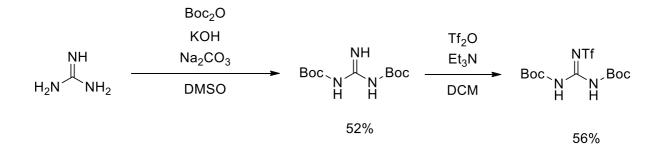
CHEMISTRY A European Journal

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2014

Enantioselective Diamination with Novel Chiral Hypervalent lodine Catalysts


Pushpak Mizar, Aragorn Laverny, Mohammad El-Sherbini, Umar Farid, Michael Brown, Florence Malmedy, and Thomas Wirth*^[a]

chem_201403891_sm_miscellaneous_information.pdf

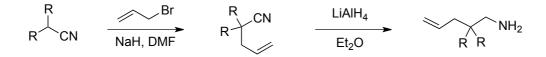
Supporting Information:

Materials and Methods: All reactions were carried out under a nitrogen atmosphere in oven dried glassware with magnetic stirring using usual Schlenk technique. THF, toluene, diethyl ether and CH_2Cl_2 were purified and dried using standard methods. Triethylamine and diethylamine were distilled from sodium hydroxide. Reagents were purified prior to use unless otherwise stated. Purification of reaction products was carried out by flash chromatography using Fisher silica gel (35-70 mesh). NMR spectra were recorded on Bruker DPX 250, Bruker DPX 400, Bruker DPX 500, Bruker DPX 600, or Oxford 300. ¹H NMR spectra were measured at 250, 300, 400 and 500 MHz. ¹³C NMR spectra were measured at 63, 100, 126 and 150 MHz using CDCl₃, or DMSO-d₆ as a solvent and internal reference. Coupling constants *J* are given in Hz. Multiplicity as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad signal. Mass spectrometric data were obtained on a Varian 1200 Quadrupole Mass Spectrometer and Micromass Quadro II Spectrometer.

Synthesis of substrates:

Synthesis of *N*,*N*'-di-Boc-guanidine^[1]

Potassium hydroxide pellets (2 g, 50 mmol) and sodium carbonate (2.65 g, 25 mmol) were finely ground in a mortar and transferred to a three-necked round-bottom flask equipped with a magnetic stirrer and a reflux condenser. DMSO was added, and the resulting suspension was stirred for 5 min at room temperature. Guanidine hydrochloride (2.39 g, 25 mmol, 1 equiv) was added, and the mixture was stirred for 5 min. After the addition of di-*tert*-butyl dicarbonate (15.28 g, 70 mmol, 2.8 equiv), the mixture was stirred for 60 h at 40 °C. The white precipitate obtained by pouring the cold reaction mixture into 1 L of water was


collected by filtration, washed with H_2O (50 mL), and dried overnight in vacuum. Recrystallization from acetonitrile afforded a pure product as a colourless solid (3.4 g, 52%). Spectral data are in agreement with literature.^[1]

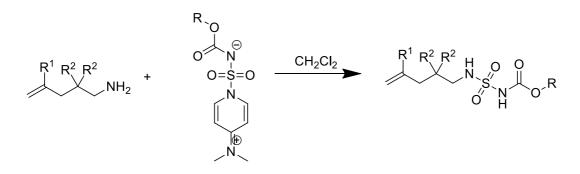
Synthesis of N,N'-di-Boc-N''-trifluoromethane sulfonylguanidine

A solution of *N*,*N*'-di-Boc-guanidine (3 g, 11.6 mmol) and triethylamine (1.23 g, 12.1 mmol) in anhydrous CH_2Cl_2 (50 mL) was cooled to -78 °C under an inert atmosphere. Triflic anhydride (3.4 g, 12.1 mmol) was added dropwise at a rate such that the reaction temperature did not exceed -65 °C. After the addition was complete, the mixture was allowed to warm to room temperature within 4 h. The solution was transferred to a separation funnel, washed with 2 M sodium bisulfate (20 mL) and water (20 mL), and dried with anhydrous magnesium sulfate. After filtration and removal of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (eluent: CH_2Cl_2). *N*,*N*'-di-Boc-*N*''-trifluoromethanesulfonylguanidine was obtained as pale-yellow crystals. The product was further purified by recrystallization from hexanes.

Pale yellow solid, yield 56% (2.54 g, 6.5 mmol); m.p.: 114-115 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.33 (s, 2H), 1.65 (s, 18H) ppm.

Synthesis of amines^[2]

Sodium hydride (NaH, 1.1 equiv) was added to a flask under N₂. Dimethylformamide (DMF) was added to reach a final concentration of 1.0 M of the diphenylacetonitrile, and the resulting suspension was cooled to 0 °C. The nitrile (1.0 equiv) was added portionwise over 10 min, and the reaction was allowed to stir for 45 min at 0 °C. Allyl bromide (1.1 equiv) was added dropwise, and the reaction mixture was allowed to warm to 25 °C and stir for 16 h. After completion of reaction, the reaction mixture was cooled to 0 °C and water was added slowly to quench unreacted NaH. The reaction was diluted 1:1 with Et₂O and washed with water (3 x 5 mL) and brine (1 x 5 mL). The combined aqueous layers were extracted with dichloromethane (1 x 10 mL), and the combined organic layers were dried over MgSO₄ and

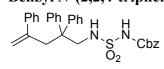

then filtered. Concentration under vacuum afforded an oil that was purified by column chromatography on silica gel (hexane:EtOAc = 4:1).

2,2-Diphenylpent-4-enenitrile: 81% yield. Orange oil. Spectral data are in agreement with literature.^[2]

Lithium aluminium hydride (2.1 equiv) was added to a flask under N₂. Et₂O was added, and the vessel was cooled to 0 °C. The 2,2-disubstituted pent-4-enenitrile was added in a Et₂O solution (total reaction concentration, 0.15 M in nitrile), and then the reaction was allowed to warm to 25 °C and stir for 16 h. At this time, the reaction mixture was cooled to 0 °C and quenched by adding 20% aq. NaOH. The biphasic mixture was diluted with 1:5 with Et₂O and filtered to remove precipitated salts before discarding the aqueous layer. The organic layer was then washed with brine (3 x 5 mL), dried over MgSO₄ and filtered. Concentration in vacuum afforded the crude amine, which was purified by column chromatography on silica gel (hexane:EtOAc = 4:1).

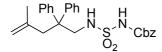
2,2-Diphenylpent-4-en-1-amine: 63% yield. Pale orange oil. Spectral data are in agreement with literature.^[2]

Synthesis of sulfondiamide substrates

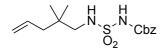


The free amines were reacted with a Burgess-type DMAP reagent.^[3] Short flash chromatography yielded analytically pure product.

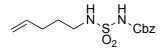
Benzyl N-(2,2-diphenylpent-4-en-1-yl)sulfamoylcarbamate 5a


Colourless solid, yield: 90% (1.2 g, 3.8 mmol).¹H NMR (400 MHz, CDCl₃): 7.10-7.29 (m, 11H) ppm, 7.01 (d, J = 8 Hz, 4H), 5.93 (m, 4H), 5.24 (m, 1H), 4.49 (br, 1H), 3.59 (d, J = 8 Hz, 2H), 2.88 (d, J = 8 Hz, 2H) ppm. Spectral data are in agreement with literature.^[14]

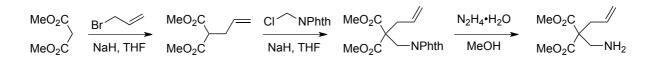
Benzyl N-(2,2,4-triphenylpent-4-en-1-yl)sulfamoylcarbamate 5b


Yield 89% (1.49 g, 2.84 mmol). Spectral data are in agreement with literature.^[14]

Benzyl N-(4-methyl-2,2-diphenylpent-4-en-1-yl)sulfamoylcarbamate 5c


Yield 87% (1.61 g, 3.46 mmol). Spectral data are in agreement with literature.^[14]

Benzyl N-(2,2-dimethylpent-4-en-1-yl)sulfamoylcarbamate 5d



Yield 90% (0.63 g, 2.1 mmol). Spectral data are in agreement with literature.^[8,14]

Benzyl N-(pent-4-en-1-yl)sulfamoylcarbamate 5e

Yield 87% (0.32 g, 1.0 mmol). Spectral data are in agreement with literature.^[4]

Dimethyl malonate (5.0 g, 37.8 mmol) was slowly added to a suspension of NaH (1.5 g, 37.8 mmol) in dry THF (40 mL) at 0 °C. After 30 min, allyl bromide (4.6 g, 37.8 mmol) was added dropwise. The reaction mixture was stirred for 14 h at r.t., quenched with water (25 mL), extracted with Et_2O (3 x 50 mL), dried over MgSO₄ and the solvent was removed under

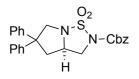
vacuum providing crude dimethyl 2-allylmalonate as colourless oil which was used without further purification.^[5]

The crude dimethyl 2-allylmalonate (5.4 g, 31.4 mmol) was slowly added to a suspension of NaH (1.3 g, 31.4 mmol) in dry THF (40 mL) at 0 °C. After 30 min, *N*-chloromethyl-phthalimide (6.1 g, 31.4 mmol) was added dropwise. The reaction mixture was stirred for 16 h at r.t., quenched with sat. aq. NH₄Cl (25 mL), extracted with Et₂O (3×50 mL), dried over MgSO₄ and the solvent was removed under vacuum. After trituration in petroleum ether, the crude dimethyl 2-allyl-2-((1,3-dioxoisoindolin-2-yl)methyl)malonate (white solid) was used without further purification.^[5]

To a solution of hydrazine monohydrate (0.6 g, 12 mmol) in methanol (40 mL) was added the crude dimethyl 2-allyl-2-((1,3-dioxoisoindolin-2-yl)methyl)malonate. The reaction mixture was stirred at r.t. for 2 h, then 5% HCl (18 mL) was added and the resulting mixture was stirred for 30 minutes. The suspension was then filtered and the filtrate was diluted with water (20 mL), acidified (pH < 2) and washed with Et₂O. The organic layer was discarded and the aqueous layer was basified with solid KOH (pH > 10), then extracted with Et₂O (3 × 50 mL). The combined ethereal layers were washed with brine, dried over MgSO₄ and the solvent was removed under vacuum providing dimethyl 2-allyl-2-(aminomethyl)malonate as a colorless oil.^[6]

IR: 2358, 1729, 1248, 1223 cm⁻¹; ¹H NMR (300 MHz, MeOD): $\delta = 5.65-5.79$ (m, 1H), 5.09-5.20 (m, 2H), 3.73 (s, 6H), 3.07 (s, 2H), 2.67 (d, J = 7 Hz, 2H) ppm; ¹³C NMR (75 MHz, MeOD): $\delta = 172.1$, 133.7, 119.8, 60.6, 53.0, 45.2, 37.5 ppm; HRMS: *m/z* calculated for C₉H₁₆NO₄ [M+H]⁺: 202.1079, found: 202.1084.

