
 

Supplementary Figure 1. General strategy to classify genes and identify TSGs. 

 

  



 

Supplementary Figure 2. EE patterns of validated EECTPs (7 novel) in our 24 LUAD 

samples. 

Red indicates extremely highly expressed samples, and blue indicates other samples. The 

depth of color indicates the degree of expression level. Because the expression of MEIOB of 

sample 130717001 approaches the extremely-high expression criteria and its co-factor 

SPATA22 is validated, we consider it as a validated EECTP and include it in the further 

functional assay.  



  



Supplementary Figure 3. The association between SMG mutation ratio and number of 

activated EECTPs. 

(a) The association of SMG mutation ratio and the number of activated EECTPs. 

(b) The association of EECTPs mutation ratio and the number of activated EECTPs. 

(c) The association of SMG mutation ratio (exclude mutations in TP53) and the number of 

activated EECTPs. 

  



 

 



 

 

Supplementary Figure 4. SMGs in which mutations are significantly associated with the 

number of activated EECTPs. 

(a) The number of activated EECTPs is significantly higher in patients with TP53 mutations 

in multiple cancers. 

(b) BRCA SMGs in which mutations are significantly associated with the number of 



activated EECTPs. 

(c) PIK3CA is consistently associated with the activation of EECTPs in multiple molecular 

subtypes of BRCA. 

The box plot displays the first and third quartiles (top and bottom of the boxes), the median 

(band inside the boxes), and the lowest and highest point within 1.5 times the interquartile 

range of the lower and higher quartile (whiskers).  



 

Supplementary Figure 5. Negative correlation between promoter methylation level and 

activated expression of RHOXF1 and VCX3B. 

The box plot displays the first and third quartiles (top and bottom of the boxes), the median 

(band inside the boxes), and the lowest and highest point within 1.5 times the interquartile 

range of the lower and higher quartile (whiskers).  



 Supplementary Figure 6. Mutually exclusive EE patterns of MEIOB and SPATA22 in other tumor types with MEIOB or SPATA22 activation. 

   



 

Supplementary Figure 7. Detailed results of the functional assay of MEIOB/LINC00254 in A549 cell lines. 

(a) and (f). Relative expression of MEIOB and LINC00254 in the differently treated A549 cells. 

(b-e). Overexpression of MEIOB promoted A549 growth (colony formation, growth curve and EdU staining), migration and invasion. Overexpression of 

LINC00254 led to the opposite results. 



(g-j). Knockout MEIOB reduced growth, migration and invasion of A549 cells. 

Error bars represent s.e.m, n=5. * represent P<0.05 compared with the vector control. ** represent P<0.001 compared with the vector control. All of the 

experiments were repeated three times. 

 

  



 

Supplementary Figure 8. Relative expression of MEIOB/LINC00254 in lung cancer cell lines 

and protein blot of A549 cells knocked out or overexpressed with MEIOB/LINC00254. 

(a) Relative expression of MEIOB in lung cancer cell lines. 

(b) Relative expression of LINC00254 in lung cancer cell lines. 

(c) Overexpression of LINC00254 reduced the expression of MEIOB in A549 cells. 

(d) Uncropped scans of western blots in (c). 



  



 

Supplementary Figure 9. Distribution of SPM values Calculated from each database. 

 

  



Supplementary Tables 

Supplementary Table 1. Public datasets used in this study. Detailed summary of samples was listed in the Supplementary Data 1. 

Database Name Version or Web Sites Platform Data Type 
Sample 

Type 

Sample 

Size 

GTEx project phs000424.v3.p1 Illumina HiSeq/GAII RNA-seq Processed (FPKM) Normal 175 

Illumina Human Body 

Map 2.0 
E-MTAB-513 Illumina HiSeq RNA-seq Raw (Fastq) Normal 14 

Human protein map 
http://humanproteomemap.

org/ 
LC-MS/MS 

Processed (Normalized spectral 

counts) 
Normal 16 

Fantom release 5 Cap Analysis of Gene Expression Processed (Expression matrix) Normal 38 

Encode Mar 2012 Freeze Reduced Representation Bisulfite Seq Processed (Sites) Normal 15 

