spectra of Lira (black) and trans-(blue)/cis-
(purple)-LirAzo (top). Protons of the substituted glutamine residue (23Q, black) 
are undetectable in cis-/trans-LirAzo. Signals emanating from AMPP (red 
asterisks) and tyrosine (19Y-Hε doublet) become more prominent for the cis-
isomer, demonstrating changes in secondary and tertiary structure of LirAzo 
upon isomerization. Numeration of AMPP atoms (bottom). See also 
Supplementary Table 3. 
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1.6. HRMS spectra of peptides 

1.6.1. Lira 

 

HRMS (ESI): calc. for C151H232N42O47
4+ (M+4H)4+: 846.6767 (monoisotopic), 

found: 846.6769. 
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1.6.2. LirAzo 

 

HRMS (ESI): calc. for C159H234N42O45
4+ (M+4H)4+: 863.1831 (monoisotopic), 

found: 863.1833. 
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2. Biology 

Ethical approval 
All procedures involving primary tissue were regulated by the Home Office 
according to the Animals (Scientific Procedures) Act 1986 of the United Kingdom 
(PPL 70/7349).  
 
Isolation of rodent islets 
Islets were isolated from 8-12 week old female C57BL6 mice, as previously 
detailed,[2] and maintained in Roswell Park Memorial Institute (RPMI) medium 
supplemented with 10% foetal calf serum, 100 U/mL penicillin and 100 µg/mL 
streptomycin. 
 
Cell lines 
Chinese Hamster Ovary (CHO) cells stably expressing the GLP-1R were cultured 
in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% FBS, 1 
x non-essential amino acids, 25 mM HEPES, 100 U/mL penicillin and 100 µg/mL 
streptomycin. MIN6 cells (a kind gift from Dr Jun-ichi Miyazaki, Osaka University) 
were cultured in DMEM supplemented with 15% FBS, 10 mM glutamine, 20 mM 
HEPES, 0.0005% β-mercaptoethanol 100 U/mL penicillin and 100 µg/mL 
streptomycin. 
 
Cytotoxicity and apoptosis assays 
Control, Lira and LirAzo-treated islets were incubated with 3 µM of calcein-AM 
(live) and 2.5 µM of propidium iodide (dead), and absorbance/emission detected 
at λ = 491/525 nm and λ = 561/620 nm, respectively. The area of dead:live cells 
was calculated as a ratio. Apoptosis was assessed using a DeadEnd Fluorimetric 
TUNEL System staining kit (Promega).[3] The apoptotic cell mass was calculated 
as a fraction area versus the total cell mass. To investigate the pro-survival 
effects of LirAzo, MIN6 beta cells were incubated for 24 hr in a glucolipotoxic 
mixture (33 mM glucose + 0.5 mM palmitate) in the presence or absence of 
compound. Apoptosis was subsequently determined using specific fluorescent 
immunostaining and a rabbit polyclonal antibody against cleaved caspase 3 (Cell 
Signaling Technology # 9661; 1:400), before analysis as above.  
 
