2

Figure S1. Post-meiotic phenotypes of the male sterile mutant and rescued CdsA testes. 3 (A-D) Phenotypes of the male sterile CdsA^{EY08412} (A, B) and CdsA^{UM-8246-3}(C, D) testes. 4 Confocal micrographs of dispersed actin cones in $CdsA^{EY08412}$ (A) and $CdsA^{UM-8246-3}$ (C) cysts. 5 Phase contrast images of the whole testis with empty seminal vesicle (red line) in CdsA^{EY08412} 6 (B) and CdsA^{UM-8246-3}(D). (E, G, I) Confocal micrographs of actin cones in CdsA^{ms1} revertant 7 (E), CdsA-GFP; bamGal4, $CdsA^{ms1}$ (G), and in β 2tub-dPIS; $CdsA^{ms1}$ (I) alleles. (F, H, J) 8 Phase contrast images of whole testis with seminal vesicles (red line) and with matured, 9 moving sperms (arrowhead) in $CdsA^{ms1}$ revertant (F), CdsA-GFP; bamGal4, $CdsA^{ms1}$, (H), and 10 in β2tub-dPIS; CdsA^{ms1} (J). Scale bars: 50 μm in A, C, E, G, I, and 100 μm in B, D, F, H, J. 11

12

Figure S2. Expression and localization of CdsA and the phenotype of the mutant and 13 rescued CdsA^{ms1} testes. (A) Schematic representation of CdsA-RA and CdsA-RB transcripts 14 with the localization of the P[EY08412] (at base 33 in the 5'UTR of CdsA-RA), P[UM-8246-3] 15 (at base 41 in the 5'UTR of CdsA-RA), and P[CB0128] (at base 64 in the 5'UTR of CdsA-RA) 16 elements, and the primers used in the quantitative RT-PCR. (B) Relative expression levels of 17 CdsA-RA-RB and CdsA-RB in the testis of wild type and $CdsA^{ms1}$ homozygotes were 18 quantified by quantitative RT-PCR. Error bars indicate mean \pm s.e.m. (C) Distribution of the 19 number of cysts at various post-meiotic stages in wild type, $CdsA^{ms1}$, $CdsA^{ms1}$ revertant, 20 CdsA-GFP; CdsA^{ms1}, and β2tub-dPIS, CdsA^{ms1} testes, based on counting of elongated nuclei, 21 individualization complexes (IC) (phalloidin staining), cystic bulges, and waste bags 22 (Caspase-3 staining). Error bars indicate mean ± s.e.m. (D) Confocal micrograph of 23

spermatocytes expressing CdsA-GFP shows ER localization (green), where ER is labelled by
anti-Calnexin99A (red) and DNA by DAPI (blue). Scale bar, 10 μm.

26

Figure S3. The assembly of individualization complex is not impaired in $CdsA^{ms1}$ 27 spermatids, but the individualization defects resulted in higher number of TUNEL 28 positive structures. (A) Individual and merged fluorescent micrographs of wild type and 29 $CdsA^{ms1}$ cystic bulges stained for Lasp (green) and for F-actin (red). Scale bar, 10 μ m. (B) 30 Simultaneous DAPI staining (blue) and TUNEL assay (red) on spermatids. In the wild type 31 there is no sign of cell death by TUNEL assay in the elongated cysts. Representative $CdsA^{ms1}$ 32 cyst contains TUNEL positive (red) structures in elongated spermatids. Scale bar, 40 µm. (C) 33 Climbing test shows normal climbing velocity in mutants of CdsA^{ms1}. (D) Lipid class changes 34 in the testes of wild type, $CdsA^{ms1}$ mutant, and $CdsA^{ms1}$ revertant line, measured by mass 35 spectrometry. 36

37

Table S1. Molecular species profiles of lipids from adult testis of *Drosophila*. The levels are normalized to total membrane lipids. Values represent mean \pm s.e.m, n=5; (*) wild type (WT) vs. *CdsA^{ms1}* p<0.05, q<0.015; (#) WT vs. β2tub-dPIS; *CdsA^{ms1}* p<0.05, q<0.015; (\$) *CdsA^{ms1}* vs. β2tub-dPIS, *CdsA^{ms1}* p<0.05, q<0.015. Lipid values of dPIS, *CdsA^{ms1}* with significant compensatory-type changes are shown in bold.

