Supplementary Information for the manuscript:

Phylogeny and physiology of the candidate phylum 'Atribacteria' (OP9/JS1) inferred from cultivation-independent genomics

Masaru K. Nobu^{1,†}, Jeremy A. Dodsworth^{2,3,†,*}, Senthil K. Murugapiran^{2,†}, Christian Rinke^{4,5}, Esther A. Gies⁶, Gordon Webster⁷, Patrick Schwientek⁴, Peter Kille⁷, John Parkes⁸, Henrik Sass⁸, Bo Barker Jørgensen⁹, Andrew Weightman⁷, Wen-Tso Liu¹, Steven J. Hallam⁶, George Tsiamis¹⁰, Tanja Woyke⁴, and Brian P. Hedlund^{2,11}.

¹Department of Civil and Environmental Engineering, University of Illinois at Champaign-Urbana, Illinois, 61802, USA

²School of Life Science, University of Nevada, Las Vegas, Nevada, 89154, USA

³Department of Biology, California State University, San Bernardino, California, 92407, USA

⁴DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA

⁵Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD 4072, Australia ⁶Department of Microbiology and Immunology and Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada ⁷Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AT, UK ⁸School of Earth and Ocean Sciences, Cardiff University, Cardiff, Wales CF10 3AT, UK ⁹Center for Geomicrobiology, Aarhus University, Ny Munkegade 114, Aarhus, DK-8000, Denmark ¹⁰Department of Environmental and Natural Resources Management, University of Patras, Agrinio, T.K. 30100, Greece

¹¹Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Nevada, 89154, USA

Supplementary Information

- Supplementary methods

- Table S1. Datasets and accession numbers.

- Table S2. Comparison of intraphylum median and minimum 16S rRNA gene identity in the 'Atribacteria' and other bacterial and archaeal phyla.

- Table S3. Markers associated with diderm cell envelope structure in 'Atribacteria'.

- Table S4. Putative conserved, monophyletic genes in 'Atribacteria'.

- Table S5. "Atribacteria" genes involved in propionate catabolism and energy conservation.

- Figure S1 comparing binning methods in TA biofilm.

- Figure S2. 16S rRNA gene phylogeny of OP9 and JS1 with all available near-full length sequences.

- Figure S3. Phylogenomic analysis of OP9, JS1 and selected other Bacteria using 83 conserved markers.

- Figure S4. Comparison of N-terminal regions of DERA and ribose 5-phosphate isomerase in 'Atribacteria' and close homologs.

- Figures S5-S12. Phylogenies of BMC cluster genes.

- Figure S13. Propionate degradation pathway in JS1-1 and JS1-2 lineages.

- List of contigs in metagenome bins.

Supplementary Methods

Sequencing and assembly of Aarhus Bay SAGs B17 and I22.

Cell extraction and cell sorting from Aarhus Bay sediments was as described in Lloyd et al. (2013). Single cells were lysed and genomic DNA amplified using multiple-strand displacement amplification (MDA); after screening with bacterial 16S rRNA gene PCR, two single cells were identified as JS1 (Lloyd et al., 2013) and these SAGs were re-amplified by MDA at Cardiff University. Three replicate MDA reactions were performed for each SAG, and the resulting DNA purified and pooled using Microcon centrifugal filters (Merck Millipore Ltd., Hertfordshire, UK) and eluted in 200 µl sterile TE buffer (Sigma-Aldrich, St. Louis, MO, USA). Sequencing of the SAG B17 was performed using a combination of the Roche 454 GS FLX+ System (525 bp mean read length) by CGR, University of Liverpool and Illumina MiSeg platform (Illumina Inc., San Diego, CA, USA) with 250 base paired-end reads at Edinburgh Genomics, University of Edinburgh. SAG I22 was sequenced by Illumina MiSeg platform with 250 base paired-end reads at Edinburgh Genomics, University of Edinburgh. Library preparation for Illumina MiSeg was carried out using the TruSeg DNA Sample Prep Kit following the manufacturer's recommendations and size selected to a mean insert size of approximately 300 bp PCR (SAG B17) using an E-Gel (Life Technologies, Grand Island, NY, USA) or 400 bp PCR (SAG I22) using a BluePippin instrument (Sage Science, Beverly, MA, USA). The MiSeg data were assembled for each individual SAG separately using SPAdes ver 2.5.1 (Bankevich et al., 2012) with a kmer size of 87 (-k 87) and with 'single-cell', 'mismatch correction', 'rectangles graph algorithm for repeat resolution' options (--sc --careful --rectangle). The 454 data for B17 SAG was assembled using Roche GS denovo Assembler ver 2.6 with 'use read tips' and 'expected depth' options (-urt -e 500). B17 contigs from SPAdes and Newbler were further merged with minimus2 (Somer et al., 2007) if contig overlap was greater than 40bp with a minimum percentage identity of 96 (options OVERLAP=40 and MINID=96) to generate the combined B17 assembly.