TCGA 
Broad GDAC Firehose 

(2014-07-15) 
Illumina HiSeq RNA sequencing Processed (RSEM) Tumor 6638 

TCGA Pancan (syn1729383) 
Illumina HiSeq whole-exome 

sequencing 
Processed (MAF) Tumor 2315 

TCGA TCGA data portal 
Illumina Infinium 

HumanMethylation450 BeadChip 
Raw (idat) Tumor 2682 

TCGA TCGA data portal Affymetrix SNP6.0 array 
Processed (focal CNV) & Raw 

(CEL, LUAD) 
Tumor 3973 

mitranscriptome 
http://www.mitranscriptom

e.org 
Illumina HiSeq RNA sequencing 

Processed (normalized read 

counts) 
Tumor - 

lncrnator 
http://lncrnator.ewha.ac.kr/i

ndex.htm 
Illumina HiSeq RNA sequencing Processed (FPKM) Tumor - 

  



Supplementary Table 2A. Sequences of sgRNAs 

Gene 

name 
sgRNA sequence(5’-3’) 

MEIOB 
5’-ATGCGTCTCAACCGTCTCTTTCTGACAGCTTTAGTTTTAGAGCTAGAA

ATAGCAAG(forward) 

 

5’-ATGCGTCTCGAAACGCACATTTTGTAAATGCAGCGGTGTTTCGTCCTT

TCCACAAG(reverse) 

LINC00

254 

5’-ATGCGTCTCGAAACACCGCCCATCAGGTTGTTTCGGTGTTTCGTCCTTT

CCACAAG(forward) 

  
5’-ATGCGTCTCAACCGAAAATAAATGGGGTTTAGGGTTTTAGAGCTAGA

AATAGCAAG(reverse) 

 

Supplementary Table 2B. Primers for amplifying sgRNA target site and sequencing 

Gene name Primer sequence(5’-3’) Amplicon (bp) 

MEIOB 5’-GCAACCTGTTACCACTTCA(forward) 481bp 

 

5’-CTTGAGAATTACGAACTGTGTC(reverse) 

 hL254 sg12 5’-CTCCATATCAACTCCACATTAC(forward) 421bp 

 

5’-GGAATCACTGTTGTGACATT(reverse) 

 hL254 sg34  5’-GTACCAATCTGCCAGTCT(forward) 651bp 

  5’-TCAGAGCTTGAGAACCTATT(reverse)   

  



Supplementary Methods 

mRNA expression quantification in GTEx and Illumina Human Body Map 2.0 

Gene and transcript expression profiles (evaluated by FPKM value) of 24 types of normal 

tissues collected from 175 samples were downloaded from the GTEx data portal 

(http://www.gtexportal.org/, GTEx Analysis Pilot Data 2013-01-31, dbGaP Accession 

phs000424.v3.p1, Supplementary Table 1). We used the median FPKM of each tissue for 

SPM calculation.  

To estimate the expression of the non-coding RNAs (ncRNAs) in Illumina Human Body Map 

(HBM) and compare with the ncRNAs with testis-specific expression patterns (TS-ncRNAs) 

identified by the GTEx, we downloaded raw FASTQ files from E-MTAB-513 and performed 

a comprehensive RNA-seq analysis on 14 normal tissues from HBM. Initial sequence quality 

was evaluated using FASTQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). 

Cutadapt (http://code.google.com/p/cutadapt/) was used to trim Illumina sequencing adaptors 

and poor-quality bases with a quality score of 20 and discard reads with a length below 30 bp 

after trimming. Reads were mapped to the reference genome (GENCODE Version 19, 

http://www.gencodegenes.org/releases/19.html) using TopHat2 
1
 (v2.0.9) with default 

parameters. Reference genome annotation files and the transcriptome reference gene set were 

downloaded from the GENCODE v19 databases. Cufflinks 
2
 (v2.2.1) was used to assemble 

transcripts and to estimate expression abundances with the parameter “-G.”  