43

Table S2. Sequence of primers used in cloning of *P{UASp-CdsA-GFP}*, *P{β2tub-dPIS}*plasmids and in quantitative RT-PCR experiments.

Figure S1.

Figure S2.

nuclei

nuclei+IC

synchronized

actin cones

dispersed actin

cones

waste bags

D

Figure S3.

Α

В

С

Table S1

(*) WT vs. CdsA^{ms1} p<0.05, q<0.015
(#) WT vs. β2tub-dPIS, CdsA^{ms1} p<0.05, q<0.015
(\$) CdsA^{ms1} vs. β2tub-dPIS, CdsA^{ms1} p<0.05, q<0.015

	WT	CdsA ^{ms1}	β2tub-dPIS, CdsA ^{ms1}
PC [32:2]	1.182 ± 0.077	0.822 ± 0.019 *	$0.905 \pm 0.028 \#$
PC [32:1]	2.281 ± 0.126	1.606 ± 0.029 *	$1.933 \pm 0.026 \#$
PC [34:3]	2.325 ± 0.088	2.073 ± 0.030 *	2.141 ± 0.067
PC [34:2]	7.534 ± 0.106	6.680 ± 0.045 *	$6.843 \pm 0.078 \ \#$
PC [34:1]	6.755 ± 0.100	5.129 ± 0.141 *	$5.456 \pm 0.077 \ \#$
PC [36:4]	2.457 ± 0.036	4.095 ± 0.100 *	$3.429 \pm 0.080 \#$
PC [36:3]	5.940 ± 0.165	7.739 ± 0.167 *	6.866 ± 0.280 # \$
PC [36:2]	2.523 ± 0.036	3.340 ± 0.086 *	2.743 ± 0.133 \$
PC [36:1]	0.226 ± 0.013	0.553 ± 0.040 *	0.371 ± 0.047 # \$
PC	31.223 ± 0.304	32.038 ± 0.368	30.687 ± 0.483
PC-O [32:2]	0.213 ± 0.023	0.179 ± 0.007	0.119 ± 0.012 # \$
PC-O [34:3]	1.705 ± 0.074	1.720 ± 0.054	1.728 ± 0.093
PC-O [34:2]	0.780 ± 0.019	1.039 ± 0.034 *	0.649 ± 0.067 \$
PC-O [36:4]	0.657 ± 0.042	0.390 ± 0.019 *	$0.366 \pm 0.020 \#$
PC-O [36:3]	0.256 ± 0.010	0.212 ± 0.023	$0.136 \pm 0.010 \#$
PC-O	3.611 ± 0.158	3.539 ± 0.109	2.999 ± 0.193 \$
PE [30:1]	0.271 ± 0.018	0.252 ± 0.007	0.282 ± 0.041
PE [32:2]	0.629 ± 0.011	0.610 ± 0.014	0.656 ± 0.037
PE [32:1]	3.661 ± 0.086	3.519 ± 0.137	4.457 ± 0.137 # \$
PE [34:3]	0.803 ± 0.034	0.882 ± 0.017	$1.115 \pm 0.041 \#$
PE [34:2]	5.557 ± 0.025	6.330 ± 0.050 *	$7.214 \pm 0.177 \#$
PE [34:1]	14.415 ± 0.088	14.351 ± 0.299	15.697 ± 0.156 # \$
PE [36:4]	0.767 ± 0.032	0.897 ± 0.030 *	1.212 ± 0.053 # \$
PE [36:3]	3.447 ± 0.146	3.723 ± 0.034	$4.154 \pm 0.089 \#$
PE [36:2]	3.691 ± 0.104	3.996 ± 0.050 *	3.945 ± 0.088
PE [36:1]	0.626 ± 0.029	1.204 ± 0.067 *	0.917 ± 0.052 # \$
PE [40:1]	0.463 ± 0.012	0.451 ± 0.005	0.479 ± 0.023
PE	34.331 ± 0.268	36.217 ± 0.147 *	$40.129 \pm 0.567 \#$
LPE [16:1]	0.001 ± 0.000	0.006 ± 0.004	0.003 ± 0.001
LPE [16:0]	0.010 ± 0.001	0.018 ± 0.003	0.017 ± 0.002
LPE [18:2]	0.003 ± 0.001	0.009 ± 0.003	0.007 ± 0.002
LPE [22:0]	0.001 ± 0.000	0.051 ± 0.006 *	0.014 ± 0.007 \$
LPE	0.015 ± 0.002	0.085 ± 0.014 *	$0.042 \pm 0.003 \#$ \$
PE-P1[32:1]	0.603 ± 0.051	0.574 ± 0.029	0.357 ± 0.028 # \$
PE-P1[34:3]	0.337 ± 0.018	0.357 ± 0.010	$0.766 \pm 0.039 \#$
PE-P1 [34:2]	5.225 ± 0.073	4.153 ± 0.105 *	4.803 ± 0.158 \$