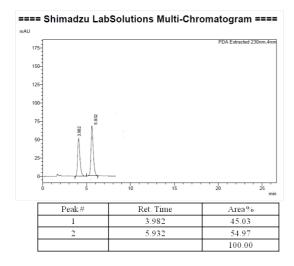
Benzyl (N-(2,2-dimethylpent-4-en-1-yl)sulfamoyl)carbamate 5f

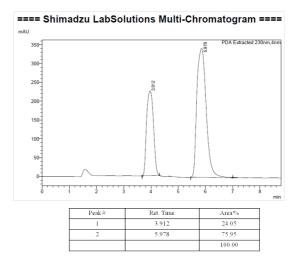

Colourless oil, yield: 66% (65 mg, 0.16 mmol). IR: 3244, 2956, 2334, 1718, 1434, 1219, 1189, 1082, 805 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ = 7.35 (bs, 5H), 5.58-5.67 (m, 3H), 5.09-5.18 (m, 4H), 3.73 (s, 6H), 3.47 (s, 2H), 2.71 (d, *J* = 7 Hz, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 170.1, 151.5, 134.8, 131.4, 128.9, 128.8, 128.6, 120.5, 68.7, 58.0, 52.7, 44.8, 36.7 ppm; HRMS: *m/z* calculated for C₁₇H₂₂N₂O₈NaS [M+Na]⁺: 437.0995, found: 437.0980.

Procedure for cyclizations using various Lewis acids:

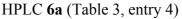
To the solution of substrate **5** (0.19 mmol) in acetonitrile (5 mL) at –48 °C, the chiral reagent was added (0.2 mmol). The reaction was stirred for 5 min followed by dropwise addition of

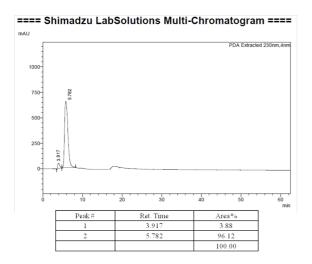
Lewis acids (0.29 mmol). (The 1:1 mixture of $BF_3 \cdot OEt_2$ and TMSOTf provides access to $BF_2OTf \cdot OEt_2$).^[7] The reaction was stirred for 5 h. After completion, the reaction was quenched with saturated aq. NaHCO₃ solution (5 mL) and the solvent was evaporated. The residue was treated with water (5 mL) and extracted with CH₂Cl₂ (3 x 5 mL). The combined organic layers were washed with brine (5 mL), dried over anhyd. MgSO₄, filtered and evaporated to yield the crude product which was purified by column chromatography using ethyl acetate:hexane (1:10) to yield the corresponding product.

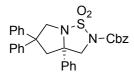

(*R*)-Benzyl 5,5-diphenyltetrahydropyrrolo[1,2-b][1,2,5]thiadiazole-2(3*H*)-carboxylate 1,1-dioxide 6a

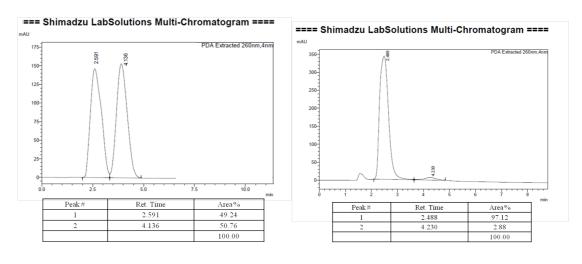


Colourless solid, yield 70% (69 mg, 0.15 mmol). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.12-7.43$ (m, 15H) 5.32 (d, J = 12 Hz, 1H), 5.28 (d, J = 12 Hz, 1H), 4.14 (dd, J = 10 Hz, 2 Hz, 1H), 3.96 (m, 1H), 3.92 (d, J = 10 Hz, 1H), 3.82 (dd, J = 10 Hz, 7 Hz, 1H), 3.67 (dd, J = 10 Hz, 4 Hz, 1H), 2.52 (ddd, J = 12 Hz, 6 Hz, 2 Hz, 1H), 2.47 (dd, J = 12 Hz, 8 Hz, 1H) ppm. Spectral data are in agreement with literature.^[8] HPLC analysis: Daicel Chiralcel OD-H column, hexane/*i*-PrOH = 90/10, 0.9 mL/min, 230 nm; t_R (*S***-6a**) = 3.92 min, t_R (*R***-6a**) = 5.78 min.


Table 3, entry 3: 10% ee; Table 3, entry 4: 52% ee.

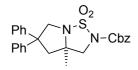

Table 3, entry 10: 92% *ee*; $[\alpha]_D^{20} = -12$ (c = 1, CHCl₃).


HPLC **6a** (Table 3, entry 3)

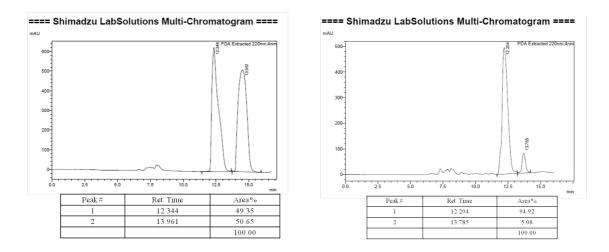

HPLC 6a (Table 3, entry 10)

(S)-Benzyl 3a,5,5-triphenyltetrahydropyrrolo[1,2-b][1,2,5]thiadiazole-2(3*H*)-carboxylate 1,1-dioxide 6b

Colourless solid, yield 75% (74 mg, 0.14 mmol). ¹H NMR (400 MHz, CDCl₃): δ = 7.12-7.47 (m, 20H), 5.27 (d, *J* = 12 Hz, 1H), 5.23 (d, *J* = 12 Hz, 1H), 4.72 (d, *J* = 11 Hz, 1H), 4.42 (d, *J* = 11 Hz, 1H), 4.12 (d, *J* = 10 Hz, 1H), 3.95 (d, *J* = 10 Hz, 1H), 3.31 (d, *J* = 12 Hz, 1H), 3.21 (d, *J* = 12 Hz, 1H) ppm. Spectral data are in agreement with literature.^[8] HPLC analysis: Daicel Chiralcel OD-H column, hexane/*i*-PrOH = 92/8, 0.9 mL/min, 260 nm; t_R (*S*-6b) = 2.49 min, t_R (*R*-6b) = 4.23 min.

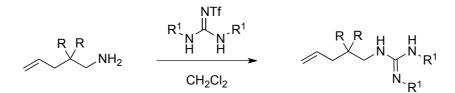

Table 4, entry 5: 94% *ee*; $[\alpha]_D^{20} = 7.9$ (c = 0.5, CHCl₃).

HPLC 6b racemate


HPLC 6b (Table 4, entry 5)

(*R*)-Benzyl 3a-methyl-5,5-diphenyltetrahydropyrrolo[1,2-b][1,2,5]thiadiazole-2(3*H*)carboxylate 1,1-dioxide 6c

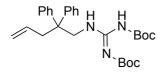
Colourless solid, yield 68% (67 mg, 0.14 mmol). ¹H NMR (CDCl₃, 400 MHz): δ = 7.18-7.46 (m, 15H), 5.28 (d, *J* = 12 Hz, 1H), 5.27 (d, *J* = 12 Hz, 1H), 4.31 (d, *J* = 11 Hz, 1H), 4.25 (d, *J* = 11 Hz, 1H), 3.67 (d, *J* = 10 Hz, 1H), 3.62 (d, *J* = 10 Hz, 1H), 2.96 (d, *J* = 13 Hz, 1H), 2.92 (d, *J* = 13 Hz, 1H), 1.41 (s, 3H) ppm. Spectral data are in agreement with literature.^[8] HPLC analysis: Daicel Chiralcel OD-H column, hexane/*i*-PrOH = 87/13, 0.6 mL/min, 220 nm; t_R (*R*-6c) = 12.2 min, t_R (*S*-6c) = 13.79 min.


Table 4, entry 6: 90% *ee*; $[\alpha]_D^{20} = 11.6$ (c = 0.5, CHCl₃).

HPLC 6c racemate

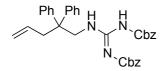
HPLC 6c (Table 4, entry 6)

Synthesis of guanidine substrates 7a, 7b, 7d, 7e, $7g^{[9]}$


The amine (R=Ph, H: 2.1 mmol / R=Me: 4.4 mmol) and Et₃N (212 mg, 2.1 mmol / 444 mg, 4.4 mmol) were dissolved in dry CH_2Cl_2 (8 mL / 17 mL) and the trifluoromethane sulfonylguanidine derivative (2.3 mmol / 4.85 mmol) was added in one portion. The reaction was stirred overnight at room temperature and stopped by addition of saturated aq. NaHCO₃ solution (2 mL / 4 mL). CH_2Cl_2 (10 mL / 20 mL) was added and the organic phase was washed with brine (10 mL / 20 mL). The organic phase was dried over MgSO₄ and the solvent was removed under vacuum. The crude product was purified using column chromatography over silica gel (eluent: hexane EtOAc 5:1).

Synthesis of guanidine substrates 7c, 7f and 7h

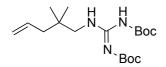
The compound **7a**, **7d** or **7g** (0.5 g, 1.04 mmol) was dissolved in CH_2Cl_2 (20 mL) and trifluoroacetic acid (0.12 mL, 1.56 mmol) was added. The reaction was monitored by TLC and after completion of reaction the solvent was evaporated under vacuum, to yield the unprotected guanidine. The crude product was dissolved in CH_2Cl_2 (25 mL) and pyridine (0.1


mL, 1.25 mmol) was added and stirred at rt for 30 min followed by addition of 4toluenesulfonyl chloride (0.217 g, 1.14 mmol). The reaction was stirred overnight and after completion, the reaction was washed with 1 N HCl (5 mL). The organic layer was separated and again washed with water (10 mL), saturated sodium bicarbonate solution (10 mL) and brine (10 mL). The organic layer was dried over anhyd. MgSO₄, evaporated and the crude product purified with column chromatography using ethyl acetate: hexane (1:5) as eluent.