Database combination and gene annotation 

In this study, ENSEMBL ID from GENCODE v19 was regarded as the official indicator for 

further analysis. All databases annotated by other references were re-annotated by an R 

package biomaRt
3, 4

. Any genes/proteins that failed to annotate unambiguously were excluded 

from the subsequent analysis. 

Methods to evaluate testis-specific genes (TSGs) 

In this study, the specificity measure 
5
 (SPM) was used to evaluate the testis-specific 

expression pattern.  

Each gene expression profile is transformed into a vector : 

http://www.gtexportal.org/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://code.google.com/p/cutadapt/
http://www.gencodegenes.org/releases/19.html


𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥𝑡𝑒𝑠𝑡𝑖𝑠)       [1] 

where n is the number of tissues in the profile. Similarly, a vector 𝑋 can be generated to 

represent the gene expression in testis: 

𝑋𝑡𝑒𝑠𝑡𝑖𝑠 = (0, 0, … , 0, 𝑥𝑡𝑒𝑠𝑡𝑖𝑠)       [2] 

SPM is the cosine value of the intersection angle θ between vectors 𝑋𝑡𝑒𝑠𝑡𝑖𝑠 and 𝑋 in high 

dimensional feature space. This variable is calculated by the following expression: 

𝑆𝑃𝑀 = cos θ =
𝑋𝑡𝑒𝑠𝑡𝑖𝑠∙𝑋

|𝑋𝑡𝑒𝑠𝑡𝑖𝑠|∙|𝑋|
       [3] 

where |𝑋𝑡𝑒𝑠𝑡𝑖𝑠| and |𝑋| are the length of vectors 𝑋𝑡𝑒𝑠𝑡𝑖𝑠 and 𝑋, respectively. SPM values 

range from 0 to 1, with values close to 1 indicating a major contribution to gene expression in 

a testis (vector 𝑋𝑡𝑒𝑠𝑡𝑖𝑠) relative to all other tissues (vector 𝑋). Testis-specific genes were 

defined as genes with SPM higher than 0.9, thus including both testis-restricted and 

testis-selective genes. 

Protein expression quantification in human protein map (HPM) 

Normalized spectral counts data were downloaded from 

http://www.humanproteomemap.org/download.php. Because the SPM distribution calculated 

from protein spectral counts was similar to the SPM distribution calculated from mRNA 

abundance (Supplementary Figure 9), we chose the same cutoff (0.9) to identify testis-specific 

proteins (TSPs). 

Enrichment analysis of testis-specific regulatory elements (TSREs) 

In this study, we performed enrichment analysis to evaluate the relationship between the 

TSREs and the TSGs. Four types of regulatory elements were included in the analysis 

(promoter, methylation level, ncRNA and enhancer). 

Genes from C2 and C4 groups were considered as testis-specific non-coding RNAs 

(TS-ncRNAs) in our analysis. To avoid ambiguous mapping which derived from overlapping 

exons of protein-coding genes, we excluded ncRNA that overlapped with the exons of 

protein-coding genes in the same strand.  

The activity of promoters and enhancers was estimated by Cap Analysis of Gene Expression 

http://www.humanproteomemap.org/download.php


(CAGE) from the Fantom project
6
. We downloaded CAGE expression levels 

(http://fantom.gsc.riken.jp/data/) to reflect the activity of regulatory elements and calculated 

SPM values for each promoter/enhancer to identify testis-specific activity (SPM cutoff: 0.9).  

Beta values were downloaded from human Reduced Representation Bisulfite Sequencing 

(RRBS) of the ENCODE project (http://genome.ucsc.edu/ENCODE/) to evaluate methylation 

level. Only sites with coverage greater than 5 were used for evaluation. Thus, 577,925 sites 

had beta values in all 15 samples and were used for the definition of the testis-specific 

methylation site (TSMS). Because of the bimodal distribution of beta value, we could not 

apply the SPM method. In our study, we defined sites with 25% lower beta value
7, 8

 in the 

testis than in other normal tissues as TSMS.  

mRNA expression quantification in TCGA data 

We obtained level 3-normalized TCGA RNA-seqV2 expression quantification data from 

Firehose at the MIT Broad Institute 

(https://confluence.broadinstitute.org/display/GDAC/Home, 2014-07-15 release). Twenty 

cancer types with more than 100 samples were included in the identification of CT genes. 

