
 
 

advances.sciencemag.org/cgi/content/full/2/1/e1501177/DC1 
 

 

Supplementary Materials for 
 

Metainference: A Bayesian inference method for heterogeneous systems 
 

Massimiliano Bonomi, Carlo Camilloni, Andrea Cavalli, Michele Vendruscolo 

  

Published 22 January 2016, Sci. Adv. 2, e1501177 (2016) 

DOI: 10.1126/sciadv.1501177 

 

The PDF file includes: 

 

Derivation of the basic metainference equations 

Details of the model system simulations 

Details of the ubiquitin MD simulations 

Fig. S1. Effect of prior accuracy on the error of the metainference method. 

Fig. S2. Scaling of metainference error with the number of replicas at varying 

levels of noise in the data. 

Fig. S3. Scaling of metainference error with the number of states. 

Fig. S4. Accuracy of the outliers model. 

Table S1. Comparison of the quality of the ensembles obtained using different 

modeling approaches in the case of the native state of the protein ubiquitin. 

Table S2. Comparison of the stereochemical quality of the ensembles or single 

models generated by the approaches defined in table S1. 

References (39–45) 



Supplementary Materials 
 
Derivation of the basic metainference equations 
 
1) The metainference posterior in the case of a single experimental data point. Here we derive 
Eq. 5 of the main text, which is the general metainference equation in the case of a single 
experimental data point d . As discussed in the main text (Materials and Methods), we are 
interested in determining how the prior distribution of models (including structural states and 
other parameters) is affected by the introduction of experimental information. Since experimental 
data in equilibrium conditions are the result of ensemble averages over a distribution of states, 
we model a finite sample of the distribution of models, which we refer to as the set of N  
replicas of the system. These include: the coordinates of the system X = [Xr ] , the averages of 

the forward model over an infinite number of replicas !f = [ !fr ] , the uncertainty parameters that 
describes random and systematic errors in the experimental data as well as errors in the forward 
model σ B = [σ r

B ]  , the standard errors of the mean σ SEM = [σ r
SEM ] . 

The metainference posterior probability is thus 
 

p(X, !f ,σ B,σ SEM | d, I )                                                                                                 (S1) 
 

We first recognize that X  and σ SEM  do not dependent from the data d . Therefore 
 

p(X, !f ,σ B,σ SEM | d, I ) = p( !f ,σ B | d, I ) ⋅ p(X) ⋅ p(σ SEM )                                           (S2) 
 
At this point, we should take into account that each set  !f = [ !fr ] ,  σ B = [σ r

B ] , and 

σ SEM = [σ r
SEM ]  is composed of independent variables, and that the configurations X = [Xr ]  

are a priori independent. Given these considerations, we can write from Eq. S2 
 

p(X, !f ,σ B,σ SEM | d, I ) = p( !fr,σ r
B | d, I ) ⋅ p(Xr ) ⋅ p(σ r

SEM )
r=1

N

∏                                       (S3) 

By applying Bayes theorem to p( !fr,σ r
B | d, I )  we can thus derive Eq. 5 of the main text 

 

p(X, !f ,σ B,σ SEM | d, I )∝ p(d | !fr,σ r
B ) ⋅ p( !fr |X,σ r

SEM ) ⋅ p(σ r
B ) ⋅ p(Xr ) ⋅ p(σ r

SEM )
r=1

N

∏    (S4) 

 
 

2) Gaussian data noise and marginalization. We can further simply Eq. S4 in the case of 
Gaussian data likelihood 

p(d | !fr,σ r
B ) = 1

2πσ r
B
⋅exp −

d − !fr( )
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In this case, we can write 
 



p(d | !fr,σ r
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The product of the two Gaussian probability density functions (PDFs) is a scaled Gaussian PDF 
 

p(d | !fr,σ r
B ) ⋅ p( !fr |X,σ r

SEM ) = S
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where 
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The scaling factor is itself a Gaussian PDF 
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Since typically we are not interested in determining !fr , we can marginalize it as 
 

p(d | !fr,σ r
B ) ⋅ p( !fr |X,σ r

SEM ) ⋅d∫ !fr = S =
1
2πσ r

⋅exp −
d − f (X)( )2

2σ r
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⎢
⎢
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                          (S10) 

 

where the effective uncertainty parameters  σ r = σ r
SEM( )

2
+ σ r

B( )
2

 encodes all sources of error. 

