

Supporting Information

A Facile Solid-Phase Route to Renewable Aromatic Chemicals from Biobased Furanics

Shanmugam Thiyagarajan, Homer C. Genuino, Jan C. van der Waal, Ed de Jong,* Bert M. Weckhuysen, Jacco van Haveren, Pieter C. A. Bruijnincx,* and Daan S. van Es*

anie_201509346_sm_miscellaneous_information.pdf anie_201509346_sm_Movie_S1.m4v anie_201509346_sm_Movie_S2.m4v

Supporting Information

1. Experimental Section

1.1. Synthesis of hydrogenated Diels-Alder (DA) adducts

All the hydrogenated DA adducts were prepared according to the method reported recently, see ref [9a] of main manuscript for details.

1.2. Zeolite materials

The zeolite catalysts used in this study were H-Beta (SiO₂/Al₂O₃=25, CP814E), H-Y (SiO₂/Al₂O₃=5.2, CBV600), H-VUSY (SiO₂/Al₂O₃=11.5, CBV712), and H-SDUSY (SiO₂/Al₂O₃=32.3, CBV700), which were all obtained from Zeolyst International. All zeolite materials were pretreated by heating them in air overnight at 550 °C.

1.3. Catalyst characterization

Powder X-ray diffraction (XRD) patterns of the catalyst samples were obtained on a Bruker-AXS D2 Phaser powder X-ray diffractometer with Cu-K α X-ray radiation (λ =1.5418 Å) operated at 30 kV and 10 mA. The textural properties of the samples were determined using a Micromeritics Tristar 3000 set-up. The N₂ adsorption and desorption experiments were conducted at 77 K after initial pretreatment of the samples by degassing at 300 °C for 12 h under a N₂ flow. The surface area was determined using the Brunauer-Emmett-Teller (BET) method. The total pore volume was determined from the single point adsorption and the micropore volume was determined from the t-plot analysis. The pore size/diameter was derived from the adsorption isotherm by the Barrett-Joyner-Halenda (BJH) method. The acidity of the catalysts was evaluated using ammonia temperature-programmed desorption (NH₃-TPD) on a Micromeritics ASAP 2920 instrument. Typically, the sample (100 mg) was placed in a quartz reactor. The zeolite was dried in a He flow by heating with a temperature ramp of 5 °C min⁻¹ to a maximum temperature of 600 °C to remove adsorbed water and chemisorbed species. Subsequently, the sample was cooled to 100 °C and NH₃ (10% in Ar) pulses were applied. The sample was then heated to 700 °C (5 °C min⁻¹) to induce desorption of NH₃ under flowing He. The desorbed NH3 was quantified using a TCD detector. The amount of ammonia desorbing at characteristic temperature above 100 °C is taken as the total concentration of acid sites. Thermal gravimetric analysis (TGA) of the catalysts was performed on a Perkin-Elmer Pyris 1 apparatus. The sample was initially heated to 50 °C for 10 min and then to 700 °C (10 °C min⁻¹) in a 10 mL min⁻¹ flow of oxygen to burn off any carbonaceous deposits formed.

Selected trace metals (Fe, Zn, V, Ni, and Cu) in fresh, calcined zeolite Y samples were analyzed using inductively coupled plasma atomic emission spectroscopy (ICP-AES, Spectro Acros) after extraction with hydrofluoric acid.

1.4. Catalytic testing and regeneration

The catalytic performance of solid acid catalysts were tested using a Kugel-rohr glass oven (Buchi, B-585). In a typical reaction, 0.1 g of **2** and 0.1 g catalyst (1:1 wt%) were loaded in a round-bottom flask and then mounted in the center of the preheated reactor. The mixture was stirred at 30 rpm under N₂ atmosphere. After the reaction, the solid acid catalyst was washed several times with chloroform at 45 °C and the catalyst was recovered by centrifugation. The combined organic extracts were evaporated under reduced pressure to obtain the crude products. Conversion and product yields were calculated^{9a} from the ¹H NMR data (Varian 400-MR spectrometer) of the crude mixture using CDCl₃ (99.8 atom%, Sigma-Aldrich) and 1,4-dinitrobenzene (99%, Sigma-Aldrich) as solvent and internal standard, respectively. Catalyst regeneration of H-Y catalyst was performed by drying the spent catalyst overnight at 60 °C followed by 120 °C for 2 h, and finally at 550 °C for 6 h in air to again obtain a white-colored material.