References for Supplementary Methods

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, *et al.* (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *J Comput Biol* **19**:455-477.

Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA, Steen AD, *et al.* (2013). Predominant archaea in marine sediments degrade detrital proteins. *Nature* **496**:215–218.

Somer DD, Delcher AL, Salzberg SL, Pop M. (2007). Minimus: a fast, lightweight genome assembler. *BMC Bioinfor* **8**:64.

Dataset	Type ¹	RAST ID ²	JGI IMG taxon ID	NCBI accession	Reference
Sakinaw Lake SAG co-assembly	SAG	6666666.54176	2527291521	AWNT00000000	Rinke <i>et al</i> . (2013)
Sakinaw Lake SAG 124	SAG	6666666.100175	2264867201	ASLT00000000	Rinke <i>et al</i> . (2013)
Sakinaw Lake SAG 130	SAG	6666666.100178	2264867202	ASPA00000000	Rinke <i>et al</i> . (2013)
Sakinaw Lake SAG 136	SAG	6666666.100183	2264867203	ASPC00000000	Rinke <i>et al</i> . (2013)
Sakinaw Lake SAG 217	SAG	6666666.54177	2264867208	AQRY00000000	Rinke <i>et al</i> . (2013)
Sakinaw Lake SAG 219	SAG	6666666.100187	2264867210	AQSW00000000	Rinke <i>et al</i> . (2013)
TA biofilm SAG 167	SAG	6666666.54173	2264867204	ASLS00000000	Rinke <i>et al</i> . (2013)
TA biofilm SAG 231	SAG	6666666.54174	2264867212	ASOY00000000	Rinke <i>et al</i> . (2013)
TA biofilm SAG 232	SAG	6666666.54182	2264867213	AQRR00000000	Rinke <i>et al</i> . (2013)
Etoliko Lagoon SAG 227	SAG	6666666.54175	2264867211	ASOZ0000000	Rinke <i>et al</i> . (2013)
Aarhus Bay SAG B17	SAG	6666666.54178	None	CDPL01000000	Lloyd et al. (2013); this study
Aarhus Bay SAG 122	SAG	6666666.94538	None	CDPM01000000	Lloyd et al. (2013); this study
LHC SAG co-assembly	SAG	6666666.23228	2527291510	APKF00000000	Dodsworth et al. (2013)
GBS 77CS MG bin	MG bin	6666666.23137	3300000106	APCU00000000	Dodsworth et al. (2013)
GBS 77CS MG bin, coverage-filtered bin	MG bin	6666666.94617	3300000106 ³	None	This study
TA biofilm JS1 MG bin	MG bin	6666666.54181	3300001095 ³	None	This study
Sakinaw Lake JS1 MG bin	MG bin	6666666.54179	2263328000 ³	None	This study
GBS 77CS cellulolytic enrichment 77CS	MG	None	3300000106	None	Peacock et al. (2013)
Terephthalate-degrading biofilm	MG	None	3300001095	None	Nobu <i>et al.</i> (2014)
Sakinaw Lake metagenomic (120m)	MG	None	2263328000	None	Unpublished
Sediment from Etoliko Lagoon, Greece	MG	None	2149837013	None	Unpublished

Table S1. SAG and metagenome datasets used or generated in this study.

¹Abbreviations: MG, metagenome

²All SAG and metagenome bin datasets are publicly available on the guest account on RAST (http://rast.nmpdr.org/) by logging in with username and password = "guest".