If we incorporate Eq. S10 into Eq. S4 we obtain the marginalized version of Eq. 5 that holds for 
Gaussian data noise (Eq.  6  in the main text). 
 
 
3) The metainference posterior in the case of multiple independent data points. We now extend 
Eq. S4 to the case of Nd  independent data points D = [di ] . We thus introduce one !f ,  σ r,i

B , and 

σ r,i
SEM  per data point i  and replica r . In this case  !f = [[ !fr,i ]] , σ B = [[σ r,i

B ]] , and 

σ SEM = [[σ r,i
SEM ]] . 

Since X  and σ SEM  do not dependent from the data D , the posterior can be written as 
 
p(X, !f ,σ B,σ SEM |D, I ) = p( !f ,σ B |D, I ) ⋅ p(X) ⋅ p(σ SEM )                                                 (S11) 

 



Each set !f = [[ !fr,i ]] , σ B = [[σ r,i
B ]] , and σ SEM = [[σ r,i

SEM ]]  is composed of independent 

variables, and the configurations X = [Xr ]  are a priori independent. Therefore we can write 
 

p(X, !f ,σ B,σ SEM |D, I ) = p( !fr,i,σ r,i
B |D, I ) ⋅ p(σ r,i

SEM )
i=1

Nd

∏
r=1

N

∏ ⋅ p(Xr )
r=1

N

∏                                 (S12) 

 
By applying Bayes theorem to the data likelihood p( !fr,i,σ r,i

B |D, I ) , we can write 
 

 p(X, !f ,σ B,σ SEM |D, I )∝ p(D | !fr,i,σ r,i
B ) ⋅ p( !fr,i |X,σ r,i

SEM ) ⋅ p(σ r,i
B ) ⋅ p(σ r,i

SEM )
i=1

Nd

∏
r=1

N

∏ ⋅ p(Xr )
r=1

N

∏  (S13) 

 
We now use the fact that the multiple data points are independent to factorize the data likelihood 
 

p(D | !fr,i,σ r,i
B ) = p(dj | !fr,i,σ r,i

B )
j=1

Nd

∏                                                                                          (S14) 

and since the data point dj  depends only on !fr, j  and σ r, j
B , we can write 

 

p(D | !fr,i,σ r,i
B ) = p(di | !fr,i,σ r,i

B ) ⋅ p(dj )∝
j=1, j≠i

Nd

∏ p(di | !fr,i,σ r,i
B )                                                   (S15) 

 
By inserting Eq. S15 into Eq. S13 we obtain the metainference equation for the case of multiple 
independent data points (Eq. 8 in the main text) 
 

p(X, !f ,σ B,σ SEM |D, I )∝ p(di | !fr,i,σ r,i
B ) ⋅ p( !fr,i |X,σ r,i

SEM ) ⋅ p(σ r,i
B ) ⋅ p(σ r,i

SEM )
i=1

Nd

∏
r=1

N

∏ ⋅ p(Xr )
r=1

N

∏  (S16) 

 
 
Details of the model system simulations.  
 
To assess the accuracy of the different modelling approaches considered in this work, we studied 
a model system characterized by multiple discrete states, for which the number of states NS  and 
their population [w0 ]  can be varied arbitrarily. This system captures some of the complexity of 
real mixtures of different species and/or conformations in which equilibrium measurements mix 
contributions from all states. A simulation of this model system consists of 4 steps. 
 
1) Generation of states and synthetic experimental data. For each state, we randomly extracted 
its population w0

k
 and Nd  real numbers di,k  in the range from 1.0 to 10.0. These numbers are the 

pure experimental data points for each state and they will be used as forward model in the next 

step. The pure observed data points are a mixture on all states, di = w0
k ⋅di,k

k=1

NS

∑ . We introduced 

two types of noise to the pure observed data points to mimic the presence of random and 
systematic errors. Random errors were modeled with a Gaussian noise with standard deviation 
equal to 0.5, while systematic errors were modeled by adding a random offset in the range from 
3.0 to 5.0 to 30% of the data points. We modeled systems of 5 states using 2, 5, 10, and 20 data 



points and systems of 50 states using 20, 50, 100, and 200 data points. For both model sizes, we 
genereted 4 datasets: (i) without errors, (ii) with only random errors, (iii) with only systematic 
errors, and (iv) with both random and systematic errors. 
 