Figure S1. Photograph of Kugelrohr vessel filled with substrate and zeolite.

Figure S2. NH₃-TPD profiles of the catalysts: (A) H-Beta, (B) H-Y (fresh), (C) H-Y (after 3rd reuse), (D) H-VUSY, and (E) H-SDUSY.

Figure S3. N₂ adsorption (circles) and desorption (squares) isotherms of the catalysts: (A) H-Beta, (B) H-Y (fresh), (C) H-Y (after 3rd reuse), (D) H-VUSY, and (E) H-SDUSY.

Figure S4. XRD patterns of the catalysts: (A) H-Beta, (B) H-Y (fresh), (C) H-Y (after 3rd reuse), (D) H-VUSY, and (E) H-SDUSY.

Figure S5. TGA profiles of fresh, spent (after 3rd reuse), and regenerated (calcined, after 3rd reuse) H-Y catalysts.

Table S1. Concentration (mg kg⁻¹) of selected trace metals in commercial zeolite Y samples analyzed by ICP-AES.

Zeolite Y	Cu	Fe	Ni	v	Zn
H-Y	20	101	2	< -0.4	18
H-VUSY	14	75	1	< -0.4	10
H-SDUSY	< -1.3	90	2	< -0.5	8

Table S2. Catalytic aromatization of hydrogenated Diels-Alder adducts in the solid-phase route using H-Y catalyst at 50% (w/w) catalyst loading.^[a]

Temp. (°C)	× ° ° °	Conversion (mol %) ^[b]	Molar yield [mol %] (Selectivity [mol %]) ^[b]					Mole
			Х О СООН		Х СООН	х соон		balance ^[c]
150	X=CH ₃ ; Y=H	97	59 [61]	17 [17]	2 [2]	_[d]	_[d]	81
175	X=CH ₃ ; Y=H	98	42 [43]	32 [32]	6 [6]	_[d]	2 [2]	84
200	X=CH ₃ ; Y=H	88	16 [18]	37 [43]	8 [9]	3 [4]	4 [4]	80

[a] Conditions: 0.1 g of **2**, 0.05 g solid acid catalyst, 120 min. [b] Calculated by q-NMR using 1,4-dinitrobenzene as internal standard. [c] Mole balance determined from the total number of moles calculated from the crude mixture after the reaction by ¹H-NMR analysis. [d] Not observed.

Table S3. Aromatization of hydrogenated Diels-Alder adduct **2** and product yields as a function of time at 200 °C over H-Y at 1:1 w/w ratio.^[a]

Time (min)	Conversion (mol %) ^[b]	х о соон	X Y O	Х ССООН	х соон		Total aromatics yield (4+5+6, %)	Mole balance ^[c]
5	100	59	16	9	5	4	30	93
15	100	42	21	14	5	5	40	87
30	97	10	46	13	5	6	64	83
60	100	8	47	14	8	5	69	82
90	100	6	51	13	7	6	71	83
120	100	0	61	12	7	6	80	86

[a] Conditions: 0.1 g of **2**, 0.1 g solid acid catalyst, [b] Calculated by q-NMR using 1,4-dinitrobenzene as internal standard. [c] Mole balance determined from the total number of moles calculated from the crude mixture after the reaction by ¹H-NMR analysis.

Movie S1. Solid-phase aromatization of hydrogenated Diels-Alder adduct in Kugelrohr oven in the presence of H-Y zeolite (1:1 wt%) as catalyst - in action.

Movie S2. H_2 in the aromatization of hydrogenated Diels-Alder was detected using a H_2 detector (LC10) - in action.