SUPPLEMENTARY MATERIAL

1 2

A Multifunctional Theranostic Nanoagent for Dual-Mode Image-Guided 3 Synergistic HIFU-/Chemo Cancer Therapy 4 Nan Zhang^{1, #}, Xiaojun Cai^{2, #}, Wei Gao¹, Ronghui Wang¹, Chunyan Xu¹, Yuanzhi Yao

- 5
- ¹, Lan Hao ¹, Danli Sheng ¹, Hangrong Chen ^{2*}, Zhigang Wang ^{1*}, Yuanyi Zheng ^{1*} 6
- ¹. Second Affiliated Hospital of Chongqing Medical University & Chongqing Key 7 Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China. 8
- ². State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, 9
- Shanghai Institute of Ceramics, Chinese Academy of Sciences 10
- [#] Nan Zhang and Xiaojun Cai are co-first authors who contributed equally to this study 11
- * Prof. Hangrong Chen, Yuanyi Zheng and Zhigang Wang are co-corresponding 12 authors 13

Address: 14

Second Affiliated Hospital of Chongqing Medical University & Chongqing Key 15 Laboratory of Ultrasound Molecular Imaging, 74 Linjiang Road, 400016, Chongqing, 16 China 17

TEL: 86-023-63693709 18

E-MAIL: zhengyuanyi@cqmu.edu.cn 19

Figure S1. The DOX release curves in HMPBs-DOX/PFH group and HMPBsDOX group with HIFU exposure. An obvious rise was exhibited in
HMPBs-DOX/PFH group at 5 h for HIFU exposure.

5

1

6

7

Figure S2. Cell Viability of HMPBs with different concentration.

1

Figure S3. Viability of MB231 cells after incubated with saline, DOX,
HMPBs-DOX, HMPBs-PFH, HMPBs-DOX-PFH for 18 h with and without FUS
exposure by using 1 MHz transducer at 2 W/cm² in 60 s, respectively.

5

Figure S4. B-Mode and PA-Mode images of HMPBs-DOX/PFH, HMPBs-DOX
and HMPBs before and after phase transition at different time-points (pre, post 2 s, 20
s, 40 s, 60 s, 80 s, 100 s). The US and PA imaging showed no distinct change between
the HMPBs-DOX and HMPBs groups. It was found that as the heating time
increasing, the echo intensity value of the B-mode images in the HMPBs-DOX/PFH

group rapidly increased for the initial 20 s and then stabilized after 20 s. As the heating time increased, the PA signal intensity of HMPBs-DOX/PFH group also kept increasing during the heating process, from 1.067±0.467 a.u. at the beginning to 1.590±0.315 a.u. after heating for 100 s. This enhancement was with a statistically higher amplitude than that of HMPBs group (from 0.766±0.375 a.u. to 0.794±0.361 a.u.) and HMPBs-DOX group (from 0.814±0.341 a.u. to 0.775±0.395 a.u.).

Figure S5. Echo Intensity (EI) in B-Mode and PA signal intensity before and after HIFU exposure at different time points. Echo intensity value of B-mode in HMPBs-DOX/PFH group rapidly increased from 17 ± 5.657 to 113 ± 8.485 . PA signal intensity in HMPBs-DOX/PFH group apparently increased from 1.067 ± 0.467 a.u. to 1.590 ± 0.315 a.u..

13

7

14

Figure S6. Digital photos of ablated rabbit livers exposed to HIFU at 120 W for
 5 s (left) and exposed to NIR (right) under the same power of exposure after injection
 of 0.2 mL HMPBs-DOX/PFH, respectively.