Supplementary Information

Decreased *Npas4* and *Arc* mRNA levels in the hippocampus of aged memory-impaired wild type but not memory preserved 11β-HSD1 deficient mice

Jing Qiu ^a, Donald R. Dunbar ^{a, I}, June Noble ^a, Carolynn Cairns ^a, Rod Carter ^a, Val Kelly ^a, Karen E. Chapman ^a, Jonathan R. Seckl ^{a, b}, Joyce L.W. Yau ^{a, b, *}

^aBHF Centre for Cardiovascular Science, University of Edinburgh, UK ^bCentre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK

* Corresponding author:

Dr Joyce LW Yau, BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.

Tel: +44 (0) 131 242 6760 Fax: +44 (0) 131 242 6779 E-mail: <u>Joyce.Yau@ed.ac.uk</u>

Present address: Sistemic Ltd, West of Scotland Science Park, Glasgow G20

OSP

Figure S1. Initial assessment of young and aged wild-type and 11β-HSD1-deficient mice in the Y-maze following a 1 min inter-trial interval (ITI). All young (6 months, n=9/genotype) and aged (24 months, wild-type (WT) (n=13); $Hsd11b1^{-/-}$ (KO) (n=8)) mice showed a preference for the novel arm after a 1min ITI. *** P<0.001; **P<0.01 compared to other and start arms. Data shown are mean ± SEM.

Figure S2. Comparison of scatter plots of log intensity values (four replicates combined) for young and aged wild-type mice main comparisons.

WT_AI (aged wild-type memory-impaired); WT_AU (aged wild-type memory-unimpaired); WT_Y (young wild-type). Blue line shows no change, red lines equal a 2-fold change, yellow lines are 4-fold

Figure S3. Comparison of scatter plots of log intensity values (four replicates combined) for young and aged wild-type and 11 β -HSD1-deficient mice main comparisons. WT_AI (aged wild-type memory-impaired); WT_AU (aged wild-type memory-unimpaired); WT_Y (young wild-type); KO_Y (young $Hsd11b1^{-/-}$); KO_A (aged $Hsd11b1^{-/-}$) Blue line shows no change, red lines equal a 2-fold change, yellow lines are 4-fold

Supplementary Table S1

Hippocampal genes up-regulated with ageing in wild-type and 11β-HSD1-deficient mice but not affected by genotype. Gene expression level fold changes shown are from comparisons of aged (24 months) wild-type (WT_A) mice (combined WT_AU and WT_AI mice) with corresponding young (6 months) wild-type (WT) or *Hsd11b1*^{-/-} (KO) mice. *, P<0.05, **P<0.01, RP scores

Affymetrix ID	Gene symbol	Gene title	Fold change WT	Fold change KO
1426508_at	Gfap	glial fibrillary acidic protein	1.6 *	2 **
1449401_at	C1qc	complement component 1, q subcomponent, C chain	1.6 *	1.7 **
1417063_at	C1qb	complement component 1, q subcomponent, beta polypeptide	1.5 *	1.6 **
1419100_at	Serpina3n	serine (or cysteine) peptidase inhibitor, clade A, member 3N	2.0 *	1.8 *
1449254_at	Spp1	secreted phosphoprotein 1	1.7 *	1.6 *
1427371_at	Abca8a	ATP-binding cassette, sub-family A (ABC1), member 8a	1.6 **	1.8 **
1452428_a_at	B2m	beta-2 microglobulin	1.5 *	1.6 *
1418204_s_at	Aif1	allograft inflammatory factor 1	1.5 *	1.7 **
1435477_s_at	Fcgr2b	Fc receptor, IgG, low affinity IIb	1.9 *	2.0 **
1444564_at	Apod	apolipoprotein D	2.0 *	2.0 **
1450641_at	Vim	Vimentin	1.6 *	1.8 **
1422640_at	Pcdhb9	protocadherin beta 9	2.0 **	1.9 **
1454268_a_at	Cyba	cytochrome b-245, alpha polypeptide	1.6 *	1.8 **
1448620_at	Fcgr3	Fc receptor, IgG, low affinity III	1.5 *	1.7 **
1460330_at	Anxa3	annexin A3	1.4 *	1.6 **
1421792_s_at	Trem2	triggering receptor expressed on myeloid cells 2	1.5 **	1.5 *
1418580_at	Rtp4	receptor transporter protein 4	2.0 *	2.0 **
1443745_s_at	Dmp1	dentin matrix protein 1	1.6 *	1.9 **
1423547_at	Lyz2	lysozyme 2	2.9 **	2.4 *
1427076_at	Mpeg1	macrophage expressed gene 1	1.6 *	2.0 **
1450792_at	Tyrobp	TYRO protein tyrosine kinase binding protein	1.6 *	1.8 **
1434342_at	S100b	S100 protein, beta polypeptide, neural	1.2 *	1.7 **