Bis-tert-butyl(2,2-diphenyl-pent-4-en-1-yl)amino-methylylidenebiscarbamate 7a

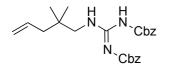
Colourless solid, yield: 94% (0.94 g, 1.98 mmol). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.23$ (br, 1H), 7.10-7.22 (m, 10H), 5.41 (ddd, J = 7, 10, 17 Hz, 1H), 4.97 (dd, J = 1.2, 17, Hz, 1H), 4.94 (dd, J = 1.2, 10 Hz, 1H), 4.10 (d, J = 5 Hz, 2H), 2.92 (d, J = 7 Hz, 2H), 1.48 (s, 9H), 1.39 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 156.3$ 152.8, 145.1, 133.5, 128.5, 128.2, 126.5, 118.5, 82.6, 79.2, 50.1, 47.7, 42.1, 28.3, 28.1 ppm. Spectral data are in agreement with literature.^[9]

Dibenzyl(2,2-diphenyl-pent-4-en-1-yl)amino-methylylidene-biscarbamate 7b

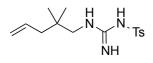


Colourless solid, yield: 96% (1.1 g, 2 mmol). ¹H NMR (400 MHz, CDCl₃): 8.20 (t, J = 5 Hz, 1H) ppm, 7.20-7.44 (m, 20H), 5.43 (m, 1H), 5.15 (s, 2H), 5.14 (s, 2H), 5.06 (dd, J = 2, 17 Hz, 1H), 4.96 (dd, J = 2, 10 Hz, 1H), 4.17 (d, J = 5 Hz, 2H), 2.95 (d, J = 7 Hz, 2H). Spectral data are in agreement with literature.^[9]

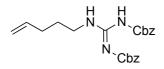
N-(N-(2,2-Diphenylpent-4-en-1-yl)carbamimidoyl)-4-methylbenzenesulfonamide 7c


Colourless Solid, yield: 92% (0.416 g, 0.96 mmol). ¹H NMR (400 MHz, CDCl₃): δ = 7.07-7.31 (m, 14H), 6.21 (m, 1H), 4.76 (m, 2H) 3.78 (d, *J* = 7 Hz, 2H), 2.87 (d, *J* = 7 Hz, 2H), 2.34 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 159.7, 148.4, 142.8, 138.9, 135.7, 129.7, 129.3, 128.9, 128.6, 125.9, 117.1, 54.6, 49.9, 41.2, 22.4 ppm; HMRS: *m/z* calculated for C₂₅H₂₇N₃O₂S [M+H]⁺: 434.1824, found: 434.1835.

Bis-tert-butyl(2,2-dimethyl-pent-4-en-1-yl)amino-methylylidenebiscarbamate 7d


Colourless solid, yield: 97% (1.5 g, 4.28 mmol). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.49$ (br, 1H), 5.84 (m, 1H), 5.12 (m, 2H), 3.21 (d, J = 5 Hz, 2H), 2.10 (d, J = 7 Hz, 2H), 1.49 (s, 9H), 1.45 (s, 9H), 0.91 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 163.8$, 156.6, 153.4, 134.3, 117.8, 82.2, 79.2, 50.6, 44.6, 34.2, 28.4, 28.2, 25.1 ppm. Spectral data are in agreement with literature.^[9]

Dibenzyl(2,2-dimethyl-pent-4-en-1-yl)amino-methylylidene-biscarbamate 7e

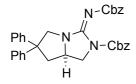

Colourless solid, yield: 89% (1.68 g, 3.96 mmol). ¹H NMR (400 MHz, CDCl₃): δ = 8.41 (s, 1H) ppm, 7.14-7.32 (m, 10H), 5.71 (m, 1H), 5.19 (s, 2H), 5.16 (s, 2H), 5.08 (m, 1H), 4.99 (m, 1H), 3.21 (d, *J* = 6 Hz, 2H), 1.97 (d, *J* = 7 Hz, 2H), 0.9 (s, 6H) ppm. Spectral data are in agreement with literature.^[9]

N-(*N*-(2,2-Dimethylpent-4-en-1-yl)carbamimidoyl)-4-methylbenzenesulfonamide 7f

Reaction scaled by 4: 4.4 mmol starting compound **7d** used. Colourless Solid, yield: 90% (1.24 g, 4 mmol). ¹H NMR (400 MHz, CDCl₃): δ = 7.46 (d, *J* = 8 Hz, 2H), 7.07 (d, *J* = 8 Hz, 2H), 5.95 (m, 1H), 5.13 (dd, *J* = 12, 2 Hz, 2H) 2.87 (d, *J* = 7 Hz, 2H), 2.30 (s, 3H), 2.01 (d, *J* = 7 Hz, 2H), 1.12 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 162.9, 145.6, 140.1, 132.8, 129.2, 128.3, 116.9, 48.6, 45.9, 33.7, 25.2, 21.8 ppm; HMRS: *m/z* calculated for C₁₅H₂₃N₃O₂S [M+H]⁺: 310.1511, found: 310.1520.

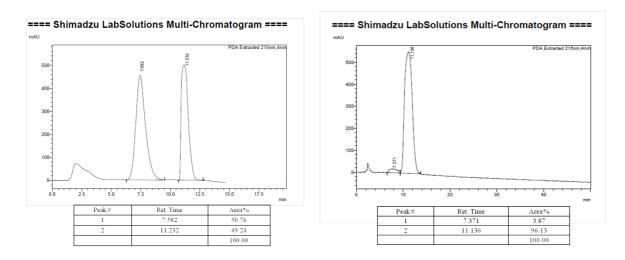
Dibenzyl(pent-4-en-1-yl)amino-methylylidene-biscarbamate 7g

Colourless solid, m.p.: 137-139 °C, yield 85% (0.74 g, 1.88 mmol). ¹H NMR (400 MHz, CDCl₃): δ = 7.09-7.34 (m, 10H), 5.78 (m, 1H), 5.25 (s, 3H), 5.21 (s, 3H), 4.84 (m, 2H), 3.69 (m, 2H), 2.08 (m, 2H), 1.56 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 160.1, 156.9, 137.6, 135.5, 128.3, 128.0, 115.2, 66.2, 41.5, 31.2, 28.2 ppm. HMRS: *m/z* calculated for C₁₃H₁₉N₃O₂S [M+H]⁺: 395.1845, found: 395.1852.


4-Methyl-*N*-(*N*-(pent-4-en-1-yl)carbamimidoyl)benzenesulfonamide 7h

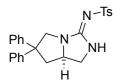
Colourless solid, m.p.: 143-145 °C, yield 80% (0.26 g, 0.94 mmol). ¹H NMR (400 MHz, CDCl₃): δ = 7.52 (d, *J* = 8 Hz, 2H), 7.03 (d, *J* = 8 Hz, 2H), 5.81 (m, 1H), 4.92 (m, 2H), 3.65 (m, 2H), 2.41 (s, 3H), 2.03 (m, 2H), 1.52 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 159.9, 141.7, 139.1, 137.2, 129.4, 129.2, 115.2, 41.6, 31.3, 28.3, 21.6 ppm. HMRS: *m/z* calculated for C₁₃H₁₉N₃O₂S [M+H]⁺: 281.1198, found: 281.1205.

General procedure for cyclization:

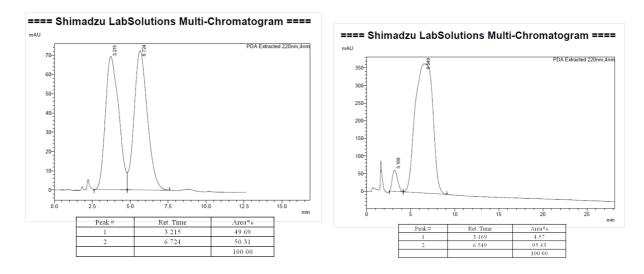

To the solution of substrate (0.18 mmol) in acetonitrile (5 mL) at -48 °C, the chiral reagent **10** was added (0.087 g, 0.2 mmol). The reaction was stirred for 5 min followed by dropwise addition of a mixture of TMSOTf (0.06 g, 0.27 mmol) and BF₃ • OEt₂ (0.038 g, 0.27 mmol) (1:1). The reaction was stirred for the specified time, after completion, the reaction was quenched with saturated aq. NaHCO₃ solution (0.5 mL) and the solvent was evaporated. The residue was treated with water (5 mL) and extracted with CH₂Cl₂ (3 x 5 mL). The combined organic layers were washed with brine (5 mL), dried over anhyd. MgSO₄, filtered and evaporated to yield the crude product which was purified by column chromatography using ethyl acetate:hexane (1:10) to yield the corresponding product.

(*R*)-Benzyl-3-(benzyloxycarbonylimino)-6,6-diphenyltetrahydro-1*H*-pyrrolo-[1,2*c*]imidazole-2(3*H*)-carboxylate 8a

Colourless solid, yields shown in Table 4 and 5. ¹H NMR (600 MHz, CDCl₃): $\delta = 7.41-7.49$ (m, 4H) 7.27-7.37 (m, 10H), 7.19-7.22 (m, 4H), 7.11 (d, J = 7 Hz, 2H), 5.31 (d, J = 12 Hz, 1H), 5.24 (d, J = 12 Hz, 1H), 5.21 (d, J = 12 Hz, 1H), 5.17 (d, J = 12 Hz, 1H), 4.38 (d, J = 11 Hz, 1H), 4.21 (dd, J = 8, 10 Hz, 1H), 4.07 (m, 1H), 3.77 (dd, J = 8, 10 Hz, 1H), 3.45 (d, J = 11 Hz, 1H), 2.61 (dd, J = 5, 11 Hz, 1H), 2.21 (t, J = 11 Hz, 1H) ppm. Spectral data are in agreement with literature.^[9] HPLC analysis: Daicel Chiralcel AD column, hexane/*i*-PrOH = 85/15, 0.8 mL/min, 215 nm; t_R (*S*-8a) = 7.37 min, t_R (*R*-8a) = 11.14 min.

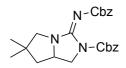

Table 4, entry 4: 92% *ee*; $[\alpha]_D^{20} = -78$ (c = 1, CHCl₃).