Calcium imaging 
Multicellular Ca2+ imaging was performed using fluo2 and a Nipkow spinning disk 
confocal microscope, as detailed.[3] Briefly, pulsed λ = 491 nm light was delivered 
through a 10/0.3 NA objective (EC Plan-Neofluar, Zeiss) using a solid-state laser 
(Cobalt), and emitted signals captured from λ = 500-550 nm using a 
Hammamatsu ImageEM EM-CCD camera. Photoswitching was performed using 
either a λ = 440 nm laser or the epifluorescent port of the microscope configured 
with a λ = 350 ± 20 nm band-pass filter. Throughout, HEPES-bicarbonate buffer 
was used, containing in mM: 120 NaCl, 4.8 KCl, 24 NaHCO3, 0.5 Na2HPO4, 5 
HEPES, 2.5 CaCl2 and 1.2 MgCl2. Compounds and D-glucose were added as 
indicated.  
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cAMP and calcium assays 
Cellular cAMP concentrations were determined using either Cisbio HTRF cAMP 
or Promega cAMP-Glo assays according to the manufacturers’ instructions. 
Treatments were applied for 5 min before cell lysis to extract cellular cAMP. 
High-throughput (HTS) Ca2+ assays were performed using the DiscoverX 
HitHunter No Wash PLUS assay. Treatments were automatically delivered at 37 
⁰C using a BMG Labtech NOVOstar platereader and fluorescence intensity read 
over 30-45 s. Absorbance/emission were detected at λ = 488/525 nm. For all 
assays, LirAzo was preilluminated at λ = 300-340 using a UVP 3UV benchtop 
transilluminator to induce cis-isomerization, or kept in the dark to maintain the 
trans-isomer. In addition, for HTS Ca2+ assays, λ = 340 ± 10 nm or λ = 450 ± 10 
nm was delivered between acquisitions using the platereader’s inbuilt 
multichromator.   
 
Insulin secretion assays 
Batches of six to eight islets were incubated for 30 min in Krebs-HEPES-
bicarbonate solution containing in mM: 130 NaCl, 3.6 KCl, 1.5 CaCl2, 0.5 MgSO4, 
0.5 NaH2PO4, 2 NaHCO3, 10 HEPES and 0.1% (wt/vol) bovine serum albumin, 
pH 7.4.[2] Treatments were applied as indicated and photoswitching performed at 
λ = 340 ± 10 nm using a BMG Fluostar Optima platereader, as above. Insulin 
concentrations in the supernatant were measured using a Cisbio HTRF assay 
according to the low-range (sensitive) protocol. 
 
Statistics 
Non-multifactorial comparisons were made using Student’s t-test. Multifactorial 
comparisons were made using either one- or two-way ANOVA, or the Kruskal-
Wallis test, followed by pairwise comparisons using Bonferonni’s or Dunn’s tests. 
Log-transformed concentration-response curves were fitted using non-linear 
regression and the Hill equation. All analyses were conducted using Graphpad 
Prism (Graphpad Software) and IgorPro, and results deemed significant at 
P<0.05.  
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3. Supplementary Figures and Tables 

 