³These bins represent a subset of contigs in the corresponding metagenomes, whose accession numbers are given. Individual contig names for each of these bins are appear at the end of the supplementary information, and are also publically available via RAST (userame and password "guest") as indicated above. Table S2. Comparison of minimum and median % identity within members of various bacterial phyla.¹

	Number of	Number of	Minimum	Median %
Taxon name	members	comparisons	% identity	identity
Phylum Thermodesulfobacteria	7	21	88.1	93.7
Phylum <i>Chlorobi</i>	11	55	87.5	93.6
Phylum <i>Cyanobacteria</i>	7	21	86.7	88.4
Phylum <i>Chlamydiae</i>	13	78	83.7	87.65
Phylum Actinobacteria	2086	2135467	81.2	89.4
Phylum Fusobacteria	35	595	80.7	90
Phylum Synergistetes	15	105	79.9	83.8
Phylum Crenarchaeota	45	990	79.7	86.5
Phylum Acidobacteria	8	28	78.8	82.45
Phylum <i>Nitrospira</i>	8	28	78.7	80.55
Phylum Deferribacteres	11	55	78	85.1
Phylum <i>Thermi</i>	59	1711	77.8	85.9
Phylum Thermotogae	29	406	76.9	82.3
Phylum Verrucomicrobia	32	496	76	82.8
Phylum <i>Aquificae</i>	26	325	75.7	82.1
Phylum Chloroflexi	15	105	74.2	77.8
Candidate Phylum 'Atribacteria'	74 4 ²	70784 ²	74.2	80.8
Phylum Planctomycetes	12	66	73.7	79.5
Phylum Firmicutes	1592	1266268	73.1	83
Phylum Spirochaetes	67	2211	72.3	78.1
Phylum Proteobacteria	2890	4174605	72.2	81.3
Phylum Tenericutes	176	15400	71.2	80.3
Phylum Bacteroidetes	633	200023	68.5	79.8
Phylum <i>Euryarchaeota</i>	241	28920	68.3	77.3

¹Data from Yarza *et al.* 2014 Table S1 except for values for Candidate Phylum 'Atribacteria' (highlighted in yellow).

²Restricted to pairwise comparisons between OP9 (112 sequences) and JS1 (632 sequences); median % identity when including comparisons within OP9 and JS1 is higher, due to oversampling of a few taxa.

European la marchia	Dama	()(T)	7.10	Occupation	Secretin-	Secretin/	EL.U.	F I-1
Example protein	BamA	(Yael)	TOIC	Secretin	N	TONB	FIGH	Figi
PFAM domain	PF07244	PF01103	PF02321	PF00263	PF03958	PF07660	PF02107	PF02119
SAG or MG bin ²								
TAbio SAG 232								
LHC SAG coassembly	2.7E-38		6.0E-36	4.6E-43	1.4E-09	4.1E-09	4.1E-32	
GBS 77CS MG bin	2.4E-38	5.2E-51	5.3E-37	1.1E-42	1.0E-08	2.2E-09	2.3E-30	2.6E-140
TAbio SAG 167			3.4E-21	7.8E-37	9.4E-20	1.3E-07		
TAbio SAG 231	5.5E-38							
TAbio MG bin	8.2E-39	7.4E-48	2.3E-21	4.9E-36	5.5E-20			
SL SAG coassembly	1.5E-38	4.3E-53						
SL SAG 124								
SL SAG 130	2.0E-37	2.0E-42		2.0E-40	1.2E-16	4.6E-07		
SL SAG 136			2.1E-53					
SL SAG 217		1.5E-17		8.8E-39	1.3E-16	9.4E-07		
SL SAG 219				7.7E-24				
SL MG bin			6.7E-54					
Aarhus SAG I22			1.3E-18	4.7E-41	8.0E-16	2.0E-07		
Etoliko SAG 227			1.9E-18					
Aarhus SAG B17								

Table S3. Markers¹ associated with a diderm cell envelope structure in 'Atribacteria' genomes.

¹E-values of the top hit pfams (PF) associated with the presence of an outer membrane

(Sutcliffe 2010) are shown.

²Abbreviations: MG, metagenome; SL, Sakinaw Lake.

Table S4. Putative conserved, monophyletic genes in 'Atribacteria', with estimated genome

coverage for each dataset shown in parentheses.