HPLC 8a racemate

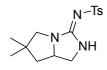

HPLC 8a (Table 4, entry 4)

(*R*)-*N*-(6,6-Diphenyltetrahydro-1*H*-pyrrolo[1,2-c]imidazol-3(2*H*)-ylidene)-4methylbenzenesulfonamide 8b

Colourless solid, m.p.: 166-167 °C; yields see Tables 2 and 4. ¹H NMR (600 MHz, CDCl₃): $\delta = 7.52$ (d, J = 8.27 Hz, 2H), 6.99-7.23 (m, 12H), 4.35-4.38 (d, J = 10 Hz, 1H), 3.76-3.82 (m, 1H), 3.67 (d, J = 10 Hz, 1H), 3.58 (dd, J = 11, 2 Hz, 1H), 2.71-2.79 (m, 2H), 2.57 (dd, J = 11, 2 Hz, 1H), 2.33 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 153.4, 145.3, 143.3, 140.8, 129.5, 128.9, 128.3, 127.4, 126.4, 65.4, 59.3, 58.9, 44.6, 40.2, 22.9 ppm; HMRS:$ *m/z*calculated for C₂₅H₂₅N₃O₂S [M+H]⁺: 432.1667, found: 432.1673. HPLC analysis: Daicel Chiralcel AD column, hexane/*i*-PrOH = 88/12, 0.7 mL/min, 220 nm; t_R (*S*-8b) = 3.17 min, t_R (*R*-8b) = 6.55 min.


Table 4, entry 2: 91% *ee*; $[\alpha]_D^{20} = -67$ (c = 1, CHCl₃).

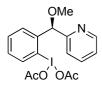
HPLC 8b racemate


HPLC **8b** (Table 4, entry 2)

Benzyl-3-(benzyloxycarbonylimino)-6,6-dimethyltetrahydro-1*H*-pyrrolo[1,2*c*]imidazole-2(3*H*)-carboxylate 8c

Colourless solid, yields see Tables 4 and 5. ¹H NMR (400 MHz, CDCl₃): $\delta = 5.31$ (d, J = 12 Hz, 1H), 5.23 (d, J = 12 Hz, 1H), 4.30 (m, 1H), 4.17 (m, 1H), 3.14 (d, J = 7, 9 Hz, 1H), 3.12 (d, J = 11 Hz, 1H), 2.99 (d, J = 11 Hz, 1H), 1.92 (dd, J = 5, 12 Hz, 1H), 1.42 (dd, J = 9, 12 Hz, 1H), 1.21 (s, 3H), 1.17 (s, 3H) ppm. Spectral data are in agreement with literature.^[9]

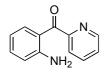
N-(6,6-Dimethyltetrahydro-1H-pyrrolo[1,2-c]imidazol-3(2H)-ylidene)-4methylbenzenesulfonamide 8d


Colourless solid, m.p.: 159-161 °C; yields see Tables 2 and 4. ¹H NMR (600 MHz, CDCl₃): δ = 7.45 (d, *J* = 8 Hz, 2H), 7.09 (d, *J* = 8 Hz, 2H), 4.12 (dd, *J* = 10, 3 Hz, 1H), 3.85 (m, 1H), 3.67 (dd, *J* = 10, 8 Hz, 1H), 3.18 (d, *J* = 10 Hz, 1H), 3.12 (d, *J* = 10 Hz, 1H), 2.44 (s, 3H), 1.85 (dd, *J* = 12, 8 Hz, 1H), 1.74 (dd, *J* = 12, 8 Hz, 1H), 1.06 (s, 6H) ppm; ¹³C NMR (125)

MHz, CDCl₃): $\delta = 152.6$, 143.7, 134.7, 129.7, 127.5, 61.7, 60.2, 48.1, 44.6, 37.5, 26.1, 25.7, 21.5 ppm; HMRS: *m/z* calculated for C₁₅H₂₁N₃O₂S [M+H]⁺: 308.1354, found: 308.1366.

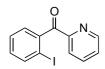
Catalytic reaction for diamination

To a solution of substrate (0.11 mmol), sodium perborate tetrahydrate (85 mg, 0.55 mmol), and chiral iodine compounds (*R*)-16 (7 mg, 0.022 mmol) in CH₃CN (5 mL), acetic acid (0.02 ml, 0.33 mmol) was added at -48 °C. The reaction mixture was stirred for 1 h at that temperature, followed by addition of sodium perborate tetrahydrate (85 mg, 0.55 mmol). The reaction mixture was then allowed to warm up to rt. After 5 h the reaction mixture was treated with saturated aq. NaHCO₃ (5 mL). The mixture was evaporated under vacuum to obtain a crude product, which was dissolved in CH₂Cl₂ (5 mL) and washed with water (1 x 5 mL). The organic layer was dried over anhyd. MgSO₄ and evaporated to yield a crude product, which was purified using column chromatography (ethyl acetate:hexane 1:10).


(R)-2-((2-Diacetoxyiodophenyl)(methoxy)methyl)pyridine 11

To sodium perborate tetrahydrate (0.24 g, 1.54 mmol) and 2-((2-iodophenyl)(methoxy) methyl)pyridine **16** (0.05 g, 0.154 mmol), glacial acetic acid (2 mL) was added and stirred for 3 h at 40 – 45 °C. After completion of the reaction, acetic acid was evaporated under vacuum; the residue was treated with water (5 mL) and extracted with dichloromethane (3 x 5 mL), the combined organic layers were dried with MgSO₄, filtered and evaporated under vacuum to yield a pale white solid. The product is directly used in a subsequent reaction.

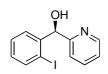
Yield 87%, (0.06 g, 0.133 mmol). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.55$ (d, J = 8 Hz, 1H), 8.22 (d, J = 8 Hz, 1H), 7.82 (d, J = 8 Hz, 1H), 7.78 (d, J = 8 Hz, 2H), 7.58 (t, J = 8 Hz, 1H), 7.42 (d, J = 8 Hz, 1H), 7.27 (m, 1H), 7.03 (dd, J = 12, 4 Hz, 1H), 5.61 (s, 1H), 3.46 (s, 3H), 2.01 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 175.9$, 160.0, 143.0, 140.4, 137.1, 130.3, 129.3, 126.7, 125.2, 123.1, 122.4, 88.9, 58.6, 21.1 ppm.


(2-Aminophenyl)(pyridine-2-yl)methanone 13

n-BuLi (23.2 mL in hexanes, 37.25 mmol) was added under N₂ atmosphere to a mixture of 2aminobenzonitrile (2 g, 16.9 mmol) and 2-bromopyridine (2.75 mL, 28.8 mmol) in 50 mL toluene at -50 °C. The reaction mixture was stirred at -50 °C for 1 h and allowed to reach 0 °C. 3N HCl (50 mL) was added with cooling such that reaction temperature is maintained below 10 °C. The organic layer was separated and re-extracted with 3N HCl (50 mL). The combined acid extracts were washed with toluene (25 mL), carefully basified with NaOH to pH 10 and kept in the fridge overnight. The brown precipitate formed was collected by filtration and dried.

Yield 84% (6 g, 30.27 mmol), m.p.: 144-145 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.53 (ddd, J = 5, 2, 1 Hz, 1H), 7.69 (td, J = 8, 2 Hz, 1H), 7.59 (dt, J = 8, 1 Hz, 1H), 7.47 (dd, J = 8, 2 Hz, 1H), 7.25 (ddd, J = 8, 5, 1 Hz, 1H), 7.12 (ddd, J = 9, 7, 2 Hz, 1H), 6.55 (dd, J = 8, 1 Hz, 1H), 6.44 (ddd, J = 8, 7, 1 Hz, 1H), 6.12 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 196.3, 157.7, 152.0, 148.7, 137.1, 135.3, 135.0, 125.2, 124.1, 117.2, 117.0, 115.8 ppm; HMRS: m/z calculated for C₁₂H₁₀N₂O, [M+H]⁺: 199.0866, found: 199.0865.

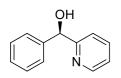
(2-Iodophenyl)(pyridine-2-yl)methanone 14



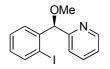
The ketone **13** (0.500 g, 2.51 mmol) was dissolved in 5% H₂SO₄ (5 mL) and cooled to -5 °C followed by dropwise addition of a solution of NaNO₂ (0.260 g, 3.75 mmol) in water (1 mL) and stirred at 0 °C. After 15 min CH₂Cl₂ (20 mL) was added, the ice bath removed and a solution of KI (1.25 g, 7.5 mmol) in water (1 mL) was added dropwise with vigorous stirring. The reaction mixture was stirred at rt overnight. The reaction mixture was diluted with CH₂Cl₂ (10 mL) and the two phases separated. The aqueous layer was extracted with CH₂Cl₂ (2 x 10 mL). The combined organic extracts were washed with 5 % Na₂CO₃ (10 mL), 10% Na₂S₂O₃ (10 mL), brine (10 mL) and dried over anhyd. MgSO₄. The solvent was removed

under reduced pressure to give an oil which was purified by column chromatography (ether:hexane 1:1).

Yield 89% (0.69 g, 2.2 mmol). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.51$ (ddd, J = 5, 2, 1 Hz, 1H), 8.00 (dt, J = 8, 1 Hz, 1H), 7.78 – 7.69 (m, 2H), 7.35 – 7.24 (m, 2H), 7.23 (ddd, J = 8, 2, 1 Hz, 1H), 7.01 (ddd, J = 8, 7, 2 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 197.0$, 153.1, 149.5, 144.0, 139.8, 137.3, 131.7, 129.7, 127.9, 127.2, 124.7, 92.9 ppm; HMRS: *m/z* calculated for C₁₂H₈INO, [M+H]⁺: 309.9723, found: 309.9727.

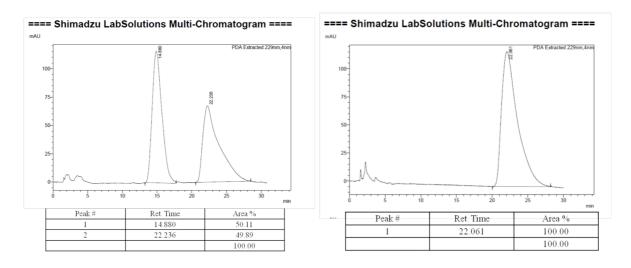

(*R*)-(2-Iodophenyl)(pyridine-2-yl)methanol 15^[10]

A solution of the iodoketone **14** (0.5 g, 1.6 mmol) in DMF (15 mL) was added to a flask containing RuCl[(R,R)-FsDPEN] (p-cymene) (57 mg, 0.08 mmol). After stirring for 10 min, the formic acid triethylamine complex (5:2) (0.65 mL, 8 mmol) was added. The reaction mixture was stirred at room temperature for 48 h. The reaction mixture was diluted with Et₂O (80 mL) and H₂O (80 mL). The two phases were separated and the aqueous layer extracted with Et₂O (3 x 50 mL). The combined organic phases were dried over Na₂SO₄ and evaporated under vacuum.