2) Scoring. In metainference, the total energy of the system is defined as 

 
E = −kBT ⋅ log p X,σ |D, I( )                                                                                            (S17) 

 
where we used a Gaussian noise with one uncertainty parameter σ r,i   per replica and data point 
(Eq. 9) or an outliers model with one uncertainty parameter per dataset (Eq. 11). In both cases, 
we used a Jeffrey’s prior p(σ ) =1/σ  for the uncertainty of each data point or for the typical 

dataset uncertainty. σ SEM  was kept fixed and equal to !σ SEM / N , with !σ SEM = 5.66. For the 

standard Bayesian modelling, σ SEM
 was set to zero. For the replica-averaged approach, we 

introduced harmonic restraints to couple forward model predictions to the observed data points. 
The intensity of the harmonic restraints was set to k = N 2 ⋅ k1 , with k1 = 0.03. We used the same 
prior information for the metainference, standard Bayesian modelling, and replica-averaged 
approaches. We randomly perturbed the exact populations w0

k
 to obtain approximate weights 

wk
 for each state and thus we defined the energy associated to the prior information as 

Ek = −kBT ⋅ logwk
.  To study the effect of the prior accuracy, we created high and low accuracy 

priors, with an average population error per state equal to 0.08 and 0.16, respectively.  
 
3) Sampling. We simulated N  copies of the system to benchmark the metainference and replica-
averaged approaches, and a single replica for standard Bayesian modelling. In the former case, 
we used 8, 16, 32, 64, and 128 replicas. The following unknown variables were sampled by 
Monte Carlo; a discrete index that determines which state of the system is occupied and the data 
uncertainty parameters for metainference and standard Bayesian modelling. The data uncertainty 
parameters were sampled in the range 0.00001-200, by proposing random moves at most equal to 
10.0. kBT was set to 1.0. A total of 50,000 Monte Carlo steps were carried out in each simulation.  
 
4) Analysis. During each Monte Carlo simulation we accumulated the histogram of the discrete 
variable that indicates which state of the system is istantaneously populated. From this 
histogram, we calculated the population of each state !wk  determined from prior information and 
experimental data. We defined as accuracy the root mean squared deviation of  [ !wk ]  from the 
exact populations [wk

0 ] . For each approach to test and choice of parameters (number of data 
points, level of noise in the data, and number of replicas), we run 300 indipendent simulations 
with random reference state populations and data points. The reported accuracy is averaged over 
the 300 simulations. 
  
 
Details of the ubiquitin MD simulations 
 
Classical all-atom molecular dynamics simulations of ubiquitin were perfomed using 
GROMACS (33) together with PLUMED (34). The X-ray structure 1UBQ (29) has been used as 
starting point in the simulations, using the CHARMM22* force field (35), in a cubic box of 6.3 
nm of side with 7800 TIP3P water molecules (39). A time step of 2 fs was used together with 
LINCS constraints (40). The van der Waals and Coulomb interactions were cut-off at 0.9 nm, 



while long-range electrostatic effects was treated with the particle mesh Ewald method. All 
simulations were carried out in the canonical ensemble by keeping the volume fixed and by 
thermosetting the system at 300 K with the Bussi-Donadio-Parrinello thermostat (41). A 1 ms 
molecular dynamics simulation was perfomed as a reference sampling of the a priori information 
of the CHARMM22* force field. 
 
Maximum entropy replica-averaged simulations and metainference replica-averaged simulations 
were perfomed using backbone chemical shifts (bmr17760) and residual dipolar couplings 
measured in a liquid-crystallin phase (N-H, Cα-Hα, Cα-C′, C′-N, C′-H and Cα-Cb bonds) as 
structural restraints modelled with CamShifts and the exact ϑ-method, respectively. Maximum 
entropy and metainference simulations were performed using 8 replicas, in all cases for a total 
simulation time of 1 ms, consistently with the reference sampling. A Gaussian noise model with 
one error parameter per nucleus was used in the metainference approach, along with a Jeffrey’s 
prior on each error parameter. 
 
From the resulting ensembles we back-calculated chemical shifts using SPARTA+ (42), RDCs 
measured in a large number of conditions (32) using PALES in the SVD approximation (43) 
using only data for residues 1 to 70 to obtain the alignment tensor. Scalar couplings across 
hydrogen bonds have been calculated as h3JNC  = (-357 Hz)exp(-3.2rHO/Å)cos2θ where θ 
represents the H…O=C angle (44), while H-Hα scalar coupling have been calculated using the 
Karplus equation with previously reported parameters (45). In addition the presence of distorted 
geometries have been tested with PROCHECK (31). The ensembles have been also compared 
with the 1UBQ X-ray (29) and the 1D3Z NMR (30) structures. 
 