PE-P1 [34:1]	3.903 ± 0.052	4.711 ± 0.085 *	$2.844 \pm 0.141 \# $
PE-P1 [36:3]	0.253 ± 0.005	0.138 ± 0.002 *	$0.165 \pm 0.004 \#$
PE-P1 [36:2]	0.419 ± 0.012	0.427 ± 0.010	0.390 ± 0.013
PE-P1 [36:1]	0.244 ± 0.010	0.347 ± 0.006 *	0.266 ± 0.006 \$
PE-P1 [38:3]	0.394 ± 0.010	0.382 ± 0.010	$0.359 \pm 0.008 \ \#$
PE-P1 [38:2]	0.522 ± 0.009	0.694 ± 0.014 *	0.370 ± 0.017 # \$
PE-P1 [38:1]	0.186 ± 0.002	0.231 ± 0.010 *	0.113 ± 0.006 # \$
PE-P1	12.088 ± 0.141	12.014 ± 0.217	$10.433 \pm 0.307 \#$
PI[32:1]	0.246 ± 0.013	0.175 ± 0.004 *	$0.146 \pm 0.009 \#$
PI [34:3]	0.231 ± 0.006	0.164 ± 0.003 *	0.205 ± 0.013 \$
PI [34·2]	1.940 ± 0.045	1.076 ± 0.030 *	$1.213 \pm 0.036 \# \$$
PI [34·1]	2.413 ± 0.038	0.652 ± 0.021 *	$0.656 \pm 0.024 \#$
PI [36:4]	0.162 ± 0.005	0.032 = 0.021 $0.129 \pm 0.004 *$	0.050 = 0.021 m $0.165 \pm 0.007 \text{ s}$
PI [36:3]	1.355 ± 0.054	0.129 ± 0.001 1 054 + 0 019 *	$1.086 \pm 0.007 \#$
PI [36·2]	1.555 ± 0.004 1.653 ± 0.004	$0.889 \pm 0.033 *$	$0.764 \pm 0.057 \#$
DI [36:1]	1.055 ± 0.004 0.567 ± 0.021	0.009 ± 0.005	$0.764 \pm 0.037 \#$ 0.157 ± 0.016 #
F1[30.1] DI	0.307 ± 0.021 8 568 ± 0.068	0.146 ± 0.000	$0.137 \pm 0.010 \#$
F1	0.300 ± 0.000	4.280 ± 0.030^{-1}	$4.393 \pm 0.020 \#$
DC [22.1]	0.042 ± 0.001	0.052 + 0.005	0.062 + 0.002 #
PS [32:1]	0.042 ± 0.001	0.055 ± 0.005	$0.003 \pm 0.002 \#$
PS [34:2]	0.164 ± 0.002	0.217 ± 0.003 *	$0.246 \pm 0.005 \# $
PS [34:1]	0.288 ± 0.006	$0.44 / \pm 0.012 *$	$0.496 \pm 0.013 \# $
PS [36:4]	0.064 ± 0.003	$0.092 \pm 0.003 *$	$0.10^{7} \pm 0.003 \#$
PS [36:3]	0.336 ± 0.012	0.487 ± 0.015 *	$0.515 \pm 0.019 \#$
PS [36:2]	1.298 ± 0.045	1.438 ± 0.024 *	1.438 ± 0.052
PS [36:1]	0.191 ± 0.005	0.367 ± 0.019 *	0.288 ± 0.016 # \$
PS [38:3]	0.020 ± 0.004	0.026 ± 0.003	$0.035 \pm 0.002 \#$
PS [38:2]	0.194 ± 0.003	0.185 ± 0.001 *	$0.180 \pm 0.002 \ \#$
PS [38:1]	0.337 ± 0.007	0.303 ± 0.006 *	$0.268 \pm 0.006 \#$ \$
PS [40:2]	0.245 ± 0.003	0.322 ± 0.008 *	$0.294 \pm 0.016 \ \#$
PS [40:1]	0.930 ± 0.028	1.114 ± 0.025 *	1.035 ± 0.068
PS [42:2]	0.152 ± 0.006	0.134 ± 0.002 *	$0.120 \pm 0.004 \ \# \$
PS [42:1]	0.042 ± 0.003	0.028 ± 0.002 *	0.036 ± 0.004
PS [44:2]	0.169 ± 0.006	0.114 ± 0.002 *	$0.136 \pm 0.005 \#$
PS	4.470 ± 0.068	5.326 ± 0.054 *	$5.257 \pm 0.126 \ \#$
LPS [20:0]	0.000 ± 0.000	0.006 ± 0.002 *	0.004 ± 0.002
LPS [22:0]	0.017 ± 0.002	0.098 ± 0.007 *	0.058 ± 0.025
LPS [24:1]	0.000 ± 0.000	0.002 ± 0.000 *	0.000 ± 0.000 \$
LPS	0.017 ± 0.002	0.106 ± 0.009 *	0.062 ± 0.027
PG [30:2]	0.014 ± 0.004	0.008 ± 0.002	0.008 ± 0.003
PG [32:3]	0.032 ± 0.006	0.030 ± 0.006	0.025 ± 0.006
PG [32:1]	0.077 ± 0.008	0.066 ± 0.003	0.064 ± 0.002
PG [34:3]	0.068 ± 0.007	0.062 ± 0.002	0.077 ± 0.006 \$
PG [34·2]	0.253 ± 0.010	$0.211 \pm 0.005 *$	0.247 ± 0.011 \$
PG [34·1]	0.314 ± 0.013	$0.211 \pm 0.005 *$	$0.213 \pm 0.007 \#$
PG [36·4]	0.007 ± 0.001	0.011 ± 0.002	$0.013 \pm 0.001 \#$
- O [20. I]	0.007 - 0.001	0.011 - 0.002	0.010 - 0.001 //