Brownish oil, yield 96% (0.47 g, 1.5 mmol). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.52$ (dt, J = 5, 2 Hz, 1H), 7.79 (dd, J = 8, 1 Hz, 1H), 7.56 (td, J = 8, 2 Hz, 1H), 7.33 – 7.12 (m, 4H), 6.91 (ddd, J = 8, 7, 2 Hz, 1H), 6.03 (s, 1H), 5.54 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 160.0$, 148.0, 145.5, 139.7, 137.2, 129.8, 129.2, 129.0, 123.0, 121.8, 99.3, 77.8 ppm; HMRS: *m/z* calculated for C₁₂H₁₀INO, [M+H]⁺: 311.9880, found: 311.9882. [α]_D²⁰ = -4.2 (c = 0.1, CHCl₃).

Determination of absolute stereochemistry by deiodination of compound 15 using *n*-BuLi according to literature.^[11]

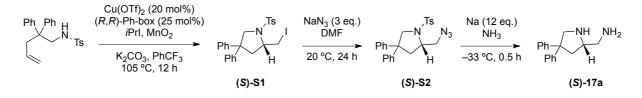
 $[\alpha]_{D}^{20} = -23 (c = 1, CHCl_3)$. ¹H NMR (400 MHz, CDCl_3): δ 5.52 (s, 1H), 5.82 (s, 1H), 7.19 (d, *J* = 7 Hz, 2H), 7.27-7.45 (m, 5H), 7.65 (d, *J* = 8 Hz, 1H), 8.56 (d, *J* = 3 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl_3): δ = 161.2, 148.0, 143.4, 137.1, 128.7, 128.0, 127.2, 122.6, 121.5, 75.2 ppm. Spectral data are in agreement with literature.^[12] From $[\alpha]_{D}^{20} = -23 (c = 1, CHCl_3)$ and the literature value for the (*S*) compound, $[\alpha]_{D}^{20} = +158 (c = 0.51, CHCl_3)$, follows that the synthesized compound phenyl(pyridin-2-yl)methanol has (*R*) configuration.


(R)-2-((2-Iodophenyl)(methoxy)methyl)pyridine 16

To a solution of the alcohol **15** (0.17 g, 0.53 mmol) in dry THF (3 mL), NaH (0.04 g, 1 mmol) and methyl iodide (0.18 mL, 3 mmol) were added. The reaction mixture was stirred at room temperature under N_2 atmosphere for 24 h and the solvent removed under reduced pressure. The residue was dissolved in ether (5 mL) and washed with water (5 mL). The aqueous phase was extracted with ether (3 x 5 mL). The combined ether extracts were washed with 10% $Na_2S_2O_3$ solution (5 mL) and water (5 mL), dried over MgSO₄, filtered and the filtrate was evaporated under vacuum.

Brownish oil, yield 93% (0.16, 0.49 mmol). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.44$ (ddd, J = 5, 2, 1 Hz, 1H), 7.68 (dd, J = 8, 1 Hz, 1H), 7.50 (td, J = 8, 2 Hz, 1H), 7.24 (dd, J = 8, 2 Hz, 2H), 7.18 (ddd, J = 8, 7, 1 Hz, 1H), 7.01 (ddd, J = 8, 5, 1 Hz, 1H), 6.81 (ddd, J = 8, 7, 2 Hz, 1H), 5.50 (s, 1H), 3.30 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.9, 149.8, 142.8, 139.8, 136.8, 129.8, 129.0, 128.7, 122.8, 122.1, 100.2, 88.8, 57.8 ppm; HRMS:$ *m/z*calculated for C₁₃H₁₃INO [M+H]⁺: 326.0042, found: 326.0053.

HPLC analysis: Daicel Chiralcel AD column (5 cm), hexane/*i*-PrOH = 99/1, 0.6 mL/min, 229 nm; t_R (minor) = 14.88 min, t_R (major) = 22.36 min; $[\alpha]_D^{20} = -131$ (c = 1, CHCl₃). >99% ee.



HPLC 16 racemate

Determination of absolute configuration

Compound (*S*)-S1 was synthesized through iodocyclization using the (*R*,*R*)-Ph-box ligand. The absolute configuration of (*S*)-S1 had been determined by X-ray structure analysis.^[13] Compound (*S*)-S1 was then treated with sodium azide to give compound (*S*)-S2, which after treatment with sodium in ammonia led to compound (*S*)-17a.

(S)-2-(Iodomethyl)-4,4-diphenyl-1-tosylpyrrolidine (S)-S1

Synthesis according to literature, spectral data are in agreement with literature.^[13]

 $[\alpha]_D^{20} = +6.4$ (c = 0.5, CHCl₃), (literature [13] for (*S*)-S1 with 93% *ee*: $[\alpha]_D^{24} = +6.7$ (c = 0.5, CHCl₃).

(S)-2-(Azidomethyl)-4,4-diphenyl-1-tosylpyrrolidine (S)-S2

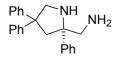
To a solution of (*S*)-2-(iodomethyl)-4,4-diphenyl-1-tosylpyrrolidine (*S*)-S1 (527 mg, 0.102 mmol) in DMF (5 mL) sodium azide (199 mg, 0.306 mmol) was added and the resulting solution stirred under argon at room temperature for 24 h. The reaction mixture was then filtered through a pad of Celite with ethyl acetate. The filtrate was concentrated *in vacuo*. The product was purified by flash chromatography (ethyl acetate/hexane).

Colourless solid, yield 82% (0.36 g, 0.84 mmol). mp = 119-121 °C; $[\alpha]_D^{20}$ = +29.6 (c = 0.5, CHCl₃); IR (neat): 2952, 2358, 2101, 1598, 1157, 1090, 730 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ = 7.62 (d, *J* = 8 Hz, 2H), 7.36-7.07 (m, 14H), 4.37 (d, *J* = 10 Hz, 1H), 3.84-3.73 (m, 2H), 3.68 (dd, *J* = 9, 3 Hz, 1H), 3.10 (dd, *J* = 9, 3 Hz, 1H), 2.77-2.58 (m, 2H), 2.42 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 144.8, 144.3, 143.7, 133.9, 129.8, 128.7, 128.6, 127.4, 126.8, 126.6, 126.5, 126.3, 58.5, 58.4, 54.3, 52.4, 40.8, 21.6 ppm; HMRS: *m/z* calculated for C₂₄H₂₄N₄O₂S, [M+Na]⁺: 455.1518, found: 455.1531.

(S)-(4,4-Diphenylpyrrolidin-2-yl)methanamine 17a

A three-necked flask fitted with a cold-finger condenser and gas inlet and flushed with CaCl₂ dried ammonia. A dry-ice/acetone mixture was added to the condenser and ammonia (7 mL) condensed into the flask. A solution of (*S*)-2-(azidomethyl)-4,4-diphenyl-1-tosylpyrrolidine (*S*)-S2 (51 mg, 0.12 mmol) in diethyl ether (2 mL) was added dropwise. After cooling to -78 °C, freshly cut sodium (33 mg, 1.42 mmol) was added in small portions until a blue coloured solution persisted. The reaction was allowed to warm to -33 °C then stirred for 30 min. The mixture was diluted with diethyl ether (7 mL) and quenched by the dropwise addition of water (Caution). After the ammonia had evaporated, the organic phase was separated and aqueous phase extracted with diethyl ether (3 × 5 mL). Combined organic phase was washed with brine (10 mL), dried (MgSO₄) and concentrated under reduced pressure to yield the crude diamine (23 mg, 0.09 mmol, yield 78%). An analytically pure sample was obtained as follows. The crude material was dissolved in 6M HCl (2 mL) and washed with CH₂Cl₂ (3 × 5 mL). Concentration of this extract gave analytically pure diamine (*S*)-17a.

Yellow oil, $[\alpha]_D^{20} = +40$ (c = 1, CHCl₃); HMRS: *m*/*z* calculated for C₁₇H₂₁N₂, [M+H]⁺: 253.1705, found: 253.1693.


Synthesis of free amines 17

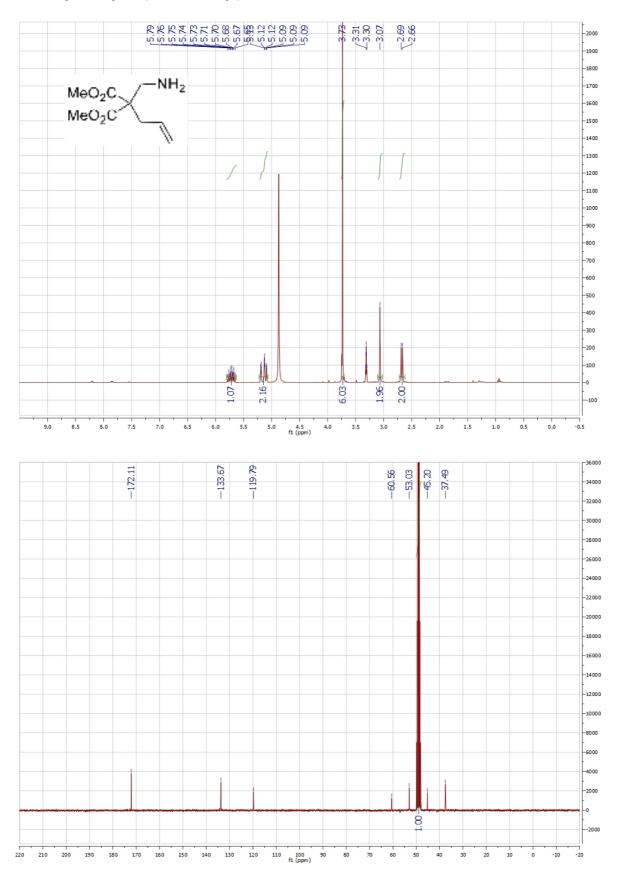
The free amines were obtained according to procedures reported in the literature.^[14] The Cbz protecting group was removed using Pd/C and H₂, subsequent treatment with LiAlH₄ yielded the desired free amines **17**.