		0P9-1	0P9-1	0P9-2	JS1-1	JS1-1	JS1-1	JS1-1	JS1-1	JS1-2	JS1-2	JS1-3	JS1-3	JS1-4
		(96						1396)		_				_
		5 77CS meta (>95	CSAGco (>99%)	io SAG232 (7%)	SAGco (81%)	: meta (31%)	(SAG217 (23%)	ier SAK SAGs (6-7	hus SAGi22 (22%	io SAG231 (25%	io Meta (86%)	SAG227 (8%)	hus SAGB17 (7%)	io SAG167 (33%
Category/classification	Predicted function	8	목	₹	¥K.	¥	¥	듌	The second	₹.	₹	윮	Te	₹.
BMC cluster	BMC shell protein	v	~	-	v	0	Un	-	Ŷ	v	v		Ŷ	-
BMC cluster	BMCshell protein	Ŷ	Ŷ	¥	Ŷ				^	Ŷ	Ŷ		Ŷ	
BMC cluster	BMC shell protein	Ŷ	Ŷ	x	Ŷ					x	x		x	
BMC cluster	Predicted NADH:ubiguinone oxidoreductase (BMC)	x	x	x	x				x	x	x		x	
BMC cluster	BMC shell protein	x	x	x	x				x	x	x		x	
BMC cluster	NAD-dependent aldehyde dehydrogenases (BMC)	x	x	x	x	x			x	x	x		x	
BMC cluster	BMC shell protein	x	x	x	x						x		x	
BMC cluster	BMC shell protein	X	x	X	X				x		x		x	
BMC cluster	Ribose 5-phosphate isomerase RpiB (BMC)	x	x	x	х				x		x		х	
BMC cluster	Deoxyribose-phosphate aldolase (BMC)	x	х	х	х				х		х		x	
BMC cluster	Propanediol utilization protein (BMC)	x	x	х	х				x		x		x	
Regulation	Transcriptional regulator	x	x		х			х		х	х	x	x	
Protease	Clostripain family			x				х		х	х			
Cmetabolism	Glucuronate isomerase	X	х		х			х		х	х			
Cmetabolism	Uroporphyrinogen-III decarboxylase	x	x					х					x	
Cmetabolism	Predicted thioesterase - COG5496	x			х	х				х	х			
Redox balancing	Thioredoxin domain-containing protein			x						х	x	x		
Redox balancing	Electron bifurcating formate dehydrogenase, HylB subunit	x						х		х				
Cell envelope	Membrane carboxypeptidase (penicillin-binding protein)	x	x		х			х	x	х	x		x	
Cell envelope	Membrane proteins related to metalloendopeptidases	x	x					х	x	х	х			
Cell envelope	Outer membrane protein/protective antigen OMA87	x	x					х		x	x			
Cell envelope	S-layer homology domain	x	x	x	х			х		х	х			
Cell envelope	Organic solvent tolerance protein			x				x		x	x			
Cell envelope	integral membrane protein MviN	x	X	x			X	X	X	X	X			
Cell envelope/division	ATP-dependent metalloprotease FtsH	x			х	X		X		X	X	x		
Transport/secretion	Predicted exporters, RND superfamily	x	X		х	X					X	x	x	
Transport/secretion	Preprotein translocase subunit SecY	x	X		х	X		X			X			X
Transport/secretion	protein-export membrane protein, SecD/SecF family	x	X		х	х		х		х	X			
Transport/secretion	ABC-type transport system, periplasmic component	x	X		x			X	X	X	X		X	
Transport/secretion	Predicted ABC-type sugar transport system	x	X					х			X			
Transport/secretion	Type II secretory pathway, component PuID	X	X				X	x	X		X			X
Transport/secretion	Biopolymer transport protein	x	X	x				х			X			
Transport/secretion	ABC-type transport system, permease component	X	X					x		x	x			
Transport/secretion	Biopolymer transport proteins	X	X	x				х			X			
Transport/secretion	ABC-type sugar transport system, periplasmic component		X					X			X			
Housekeeping	DNA-directed RNA polymerase, beta' subunit	X	X		х			х			X			х
Housekeeping	DNA-directed RNA polymerase, beta subunit	X	X		x	x		x			x			
Housekeeping	ATPases involved in chromosome partitioning	X	X		X			X		х	X		X	x
Housekeeping	Single stranded DNA-binding protein (ssb)	X	X	X	X			x					X	
Housekeeping	uracii-DNA giycosylase, family 4	X	X	X			_	X		X	X		X	
Housekeeping	Thymidylate kinase	X	X	X	x			x	X		X			
Housekeeping	Argininosuccinate synthase	X	X	X				X			X			
Other/unknown	hypothetical protein	X	X		X			X		X		X	X	
Other/unknown	Protein of unknown function (DUF1329)	X	X		x					X	X	X	X	
Other/unknown	nypotnetical protein	X	X					X		X	X			
Other/unknown	Domain of unknown function (DUF1844)	X	X		x	X	X	X		X				
Other/unknown	Uncharacterized protein (AIP-grasp superfamily)	X	X	X							X	-		X
Other/unknown	Protein of unknown function (DUS2048)		-	X				X				X		
Other/unknown	Frotein of unknown function (DUF3048)	X		-	_		-	X			X			
other/unknown	nypotnetical protein	-	X					X					X	
Other/unknown	Uncharacterized protein conserved in bacteria		X					X					X	

Table S5. COGs, Pfams, and RAST protein-encoding gene (peg) numbers for genes predicted to be involved in propionate

catabolism and energy conservation in JS1-1 and JS1-2 datasets.