PG [36:3]	0.088 ± 0.003	0.095 ± 0.004	0.098 ± 0.004
PG [36:2]	0.065 ± 0.000	0.050 ± 0.003 *	0.048 ± 0.003 #
PG	0.919 ± 0.050	0.744 ± 0.015 *	0.792 ± 0.006 # \$
PA [32:1]	0.000 ± 0.000	0.002 ± 0.000 *	$0.001 \pm 0.000 \#$
PA [34:3]	0.000 ± 0.000	0.002 ± 0.000 *	$0.001 \pm 0.000 \#$
PA [34:2]	0.004 ± 0.000	0.027 ± 0.003 *	$0.013 \pm 0.001 \#$
PA [34·1]	0.011 ± 0.001	0.061 ± 0.002 *	$0.038 \pm 0.003 \# $ \$
PA [36·3]	0.000 ± 0.000	0.008 ± 0.002 *	$0.003 \pm 0.000 \# $ \$
PA [36·2]	0.001 ± 0.000	0.027 ± 0.003 *	0.004 ± 0.001 \$
PA [36·1]	0.000 ± 0.000	0.010 ± 0.002 *	$0.003 \pm 0.001 \# $
PA	0.016 ± 0.002	$0.137 \pm 0.009 *$	$0.063 \pm 0.004 \#$
171	0.010 ± 0.002	0.157 - 0.009	0.000 - 0.001 // \$
LPA [18·3]	0.001 ± 0.000	0.001 ± 0.000	0.001 ± 0.000
LPA [18·1]	0.000 ± 0.000	0.001 ± 0.000	0.000 ± 0.000
LPA [18:0]	0.000 = 0.000 0.001 + 0.000	0.001 = 0.000	0.000 = 0.000 0.002 + 0.001
LPA [20:0]	0.000 ± 0.000	0.003 ± 0.001 0.002 ± 0.000 *	0.002 ± 0.001
	0.000 ± 0.000	0.002 ± 0.000	0.001 ± 0.000
	0.002 ± 0.000	0.007 ± 0.001	0.003 ± 0.001
$CL[64\cdot4]$	0.013 ± 0.001	0.014 ± 0.002	0.015 ± 0.003
CL [66:5]	0.013 ± 0.001 0.057 ± 0.003	0.041 ± 0.002 0.048 ± 0.002	0.019 ± 0.003
CL [68:7]	0.037 ± 0.003 0.011 ± 0.001	0.040 ± 0.002 0.011 ± 0.000	0.037 ± 0.002 # \$
CL [68:6]	0.011 ± 0.001 0.166 ± 0.007	0.011 ± 0.000 $0.136 \pm 0.004 *$	$0.013 \pm 0.001 $
CL [00.0]	0.100 ± 0.007 0.027 ± 0.001	0.130 ± 0.004 $0.031 \pm 0.000 *$	$0.101 \pm 0.001 \# $
CL[70.0]	0.027 ± 0.001 0.274 ± 0.014	0.051 ± 0.000 0.261 ± 0.009	$0.040 \pm 0.002 \# $
CL[70.7]	0.274 ± 0.014 0.034 ± 0.002	0.201 ± 0.000	$0.219 \pm 0.007 \# $
CL[72.9]	0.034 ± 0.002 0.217 ± 0.017	0.044 ± 0.002 0.241 ± 0.016	$0.007 \pm 0.005 \# \oplus$ 0.251 ± 0.015