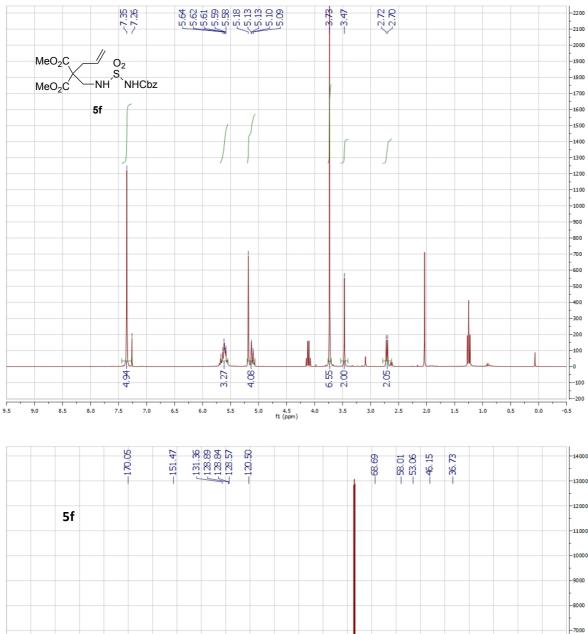
(*R*)-(4,4-Diphenylpyrrolidin-2-yl)methanamine 17a^[14]

Yellow oil, $[\alpha]_D^{20} = -43$ (c = 1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.12-7.26$ (m, 10H), 3.65 (dd, J = 12, 2 Hz, 1H), 3.31-3.35 (m, 2H), 2.82 (ddd, J = 12, 7, 1 Hz, 1H), 2.74 (dd, J = 12 Hz, 4 Hz, 1H), 2.62 (dd, J = 12 Hz, 7 Hz, 1H), 1.95 (dd, J = 12 Hz, 9 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 146.7, 128.7, 128.6, 125.7, 64.7, 57.9, 56.9, 47.4, 42.4$ ppm. Spectral data are in agreement with literature.^[14]

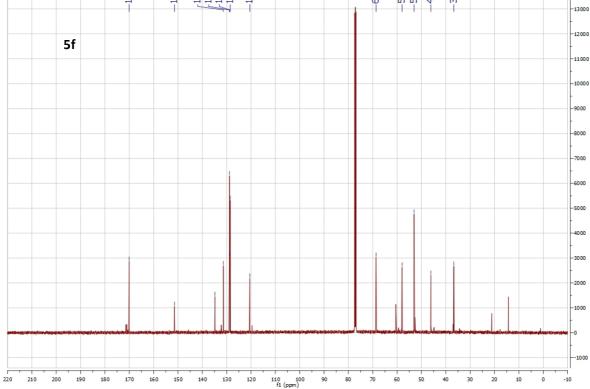
(S)-(2,4,4-Triphenylpyrrolidin-2-yl)methanamine 17b

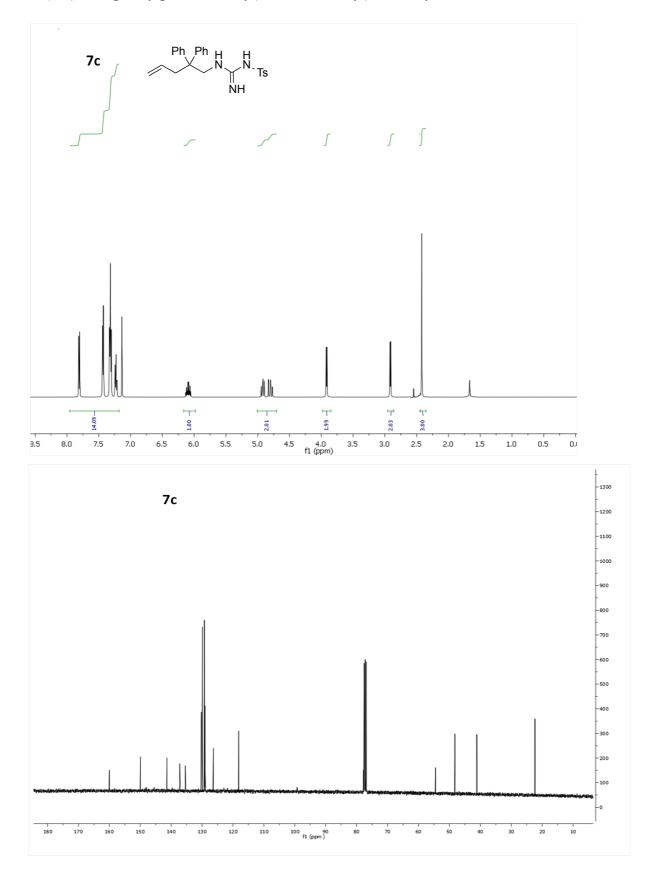
Colourless oil, $[\alpha]_D{}^{20} = +18$ (c = 1, ClCH₂CH₂Cl). ¹H NMR (400 MHz, DMSO-d₆): δ = 7.13-7.37 (m, 15H), 3.58 (d, *J* = 2 Hz, 1H), 3.51 (d, *J* = 2 Hz, 1H), 3.10 (d, *J* = 2 Hz, 1H), 2.95 (d, *J* = 2 Hz, 1H), 2.85 (d, *J* = 1 Hz, 2H), 2.62 (d, *J* = 2 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO-d₆): δ = 147.1, 146.0, 128.5, 128.3, 127.1, 126.9, 126.3, 126.2, 59.9, 57.3, 56.8, 47.2, 42.2 ppm; HRMS *m/z* calculated for C₂₃H₂₅N₂ [M+H]⁺: 329.2017, found: 329.2022.

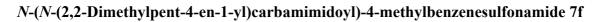

(R)-(2-Methyl-4,4-diphenylpyrrolidin-2-yl)methanamine 17c

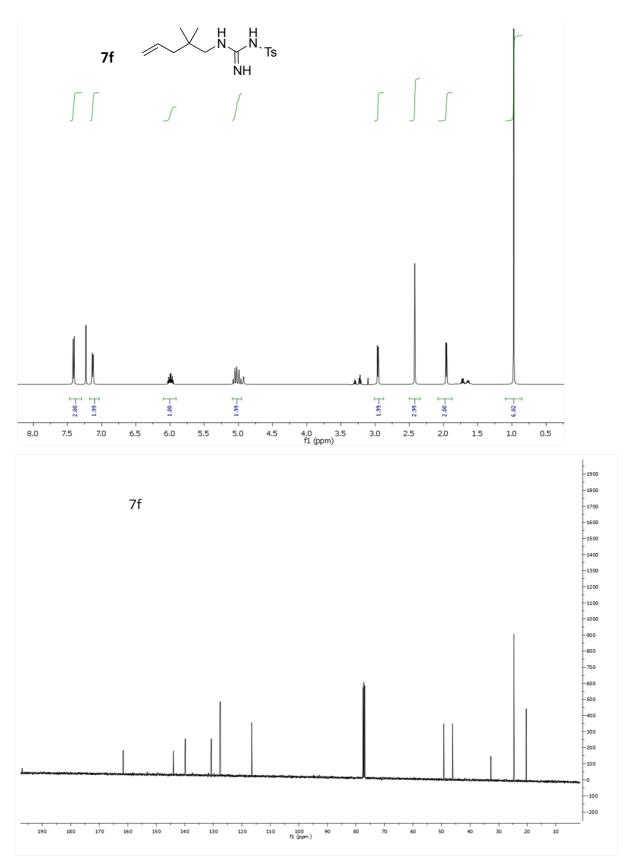

Pale yellow oil, $[\alpha]_D^{20} = +23$ (c = 1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.18-7.31$ (m, 10H), 3.54 (d, J = 1 Hz, 1H), 3.49 (d, J = 1 Hz, 1H), 2.82 (d, J = 2 Hz, 1H), 2.74 (d, J = 1 Hz, 1H), 2.62 (d, J = 2 Hz, 1H), 1.95 (d, J = 1 Hz, 1H), 1.37 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 146.21$, 128.9, 128.4, 125.9, 59.7, 57.5, 56.5, 47.1, 42.0, 24.1 ppm; HRMS *m/z* calculated for C₁₈H₂₃N₂ [M+H]⁺: 267.1861, found: 267.1868.

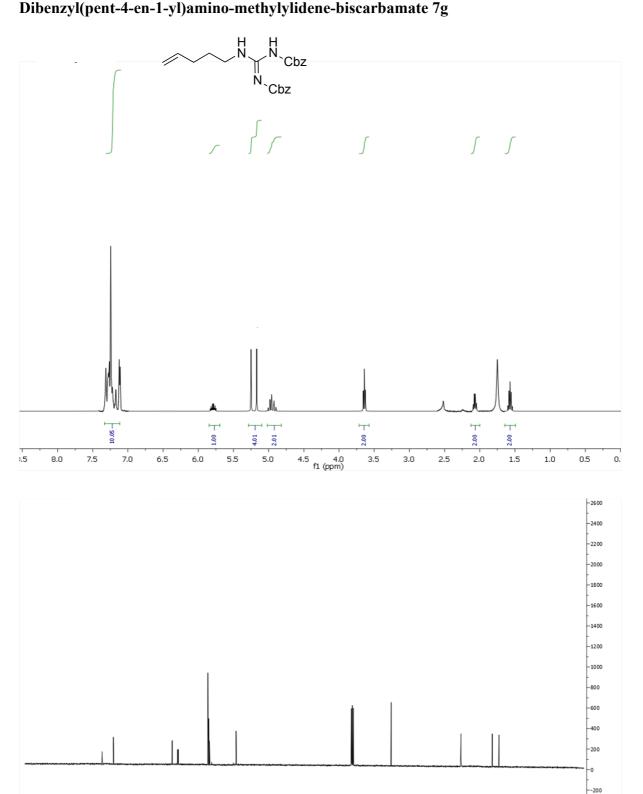
^[1] K. Feichtinger, H. L. Sings, T. J. Baker, K. Matthews, M. Goodman, *J. Org. Chem.* **1998**, *63*, 8432-8439.