		- 1	v biofilm \G 231	v biofilm G bin	kinaw Lake assembly	kinaw Lake G bin	kinaw Lake \G 124	kinaw Lake \G 130	kinaw Lake \G 136	kinaw Lake \G 219	irhus Bay G I22	
Propionate catabolism	COG	Pfam	A SA	₹Ĕ	Sa co	Z Sa	Sa SA	Sa SA	Sa SA	Sa SA	Aa SA	-
Methylmalonyl-CoA decarboxylase, alpha subunit	COG4799	PF01039	601	1651	2116	83	np	192	1021	np	np	
Methylmalonyl-CoA decarboxylase, gamma subunit	COG4770	PF00364	603	np	2114	np	np	190	1019	np	np	
methylmalonyl-CoA epimerase	None	PF13669	600	np	2117	84	np	193	1022	np	np	
Biotin-(acetyl-CoA carboxylase) ligase	COG0340	PF03099	476	np	np	np	18	2	np	401	np	
Methylmalonyl-CoA mutase, N-terminal domain	COG1884	PF01642	597	706	1709	np	np	196	np	np	np	
Methylmalonyl-CoA mutase, C-terminal domain	COG2185	PF02310	598	707	1708	np	np	195	np	np	np	
Succinyl-CoA synthetase, alpha subunit	COG0074	PF00549	510	np	858	np	np	381	447	np	1050	
Succinyl-CoA synthetase, beta subunit	COG0045	PF00549	511	np	857	np	np	382	448-9	np	1049	
Fumarate hydratase	COG1027	PF10415	np	651	np	np	np	np	np	656	np	
Fumarate hydratase class I, C-terminal domain	COG1838	PF05683	np	1373	1764	np	np	1175	440	149	np	
Fumarate hydratase class I, N-terminal domain	COG1951	PF05681	np	np	1763	np	np	1176	441	150	np	
Pyruvate:ferredoxin oxidoreductase	COG0674	PF01558	394	np	np	np	np	1690	62	639	np	
2-oxoacid:ferredoxin oxidoreductases, gamma subunit	COG1014	PF01558	953	1059	8	np	np	1325	450	103	403	
2-oxoacid:ferredoxin oxidoreductases, beta subunit	COG1013	PF02775	954	1058	9	290	np	1326	451	104	404	
2-oxoacid:ferredoxin oxidoreductases, alpha subunit	COG0674	PF01855	955	1057	10	np	np	1327	452	105	405	
Succinate dehydrogenase/fumarate reductase	COG0029	PF02910	np	1020	388	np	np	1124	np	338	np	
Malate dehydrogenase	COG2055	PF02615	np	602	1505	np	np	np	40	np	np	
Pyruvate-formate lyase	COG1882	PF01228	188	84	927	93	np	np	802	831	323	
Pyruvate-formate lyase-activating enzyme	COG1180	None	189	85	928	np	np	np	801	832	324	
Electron transfer flavoprotein												
Electron transfer flavoprotein, alpha subunit	COG2086	PF01012	581	481	np	np	np	241	1156	396	719	
Electron transfer flavoprotein, beta subunit	COG2025	PF00766	582	482	np	np	np	242	1157	397	718	
Membrane-bound hydrogenase												
Hydrogenase nickel insertion protein HypA	COG0375	PF01155	831	528	228	np	np	1581	np	463	294	
Membrane-bound hydrogenase MbhA subunit	COG1863	PF01899	830	529	229	np	np	np	np	462	3	
Membrane-bound hydrogenase MbhB subunit	COG2212	PF04066	829	530	230	np	np	1584	np	461	4	
Membrane-bound hydrogenase MbhC subunit	COG1320	PF03334	828	531	231	np	np	1585	1353	460	np	