CL [72.0]	0.217 ± 0.017 0.800 + 0.033	0.241 ± 0.010 0.787 ± 0.030	0.231 ± 0.013 0.742 ± 0.020
CL	0.000 ± 0.000	0.787 ± 0.050	0.742 ± 0.020
GlCer [32·1·2]	0.005 ± 0.001	0.009 ± 0.002	0.009 ± 0.004
GlCer [34·2·2]	0.009 ± 0.001 0.028 ± 0.010	0.003 ± 0.002 0.033 ± 0.021	0.009 ± 0.001
G[Cer[34:1:2]]	0.020 ± 0.010 0.047 ± 0.002	0.055 ± 0.021 0.064 ± 0.008	0.017 ± 0.003 0.053 ± 0.011
G[Cer[34:1:2]]	0.047 ± 0.002 0.014 ± 0.004	0.004 ± 0.008 0.011 ± 0.002	0.009 ± 0.001
GlCer [36:2:2]	0.014 ± 0.004 0.006 ± 0.001	0.011 ± 0.002 0.013 ± 0.006	0.000 ± 0.000
GlCer [36:1:2]	0.000 ± 0.001 0.024 ± 0.004	0.015 ± 0.000	0.000 ± 0.000
G[Cor[38:2:2]]	0.024 ± 0.004 0.009 ± 0.005	0.043 ± 0.013 0.012 ± 0.004	0.037 ± 0.003
G[Cor[38:1:2]]	0.009 ± 0.003	0.012 ± 0.004 0.020 ± 0.007	0.013 ± 0.003
G[Cer[40:1:2]]	0.014 ± 0.002 0.005 ± 0.002	0.029 ± 0.007 0.010 ± 0.007	0.020 ± 0.000
GICer [40.1.2]	0.003 ± 0.003	0.010 ± 0.007 0.226 ± 0.020	0.003 ± 0.002
UICEI	0.132 ± 0.000	0.220 ± 0.039	0.100 ± 0.010
Car [32.1.2]	0.023 ± 0.001	$0.030 \pm 0.001 *$	$0.033 \pm 0.002 \#$
Cer[32.1.2]	0.023 ± 0.001 0.035 ± 0.002	0.030 ± 0.001	$0.033 \pm 0.002 \#$
Cor[34.2.2]	0.055 ± 0.005	0.030 ± 0.001 0.000 ± 0.002 *	0.032 ± 0.002
Cor [24.1.2]	0.000 ± 0.003 0.022 ± 0.002	0.070 ± 0.003^{-1}	$0.070 \pm 0.004 \#$ 0.025 ± 0.005
Cor[26.2.2]	0.022 ± 0.002 0.083 ± 0.002	0.030 ± 0.003 0.102 ± 0.002 *	0.023 ± 0.003 0.000 ± 0.004 #
Cor[26.1.2]	0.003 ± 0.003	0.102 ± 0.003	$0.077 \pm 0.004 \#$
Cer [26:1:2]	0.024 ± 0.002	0.043 ± 0.002 *	$0.041 \pm 0.003 \#$
Cer[30:1:3]	0.004 ± 0.001	0.038 ± 0.002 *	0.020 ± 0.007
Cer [38:2:2]	0.052 ± 0.003	0.082 ± 0.003 *	$0.081 \pm 0.004 \#$