Gene expression was quantified for the transcript models corresponding to the TCGA GAF2.1 

using RSEM and normalized within sample to a fixed upper quartile. When defining 

extremely highly expressed (EE) patterns, expression values of zero were set to one and all 

data were log2 transformed.  

Sample preparation and mRNA expression quantification in the NJMU lung 

adenocarcinoma (LUAD) tumor/normal data 

To validate the extremely high expression (EE) patterns of identified EECTPs, we performed 

RNA sequencing using Illumina sequencing technology on poly(A)-selected RNA from 24 

lung adenocarcinoma samples and their adjacent normal tissues in the NJMU study. Samples 

were collected from Affiliated Hospitals of Nanjing Medical University. Tissues samples 

were preserved using RNA-later solution. HE-stained sections from each sample were 

subjected to independent pathology review to confirm that the tumor specimen was 

histologically consistent with LUAD (>70% tumor cells) and that the adjacent tissue 

http://genome.ucsc.edu/ENCODE/
https://confluence.broadinstitute.org/display/GDAC/Home


specimen contained no tumor cells. Total RNA was extracted from cell lines and tissue 

samples using the RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s instructions. The extracted RNA samples were analyzed using an Agilent 2100 

Bioanalyzer system (Agilent Biotechnologies, Palo Alto, USA) with the RNA 6000 Nano 

Labchip Kit. Only samples of high-quality RNA (RNA Integrity Number≥7.5) were used in 

the subsequent mRNA sample preparation for sequencing. PolyA-minus RNAs were 

fractionated from total RNA samples and RNA-seq libraries were generated by 

RNA-fragmentation, random hexamer-primed cDNA synthesis, linker ligation and PCR 

amplification using a TruSeq
TM

 RNA Sample Prep Kit (Illumina, Inc.). The purified DNA 

libraries were sequenced with Illumina HiSeq1500 platform (paired-end, 100 base).  

Quality control processes followed the same protocols for handling RNA-seq data in normal 

tissues. Gene expression was quantified for the transcript models corresponding to the 

GENCODE v19 using RSEM and normalized within sample to a fixed upper quartile.  

The definition of EE and activated EECTG/Ps 

For each EECTG/EECTP, all samples were classified as activated samples or inactivated 

samples based on whether their expression exceeded the extremely high expression cutoff 

(𝑀             𝑖 𝑒     𝑛𝑡𝑠    𝑆           𝑖 𝑒     𝑛𝑡𝑠) and were recoded as 1 and 0 

respectively. For each sample, number of activated EECTPs (count of EECTPs which were 

coded as 1) was used to represent the degree driven by EECTPs. In our LUAD validation, 

because the expression of MEIOB of sample 130717001 approaches the extremely-high 

expression criteria and its co-factor SPATA22 is validated, we consider it as a validated 

EECTP and include it in the further functional assay. 

Obtaining and processing somatic mutation data sets 

As described in the result sections, we obtained somatic mutation information to explore the 

relationship between the EE pattern of EECTPs and somatic mutations. Mutation data were 

downloaded from the Synapse platform (syn1729383) as “maf” files within the context of the 

PANCANCER project. Only cancer types with more than 100 samples with both expression 

and mutation data were included in the analysis, and EECTPs were redefined using data of 



platform overlapped samples. Impact scores given by the IntOGen-mutations Web discovery 

tool (http://www.intogen.org/search) were used to evaluate the potential functions of 

mutations.  

Significantly mutated genes (SMGs) of each cancer were obtained from Supplementary Table 

4 of a previously published paper
9
. The mutation ratio represented the degree of samples 

driven by SMG mutations and was calculated as the ratio of the mutation number in SMGs 

and the mutation number in all genes. Driver summary of papillary thyroid carcinoma were 

obtained from the Supplementary Table 2 of previous study
10

. 