Supplementary Figure 1: GLP-1R signaling and stimulus-secretion coupling in 
the pancreatic beta-cell.  
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Supplementary Figure 2: LirAzo photoswitching kinetics. cis-Isomerization 
occurs over the minutes timescale (n = 4).Values represent mean ± S.D. 
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Supplementary Figure 3: GLP-1 bound to the GLP-1R ectodomain (pdb: 3iol)[4] 
served as an additional model for the design of LirAzo. GLP-1 binds to the GLP-
1R ectodomain through interactions of 22G-37G. Moreover, the N-terminus is 
believed to interact with the 7TM domain located in the lipid bilayer. Therefore, 
we propose that replacement of 22G-23Q (highlighted in red) with AMPP will alter 
one or both of the helical interactions, leading to divergent class B GPCR 
signaling through isomer bias. To date, no crystal structure of the full GLP-1R is 
available. However, the homologous glucagon receptor (GCGR) has been 
resolved in atomic detail and used to model GLP-1 interactions depicting binding 
to the 7TM domain.[5] Taken together, a more detailed activation model can only 
be proposed using an x-ray structure of GLP-1R that highlights the specific 
interactions with the 7TM domain.  
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Supplementary Figure 4: CD spectral data of Lira and cis-/trans-LirAzo. a) Far 
UV spectra and b) Near UV spectra of Lira (black), trans-LirAzo (blue) and cis-
LirAzo (purple) at 50 µM and 1500 µM concentrations, respectively. Lira exhibits 
two minima (λ = 205 and 223 nm) and a pronounced rise to a maximum (λ = 188 
nm), typical of α-helix possession. Consistent with this, both cis-/trans-LirAzo 
exhibit minima in the λ = 200-220 nm region. However, whereas trans-LirAzo 
displays a maximum at λ = 180 nm, cis-LirAzo only shows a weak maximum (λ = 
189 nm) after a local minimum (λ = 193 nm), consistent with (partial) helix 
unfolding. Moreover, in the near UV-region, the signal of cis-LirAzo rises to a 
maximum (λ = 326 nm) that can be assigned to the cis-azobenzene moiety in a 
chiral environment. 
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Supplementary Figure 5: Photoswitching of ionic fluxes in beta cells, and GLP-
1R- and glucose-dependency. a) Representative trace showing reversible control 
of GLP-1R signaling and Ca2+ levels (n = 4 recordings) (smoothed trace shown in 
black). b) As for a) but before-after plot showing reversal of cis-LirAzo effects 
following exposure to blue light to induce trans-isomerization (n = 4 recordings). 
c-d) Exendin 9-39 (Ex 9-39) 150 nM abolishes trans-LirAzo-stimulated Ca2+ 
oscillations (n = 9 recordings). e-f) trans-LirAzo 150 nM is unable to properly 
stimulate Ca2+ rises in the presence of low (non-permissive) glucose 
concentration (G3; 3 mM glucose) (G11; 11 mM glucose) (n = 5 recordings). g-h) 
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LirAzo allows photoswitching of Ca2+ in immortalized MIN6 beta cells subjected 
to high-throughput assays (n = 4 repeats). Lira/LirAzo were applied at 150 nM in 
the presence of permissive (> 8 mM) glucose concentration. **P<0.01 versus 
LirAzo/Lira. Values represent mean ± S.E.M. 
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Supplementary Figure 6: LirAzo-stimulated Ca2+ rises versus control (i.e. 17 
mM glucose; G17) (KCl, positive control) (n = 8).  
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Supplementary Figure 7: Photoswitching of cAMP generation in CHO-GLP-1R 
cells. Identical to Figure 2d (main text), except showing only cAMP 
concentration-responses for cis- (EC50 = 262.0 nM) and trans-LirAzo (EC50 = 
993.6 nM) (n = 3 repeats) on a contracted x-axis, for clarity. Values represent 
mean ± S.E.M. 
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Supplementary Figure 8: Isomer-dependent engagement of beta cell signaling 
pathways. a) Effects of trans-LirAzo on cytosolic Ca2+ rises in MIN6 beta cells 
are blocked by antagonists of Epac2 (HJC0350 10 µM), L-type Ca2+ channels 
(Nif, nifedipine 50 µM), KATP (Dz, diazoxide 150 µM), IP3R (XestoC, 
Xestospongin C 10 µM) and PKA (H89, 10 µM) (n = 8 repeats). b) As for a), but 
effects of cis-LirAzo are only blocked by inhibitors of Epac2, IP3R and PKA. c) 
As for a) but Lira positive control showing blockade by all inhibitors. Cells were 
retained in permissive (> 8 mM) glucose concentration and Lira/LirAzo applied at 
150 nM. cis- and trans-LirAzo were run in parallel in the same assay, and KCl 
used as a single positive control for a) and b). *P<0.05, **P<0.01 and NS, non-
significant versus LirAzo-alone. Values represent mean ± S.E.M.
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Supplementary Figure 9: LirAzo does not induce cytotoxicity in beta cells. a) 
Normal (150 nM) and high (2000 nM) concentrations of LirAzo do not alter islet 
viability (Triton X-100; positive control) (n = 20-25 islets) (Con, control). b) Lira 
and trans-LirAzo do not induce islet cell apoptosis under normal conditions (i.e. 
11 mM glucose-only), as determined using TUNEL staining (n = 8-9 islets). NS, 
Non-significant versus control (Con). Values represent mean ± S.E.M. 
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Supplementary Table 1: Coupling conditions for peptide synthesis 

compound step Lira LirAzo 

  t [s] p [W] T [°C] t [s] p [W] T [°C] 

FmocGlyOH 1 480 23 75 480 23 75 

FmocArg(Pbf)OH 1 

2 

1500 

300 

0 

25 

r.t. 