Cer [38:1:3]	0.010 ± 0.004	0.115 ± 0.007 *	0.065 ± 0.025
Cer [40:2:2]	0.002 ± 0.000	0.005 ± 0.001 *	$0.009 \pm 0.001 \#$
Cer [40:1:2]	0.003 ± 0.000	0.003 ± 0.001	0.005 ± 0.001
Cer [40:1:3]	0.015 ± 0.004	0.092 ± 0.005 *	0.060 ± 0.020
Cer [42:1:2]	0.012 ± 0.001	0.012 ± 0.002	0.015 ± 0.003
Cer [42:1:3]	0.018 ± 0.006	0.017 ± 0.006	0.030 ± 0.006
Cer	0.362 ± 0.025	0.697 ± 0.023 *	$0.605 \pm 0.058 \#$
CerPE [30:1:2	210.054 ± 0.002	0.004 ± 0.004 *	0.029 ± 0.014
CerPE [32:2:2	210.042 ± 0.001	0.029 ± 0.001 *	$0.033 \pm 0.001 \#$ \$
CerPE [34:2:2	210.368 ± 0.019	0.329 ± 0.006	$0.311 \pm 0.011 \#$
CerPE [34:1:2	210.704 ± 0.037	0.931 ± 0.008 *	0.869 ± 0.015 # \$
CerPE [36:2:2	$2]1.306 \pm 0.039$	1.241 ± 0.043	1.168 ± 0.041
CerPE [36:1:2	210.145 ± 0.009	0.292 ± 0.011 *	$0.244 \pm 0.008 \# $
CerPE [38:3:2	210.071 ± 0.003	0.062 ± 0.002 *	$0.061 \pm 0.001 \ \#$
CerPE [38:2:2	210.679 ± 0.050	0.832 ± 0.024 *	$0.822 \pm 0.009 $ #
CerPE [40:2:2	210.058 ± 0.003	0.071 ± 0.002 *	$0.091 \pm 0.002 \#$
CerPE	3.426 ± 0.157	3.792 ± 0.090	3.627 ± 0.060
MAG [16:1]	0.005 ± 0.002	0.018 ± 0.005	0.016 ± 0.004
MAG [18·2]	0.099 ± 0.007	0.332 ± 0.028 *	$0.221 \pm 0.034 \# $
MAG [18:1]	0.114 ± 0.031	0.406 ± 0.031 *	$0.278 \pm 0.043 \# $ \$
MAG [20:0]	0.217 ± 0.031	$0.785 \pm 0.059 *$	0.485 ± 0.104 \$
MAG [22:0]	0.005 ± 0.002	0.028 ± 0.007	0.021 ± 0.005
MAG	0.009 = 0.002 0.439 ± 0.069	$1.570 \pm 0.101 *$	$1.022 \pm 0.179 \pm $
	0.109 ± 0.009	1.570 - 0.101	1.022 - 0.177 // Ф
DAG [30·1]	0.075 ± 0.011	$0.122 \pm 0.009 *$	0.096 ± 0.006
DAG [32:2]	0.075 ± 0.011 0.087 ± 0.011	0.122 ± 0.009 0.148 + 0.015 *	0.030 ± 0.000 0.135 ± 0.005 #