 
 
 
 

 
 

 
 
Figure S1. Effect of prior accuracy on the error of the metainference method. Metainference 
error as a function of the number of data points and for varying levels of noise in the data in the 
case of prior with average error in the state populations equal to 0.08 (A) and 0.16 (B). The 
quality of the prior information influences the number of data points required to achieve a given 
accuracy of the inferred state populations. The more accurate is the prior, the fewer data points 
are needed. These simulations were carried out on a 5-state model, using 128 replicas. 
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Figure S2. Scaling of metainference error with number of replicas for varying level of noise 
in the data. As the number of replicas increases, the statistical error in calculating ensemble 
averages with a finite number of replicas converges to zero, and the overall accuracy of 
metainference increases. These simulations were carried out on a 5-state model, using 20 data 
points and the prior with average error equal to 0.16. 
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Figure S3. Scaling of metainference error with number of states. The metainference error as 
a function of the number of data points and for varying levels of noise in the data for a system 
composed of 5 (A) and 50 (B) states. These simulations were carried using 64 replicas and the 
prior with average error equal to 0.08. 
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Figure S4. Accuracy of the outliers model. Metainference error as a function of the number of 
data points and for varying levels of noise in the data with an outlier model for the errors that 
uses a single error parameter per dataset (A) and with one error parameter per data point (B). 
These simulations were carried out on a 5-state model, using 128 replicas and the prior with 
average error equal to 0.16. 
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Score Maximum 
entropy Metainference NMR MD X-ray 

Modelling 
Chemical 

shifts      

CA 0.76 0.72 0.63 0.90 0.71 
CB 0.89 0.93 0.89 1.12 0.94 
CO 0.80 0.81 0.75 0.93 0.80 
HA 0.13 0.13 0.21 0.23 0.17 
HN 0.34 0.39 0.40 0.44 0.39 
NH 2.51 2.32 1.86 2.77 2.03 

RDC set 1      

NH 0.16 0.15 0.19 0.27 0.21 
CAC 0.13 0.13 0.27 0.23 0.31 

CAHA 0.15 0.15 0.13 0.23 0.28 
CN 0.15 0.14 0.23 0.24 0.21 
CH 0.52 0.18 0.29 0.31 0.32 

Validation 
3JHNC      

RMSD 0.26 0.17 0.30 0.15 0.22 
3JHNHA      
RMSD 1.08 0.89 0.69 0.99 0.89 

RDC set 2      

NH(36) 0.23 0.20 0.29 0.28 0.29 

RDC set 3      
NH 0.32 0.24 0.24 0.24 0.29 

CAC 0.27 0.22 0.28 0.24 0.32 
CAHA 0.37 0.33 0.40 0.32 0.42 

CN 0.27 0.23 0.28 0.32 0.33 
CH 0.34 0.26 0.51 0.34 0.47 

 

Table S1. Comparison of the quality of the ensembles obtained using different modelling 
approaches in the case of the native state of the protein ubiquitin. Maximum entropy and 
metainference indicate the ensembles generated in this work using 8 replicas and chemical shifts 
combined with RDCs. NMR, MD and X-ray indicate a structure determined using high-resolution NMR 
methods (PDB code 1D3Z (30)), an ensemble determined by standard molecular dynamics simulations, 
and a X-ray structure (1UBQ) (29), respectively. In the upper part of the Table (“Modelling”) we report 
the fit with the data used in the modelling, in the lower part (“Validation”) the fit with independent data 
not used in the modelling. 
 
 
 
 
 
 
 
 



Score Maximum 
Entropy Metainference NMR MD X-ray 

Procheck      
RAMA 1.6 1.2 1.0 1.0 1.0 
HBGEO 2.3 1.9 1.4 2.1 1.7 
CHI-1 1.4 1.4 1.0 1.3 2.0 
CHI-2 1.0 1.0 1.0 1.0 1.4 

OMEGA 2.5 2.0 1.0 2.0 1.0 
 
Table S2. Comparison of the stereochemical quality of the ensembles or single models generated 
by the approaches defined in Table S1. The quality was assessed with PROCHECK (31). 
 
 
 
 
 