Linear regression was used to evaluate the association between the mutation ratio and 

activated number of EECTPs. For each SMG, a Wilcoxon’s rank sum test was used for the 

statistical comparison of the activated EECTP number between mutated and non-mutated 

samples. Fisher’s exact test was employed to test mutually exclusive patterns between the 

SMGs’ mutations and EECTPs’ EE patterns. P-values were adjusted by Benjamini–Hochberg 

false discovery rate (FDR-BH). PAM50 subtypes were obtained from the related data from a 

previous paper 
11

. 

Obtaining and processing methylation data sets 

Seven cancer types had more than 100 samples with both expression and methylation data 

were included in the analysis, and EECTPs were redefined using data of platform overlapped 

samples. We downloaded Illumina raw idat-files produced by the Infinium 

HumanMethylation450 BeadChip Kit of these cancer types from the TCGA data portal 

(https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp) and called the methylation levels (beta 

value). The default RnBeads 
12

 workflow was executed by running the rnb.run.analysis (...) 

command to perform quality control and preprocessing module. Because many CT genes are 

located in the sex chromosomes, methylation data in sex chromosomes were kept by using 

rnb.options to set global configuration parameters. We used beta values of the promoters from 

the output of RnBeads for further analysis. Mean beta values were used to evaluate the 

methylation level of multiple sites or regions.  

Linear regression was used to evaluate the association between the average promoter 

https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp


methylation level of EECTPs and the activated number EECTPs. For each EECTP, a 

Wilcoxon’s rank sum test was used for statistical comparison of methylation levels between 

activated and inactivated samples. P-values were adjusted by Benjamini–Hochberg false 

discovery rate (FDR-BH). 

The definition of CT-ncRNA and data processing 

We downloaded the expression quantification of differential expressed ncNRAs from 

lncrnator 
13

 and the expression quantification of cancer/lineage associated ncNRAs from 

Mitranscriptome 
14

. Because Mitranscriptome groups conducted de-novo assembly of 

ncRNAs, we annotated Mitranscriptome transcripts with GENCODE v19 according to the 

coordinates of transcripts. A Mitranscriptome transcript was successfully annotated if it 

overlapped with any GENCODE transcript and the proportion of overlapped region and 

transcript length of GENCODE was greater than 80%.  

Spearman’s rank correlation test was used to estimate the correlation coefficient of the 

expression of CT-ncRNAs and nearby protein-coding CT genes. The cancer types were 

included in the correlation analysis which had more than ten samples with both expression of 

CT coding genes and CT-ncRNAs. P-values were adjusted by Benjamini–Hochberg false 

discovery rate (FDR-BH). 

Obtain and processing copy number data 

We obtained level 3-focal copy number data from Firehose at the MIT Broad Institute 

(https://confluence.broadinstitute.org/display/GDAC/Home, 2014-07-15 release). Ten cancer 

types with MEIOB and SPATA22 activation were included in this analysis (Supplementary 

Data 1).  

For allele specific copy number analysis, raw .CEL files from genome-wide SNP6.0 

microarray data of LUAD samples were preprocessed by R package affy2sv
15

 and 

allele-specific copy number profiling was performed with ASCAT v2.1
16

.  

Scores of chromosomal instability scarring (SCINS) were calculated using the following steps 

of previous study
17

: 

1) The proportion of the genome consisting of AiCNA segments, save those segments that 

https://confluence.broadinstitute.org/display/GDAC/Home


encompass a whole chromosome, is calculated. 

2) The number of AiCNA segments greater than or equal to 8Mb in length but less than the 

length of a whole chromosome is counted. 

3) The measure of AiCNA segments (SAiCNA) is calculated by multiplying the proportion 

obtained in step 1) by the number of segments counted in step 2). 

4) The proportion of the genome consisting of CnLOH segments is calculated. 

5) The number of CnLOH segments greater than or equal to 4Mb in length, including those 

that span a whole chromosome, is counted. 

6) The measure of CnLOH segments (SCnLOH) is calculated by multiplying the proportion 

obtained in step 4) by the number of segments counted in step 5). 

7) The measure of AbCNA segments (SAbCNA) is calculated by counting the number of 

AbCNA segments greater than or equal to 8Mb in length. 

8) The measure of all allelic imbalanced segments (SAi) is calculated by summing SAiCNA 

and SCnLOH. 
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