- [2] Y. Tamaru, M. Hojo, H. Higashimura, Z.-I. Yoshida, J. Am. Chem. Soc. 1988, 110, 3994-4002.
- [3] J.-Y. Winum, L. Toupet, V. Barragan, G. Dewynter, J.-L. Montero, *Org. Lett.* **2001**, *3*, 2241-2243.
- [4] P. Chávez, J. Kirsch, J. Streuff, K. Muñiz, J. Org. Chem. 2012, 77, 1922-1930.
- [5] P. H. Fuller, J.-W. Kim, S. R. Chemler, J. Am. Chem. Soc. 2008, 130, 17638-17639.
- [6] S. E. Sen, S. L. Roach, *Synthesis* **1995**, 756-758.
- [7] E. L. Myers, C. P. Butts, V. K. Aggarwal, *Chem. Commun.* 2006, 4434-4436.
- [8] P. Chávez, J. Kirsch, C. H. Hövelmann, J. Streuff, M. Martínez-Belmonte, E. C. Escudero-Adán, E. Martin, K. Muñiz, *Chem. Sci.* 2012, *3*, 2375-2382.
- [9] C. H. Hövelmann, J. Streuff, L. Brelot, K. Muñiz, Chem. Commun. 2008, 2334-2336.
- [10] a) R. Noyori, T. Ohkuma, Angew. Chem. 2001, 113, 40-75; Angew. Chem. Int. Ed. 2001, 40, 40-73; b) T. Ohkuma, D. Ishii, H. Takeno, R. Noyori, J. Am. Chem. Soc. 2000, 122, 6510-6511.
- [11] H. Kim, A. Nagaki, J. Yoshida, Nature Commun. 2011, 2, 264.
- [12] B. Heller, D. Redkin, A. Gutnov, C. Fischer, W. Bonrath, R. Karge, M. Hapke, *Synthesis* **2008**, 69-74.
- [13] M. T. Bovino, S. R. Chemler, Angew. Chem. 2012, 124, 3989-3993; Angew. Chem. Int. Ed. 2012, 51, 3923-3927.
- [14] K. Muñiz, J. Streuff, C. H. Hövelmann, A. Núñez, Angew. Chem. 2007, 119, 7255-7258; Angew. Chem. Int. Ed. 2007, 46, 7125-7127.

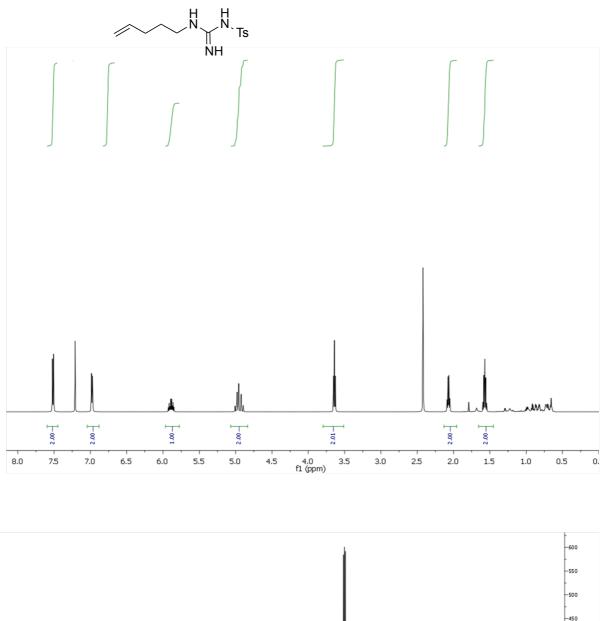

Dimethyl 2-allyl-2-(aminomethyl)malonate

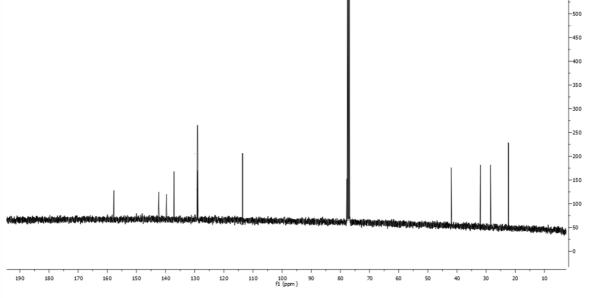


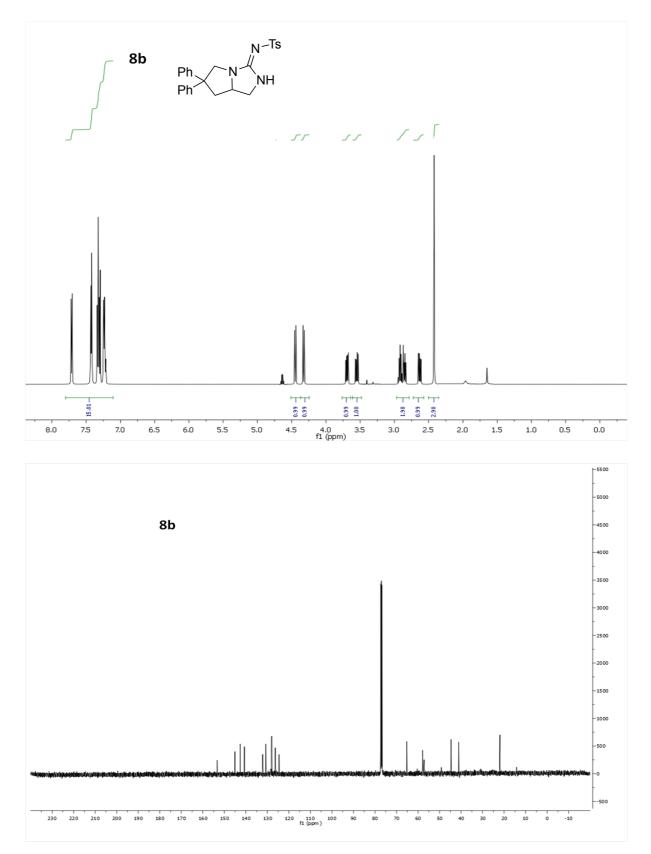

Benzyl (N-(2,2-dimethylpent-4-en-1-yl)sulfamoyl)carbamate 5f



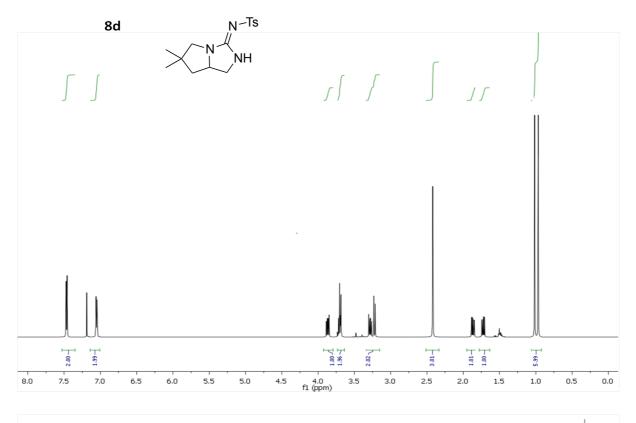
*N-(N-(*2,2-Diphenylpent-4-en-1-yl)carbamimidoyl)-4-methylbenzenesulfonamide 7c

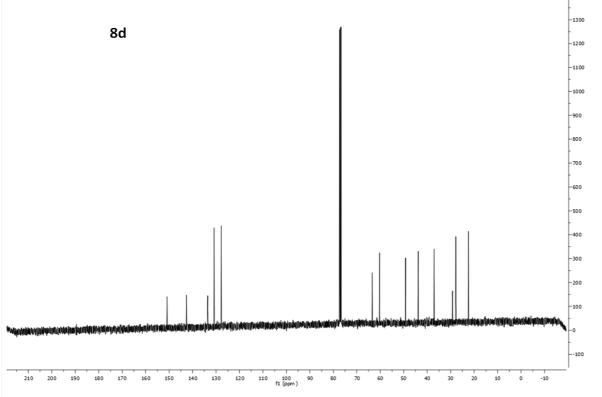



Dibenzyl(pent-4-en-1-yl)amino-methylylidene-biscarbamate 7g

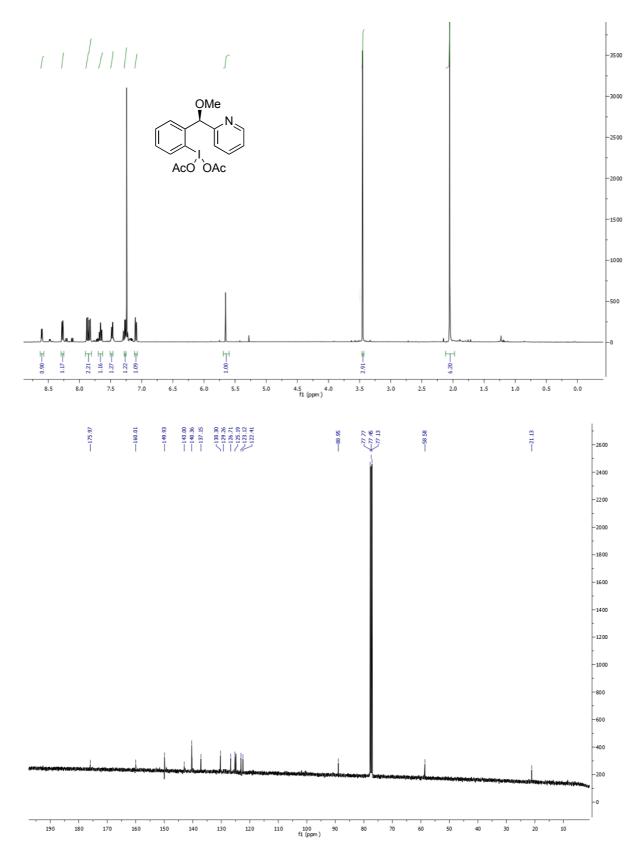

. 100 90 f1 (ppm)

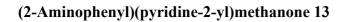
4-Methyl-N-(N-(pent-4-en-1-yl)carbamimidoyl)benzenesulfonamide 7h