DAG [32:1]	0.007 = 0.011 0.209 + 0.009	$0.324 \pm 0.025 *$	0.133 = 0.003 # $0.273 \pm 0.010 \#$
DAG [34·2]	0.209 ± 0.009 0.164 ± 0.005	0.321 ± 0.025 0.280 ± 0.016 *	0.247 ± 0.010 #
DAG [34·1]	0.101 = 0.000	0.200 = 0.010 0.401 + 0.027 *	0.217 = 0.007 # $0.331 \pm 0.013 \#$
DAG [36:4]	0.225 ± 0.010 0.035 ± 0.002	0.071 ± 0.027 0.075 ± 0.008 *	$0.056 \pm 0.005 \#$
DAG [36:3]	0.033 ± 0.002 0.087 ± 0.011	0.075 ± 0.000	$0.030 \pm 0.003 \#$
DAG [36:2]	0.007 ± 0.011 0.142 ± 0.009	0.100 ± 0.015 0.278 + 0.016 *	$0.132 \pm 0.009 \# $
DAG [36:1]	0.142 ± 0.009 0.160 ± 0.010	0.273 ± 0.010 0.373 ± 0.047 *	$0.215 \pm 0.000 \# $
DAG[38:2]	0.100 ± 0.010 0.015 ± 0.004	0.373 ± 0.047	$0.233 \pm 0.012 \# $
DAG[38:1]	0.013 ± 0.004 0.102 + 0.022	0.077 ± 0.017	0.053 ± 0.000
DAG[30.1]	0.102 ± 0.022 0.163 ± 0.017	0.270 ± 0.047 0.363 ± 0.072	0.103 ± 0.020 0.251 + 0.033
DAG [40.1]	0.103 ± 0.017 1.464 ± 0.084	0.303 ± 0.072 2 917 + 0 271 *	0.231 ± 0.033 2 173 + 0 017 # \$
DAU	1.404 ± 0.004	2.717 ± 0.271	$2.175 \pm 0.017 \pi \phi$
TAG [42·2]	0.092 ± 0.006	0.257 ± 0.055	0.111 ± 0.039
TAG[42.2]	0.092 ± 0.000 0.344 ± 0.014	0.237 ± 0.033 0.830 ± 0.103	0.111 ± 0.000
TAG[42.1]	0.377 ± 0.014 0.126 ± 0.019	0.050 ± 0.175 0.455 ± 0.001 *	$0.3+3 \pm 0.077$ 0.206 ± 0.071
TAG [42.0]	0.120 ± 0.010 0 404 ± 0.016	0.433 ± 0.091^{-1}	0.270 ± 0.071 0.271 ± 0.095 ¢
TAC [44.2]	0.404 ± 0.010 1 002 \pm 0.045	0.750 ± 0.191 2.101 ± 0.477	0.341 ± 0.003 0 052 \pm 0 240
TAC [44.1]	1.092 ± 0.043	$2.171 \pm 0.4//$	0.733 ± 0.248
TAC [40:3]	$0.1/8 \pm 0.00/$	0.300 ± 0.004	0.131 ± 0.039
TAG [40:2]	$1.0/9 \pm 0.040$	2.304 ± 0.431	$0.9/2 \pm 0.230$
1 AG [46:1]	$1./45 \pm 0.083$	3.784 ± 0.734	1.832 ± 0.389