75 

1500 

300 

0 

25 

r.t. 

75 

FmocGlyOH 1 480 23 75 480 23 75 

FmocLys(Boc)OH 1 480 23 75 480 23 75 

FmocValOH 1 480 23 75 480 23 75 

FmocLeuOH 1 480 23 75 480 23 75 

FmocTrp(Boc)OH 1 480 23 75 480 23 75 

FmocAlaOH 1 480 23 75 480 23 75 

FmocIleOH 1 480 23 75 480 23 75 

FmocPheOH 1 480 23 75 480 23 75 

FmocGlu(tBu)OH 1 480 23 75 480 23 75 

FmocLys(Boc)OH 1 480 23 75 480 23 75 

FmocAlaOH 1 480 23 75 480 23 75 

FmocAlaOH 1 480 23 75 480 23 75 

FmocGln(Trt)OH 1 480 23 75    

FmocGlyOH 1 480 23 75    

FmocAMPPOH 1 

2 

   300 

1800 

0 

23 

r.t. 

75 

FmocGlu(OtBu)OH 1 480 23 75 480 23 75 

FmocLeuOH 1 480 23 75 480 23 75 

FmocTyr(tBu)OH 1 480 23 75 480 23 75 

FmocSer(tBu)OH 1 480 23 75 480 23 75 
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FmocSer(tBu)OH 1 480 23 75 480 23 75 

FmocValOH 1 480 23 75 480 23 75 

FmocAsn(Trt)OH 1 480 23 75 480 23 75 

FmocSer(tBu)OH 1 480 23 75 480 23 75 

FmocThr(tBu)OH 1 480 23 75 480 23 75 

FmocPheOH 1 480 23 75 480 23 75 

FmocThr(tBu)OH 1 480 23 75 480 23 75 

FmocGlyOH 1 480 23 75 480 23 75 

FmocGlu(tBu)OH 1 480 23 75 480 23 75 

FmocAlaOH 1 480 23 75 480 23 75 

FmocHis(Trt)OH 1 

2 

120 

240 

0 

23 

r.t. 

50 

120 

240 

0 

23 

r.t. 

50 
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Supplementary Table 2: LirAzo photoswitching kinetics 

LirAzo τ1 (sec) τ2 (min) 

cis 51.0±2.4 11.1±4.0 

trans 32.3±1.6 7.5±3.4 
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Supplementary Table 3: H and C atom chemical shift data of cis/trans-AMPP in 

trans- and cis-LirAzo peptides. 

             trans-LirAzo           cis-LirAzo 

AMPP H [ppm] C [ppm] H [ppm] C [ppm] 

2 4.46, 4.38 45.2 4.26, 4.19 44.9 

4 7.72 125.5 6.82 122.5 

6 7.64 123.6 6.48 120.7 

7 7.41 131.6 7.22 129.3 

8 7.36 132.8 7.06 129.5 

12 7.79 125.0 6.90 124.4 

14 7.44 134.3 7.12 131.1 

15 7.45 131.9 7.11 131.5 

16 7.70 123.8 6.58 120.9 

17 3.87 44.0 3.57, 3.45 43.8 
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Supplementary Table 4: EC50 values for cAMP generation in CHO-GLP-1R 

cells. *P<0.03 and $P<0.34 versus cis-LirAzo(Lira; liraglutide) (Student’s t-test). 

95% Confidence intervals are shown in brackets.  

 cis-LirAzo trans-LirAzo Lira 

EC50 (nM) 262.0 

(199.5 to 344.1) 

993.6* 

(681.6 to 1448) 

98.93$ 

(69.14 to 141.5) 
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