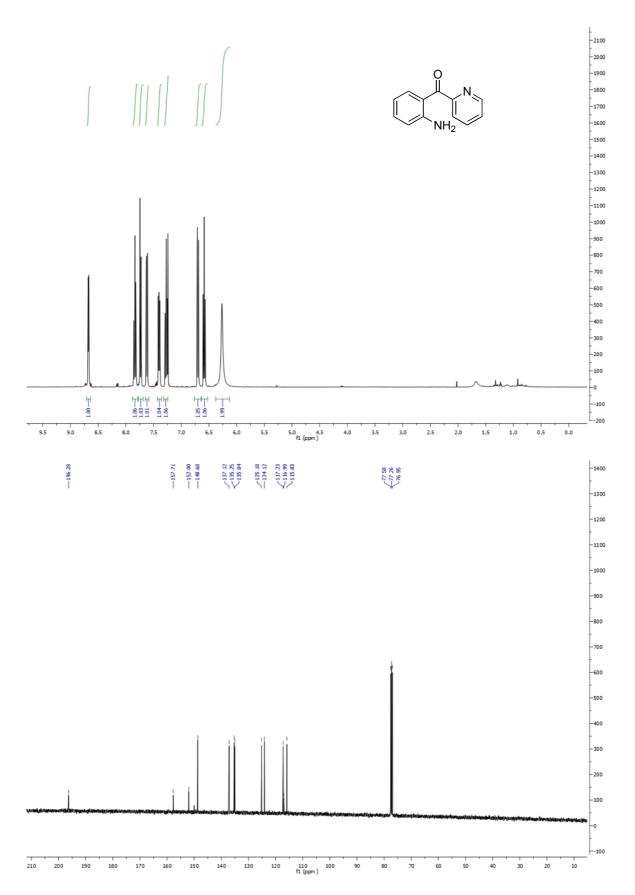


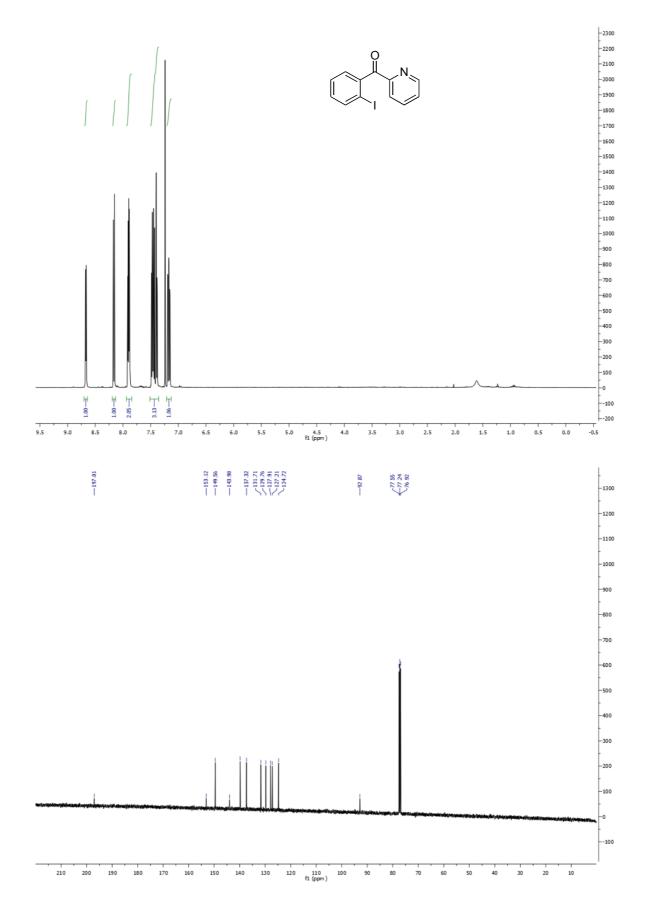


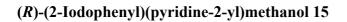
N-(6,6-Diphenyltetrahydro-1*H*-pyrrolo[1,2-c]imidazol-3(2*H*)-ylidene)-4methylbenzenesulfonamide 8b

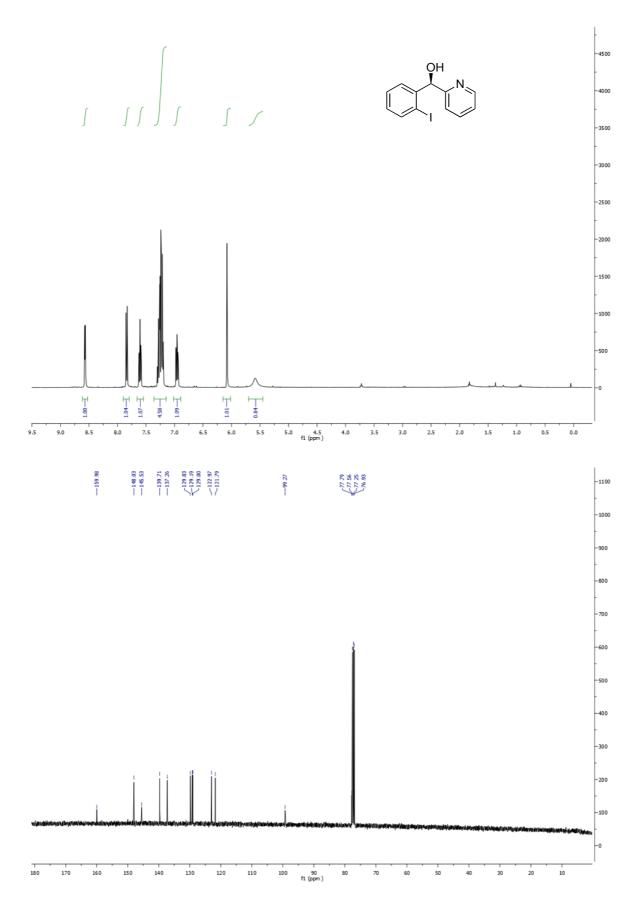


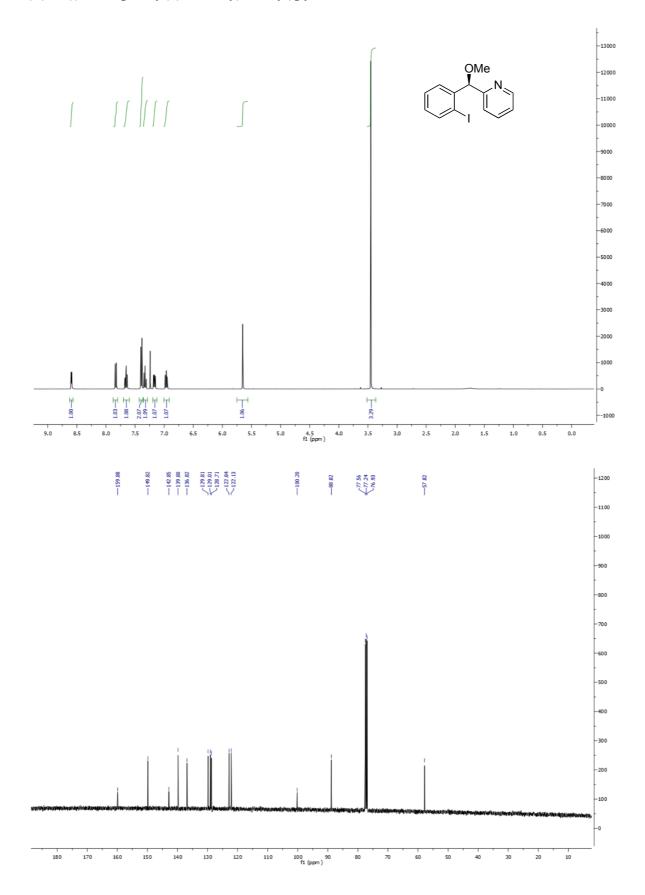

N-(6,6-Dimethyltetrahydro-1H-pyrrolo[1,2-c]imidazol-3(2H)-ylidene)-4methylbenzenesulfonamide 8d



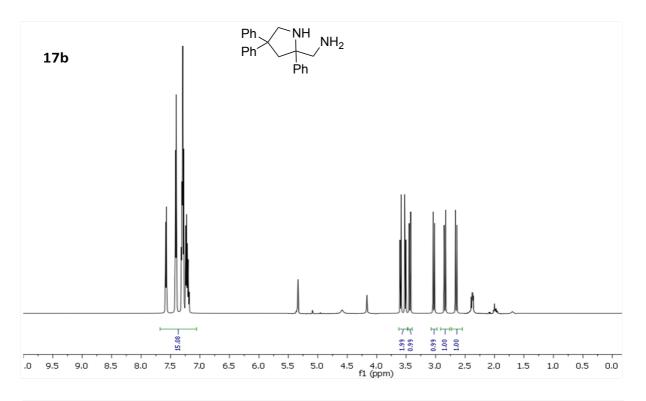

(R)-2-((2-Diacetoxyiodophenyl)(methoxy)methyl)pyridine 11

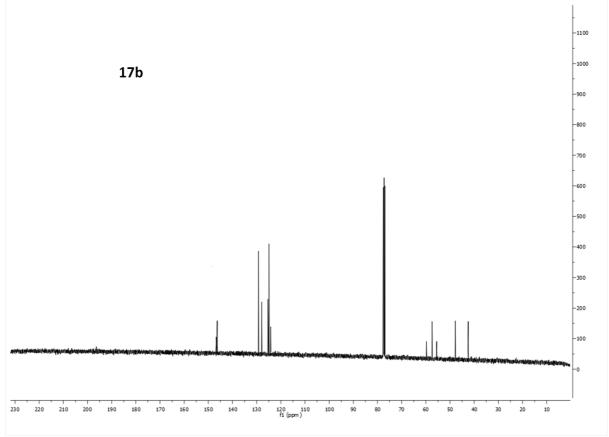


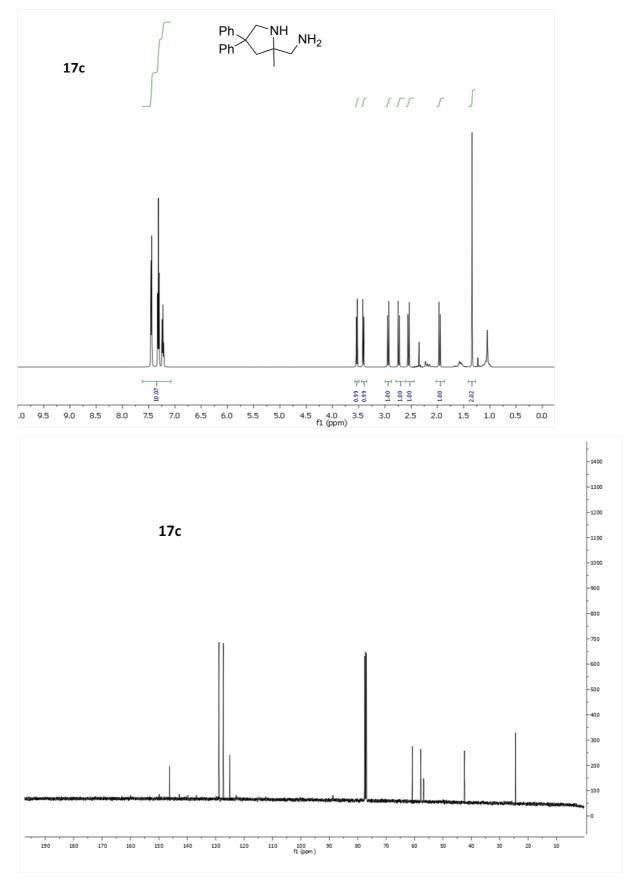




(2-Iodophenyl)(pyridine-2-yl)methanone 14







(2,4,4-Triphenylpyrrolidin-2-yl)methanamine 17b