TAG [48:3]	0.415 ± 0.016	0.840 ± 0.104 *	0.475 ± 0.065 \$
TAG [48:2]	1.403 ± 0.076	3.065 ± 0.480 *	1.569 ± 0.278 \$
TAG [48:1]	1.226 ± 0.068	3.076 ± 0.499 *	1.768 ± 0.322
TAG [50:4]	0.080 ± 0.008	0.186 ± 0.013 *	$0.137 \pm 0.005 \#$ \$
TAG [50:3]	0.359 ± 0.015	0.755 ± 0.061 *	0.506 ± 0.039 # \$
TAG [50:2]	0.832 ± 0.040	1.899 ± 0.219 *	1.142 ± 0.151 \$
TAG [50:1]	0.366 ± 0.021	0.820 ± 0.045 *	$0.627 \pm 0.059 \#$
TAG [52:4]	0.148 ± 0.007	0.372 ± 0.011 *	$0.232 \pm 0.018 \# $
TAG [52:3]	0.344 ± 0.019	0.798 ± 0.033 *	0.496 ± 0.025 # \$
TAG [52:2]	0.385 ± 0.020	0.849 ± 0.027 *	$0.554 \pm 0.033 \#$
TAG [54:5]	0.140 ± 0.014	0.334 ± 0.012 *	0.174 ± 0.016 \$
TAG [54:4]	0.301 ± 0.023	0.716 ± 0.032 *	0.343 ± 0.028 \$
TAG [54:3]	0.439 ± 0.028	0.905 ± 0.023 *	0.487 ± 0.033 \$
TAG [54:2]	0.154 ± 0.011	0.376 ± 0.006 *	0.199 ± 0.022 \$
TAG [54:1]	0.087 ± 0.015	0.248 ± 0.028 *	0.154 ± 0.006 # \$
TAG [56:1]	0.102 ± 0.024	0.279 ± 0.045 *	0.191 ± 0.029
TAG	11.841 ± 0.621	26.661 ± 3.745 *	14.057 ± 1.988 \$
Class			
PC	31.223 ± 0.304	32.038 ± 0.368	30.687 ± 0.483
PC-O	3.611 ± 0.158	3.539 ± 0.109	2.999 ± 0.193 \$
PE	34.331 ± 0.268	36.217 ± 0.147 *	$40.129 \pm 0.567 \#$
LPE	0.015 ± 0.002	0.085 ± 0.014 *	$0.042 \pm 0.003 \#$
PE-Pl	12.088 ± 0.141	12.014 ± 0.217	$10.433 \pm 0.307 \#$
PI	8.568 ± 0.068	4.286 ± 0.050 *	$4.393 \pm 0.026 \ \#$
PS	4.470 ± 0.068	5.326 ± 0.054 *	$5.257 \pm 0.126 \ \#$
LPS	0.017 ± 0.002	0.106 ± 0.009 *	0.062 ± 0.027
PG	0.919 ± 0.050	0.744 ± 0.015 *	$0.792 \pm 0.006 \#$ \$
PA	0.016 ± 0.002	0.137 ± 0.009 *	$0.063 \pm 0.004 \#$ \$
LPA	0.002 ± 0.000	0.007 ± 0.001 *	0.005 ± 0.001
CL	0.800 ± 0.033	0.787 ± 0.030	0.742 ± 0.020
GlCer	0.152 ± 0.006	0.226 ± 0.039	0.166 ± 0.016
Cer	0.362 ± 0.025	0.697 ± 0.023 *	0.605 ± 0.058 #
CerPE	3.426 ± 0.157	3.792 ± 0.090	3.627 ± 0.060
MAG	0.439 ± 0.069	1.570 ± 0.101 *	1.022 ± 0.179 # \$
DAG	1.464 ± 0.084	2.917 ± 0.271 *	$2.173 \pm 0.017 \#$
TAG	11.841 ± 0.621	26.661 ± 3.745 *	14.057 ± 1.988 \$

Table \$	S2.
----------	-----

CdsA-attB1	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCCGAAGTGCGACGC
CdsA-attB2	GGGGACCACTTTGTACAAGAAAGCTGGGTTGGTTAACATGTCGCCCAAG
dPIS-NotI	ACTGCGGCGGCCGCAATGACAATTGCCGAGCAC
dPIS-XbaI	ACTGCGTCTAGATCACTCCACTTTCTTGCCGCTCA
CdsA-RB1	CCAGGGATGGCTGATATGGTC
CdsA-RB2	GTGGAGCAAAAGTGTTGGCAAG
CdsA-RARB1	GACGCATGACAATGTCCTGTG
CdsA-RARB2	GATCGAGTGCCAGATAAAGGG
dPIS-Fw	CGAGCACGATAACGTCTTCATC
dPIS-Rev	GCCGGAGATCACATAGTTGG
rp49-Fw	TCGTGAAGAAGCGCACCAAG
rp49-Rev	CTTGAAGCGGCGACGCAC