Membrane-bound hydrogenase MbhD subunit	None	None	827	532	232	np	np	1586	1354	459	np
Membrane-bound hydrogenase MbhE subunit	COG2111	None	826	533	233	np	np	1587	1355	458	1057
Membrane-bound hydrogenase MbhF subunit	COG2111	PF04039	825	534	234	np	np	1588	1356	457	1058
Membrane-bound hydrogenase MbhG subunit	COG1006	PF00420	824	535	235	np	np	1589	1357	456	610
Membrane-bound hydrogenase MbhH subunit	COG0651	PF00361	994	np	236	np	np	842	1358	455	611
Membrane-bound hydrogenase Mbhl subunit	None	None	995	np	237	np	np	841	1360	454	612
Membrane-bound hydrogenase MbhJ subunit	COG3260	PF01058	996	1897	238	np	np	840	1361	453	613
Membrane-bound hydrogenase MbhK subunit	COG3262	PF00329	997	1896	239	np	np	839	np	452	614
Membrane-bound hydrogenase MbhL subunit	COG0649	PF00346	998	np	240	np	np	836	np	451	615
Membrane-bound hydrogenase MbhM subunit	COG0650	PF00146	999	np	241	np	np	837	np	444	616
Membrane-bound hydrogenase MbhN subunit	COG1143	PF12838	1000	np	242	np	np	838	np	445	617
Electron-bifurcating formate dehydrogenase and											
associated genes											
Hydrogonaco liko cubunit HylC	COG1905	DE01257	1022,	655,	nn	nn	nn		1107	nn	nn
	001905	FT01257	1020	1876	np	ΠÞ	ΠÞ	00	1107	пр	пр
Hydrogenase-like subunit HylB	COG1894	PF01512	1021,	1734	nn	np	np	1485	1106	449	nn
	0001031	1101012	1019-18	1/51	ΠÞ	ΠP	ΠP	1105	1100	115	ΠÞ
HylA-Formate dehydrogenase fusion protein	COG3383	PF00384	1017	1956	np	51	np	1484	1114	450	np
Formate efflux transporter	COG2116	PF01226	1016	np	np	52	np	1483	1113	np	np
Molybopterin biosynthsis MobA	COG0746	PF12804	1015	279	1846	53	np	1482	1112	np	np
Formate dehydrogenase subunit D	COG1526	PF02634	1014	280	1845	54	np	1481	1111	np	np
Hydrogenase maturation factor HypB	COG0378	PF02492	1012	282	1843	55	np	1479	1109	np	618
, 8											

Abbreviations: UC, uncalled orf in RAST annotation. np, not present

Figure S1. Comparison of several techniques for defining a JS1 bin in the TA biofilm metagenome.

Figure S2. 16S rRNA gene phylogeny of OP9 and JS1. The number of sequences included for each lineage is indicated in parentheses.

Figure S3. Phylogenomic analysis of OP9/JS1 SAGs, metagenome bin datasets, and selected bacterial phyla branching near OP9/JS1 in analyses of larger datasets. Maximum likelihood phylogeny was calculated using Fasttree based on a set of 83 SCM in Bacteria with 100 bootstrap pseudoreplicates.

A	10	20	30	40	50	60	70	80
		.	.		1	1		11
gi 1169269 sp P43048.1						MTELNE	YIDHTNLSPS.	ATSKDI
gi 41033731 emb CAF18532.1					M	EIKSAEDLA	LIDHTILNPA	ATPSDV
gi 38372230 sp Q8EMT9.1						MEKRELV	IIDYTLLHPT.	ANKADI
gi 7673994 sp 083288.1						MELNA	YIDHTLLRPS	ASEAEV
gi 46576550 sp Q89ZF2.1					MEKKNINEVI	ANLSVEQLA	MIDHTFLKPF	GTAENI
gi 30749338 pdb 1J2W						MDLA	HIDHTLLKPT	ATLEEV
gi 23009149 ref ZP_00050306.1					MSDATGT	QPLDASGLA	REVDHTLLKPE	ATPADV
gi 42525964 ref NP_971062.1						MELNE	YIDHTLLKPT.	ASEKDI
gi 24636816 sp Q9RV25.1						MSLAS	SYIDHTLLKAT.	ATLADI
gi 48858467 ref ZP_00312421.1	L				MRKDE	SILDKNTVIS	MIDHAVLKPE	ATDNDV
gi 23113913 ref ZP_00099249.1						MRTMNLA	MIDHTLLKPE	ATEKDI
gi 38257534 sp Q88Z64.1						MKLNI	RYLDHTLLKPE	ATEQQI
gi 1169268 sp P44430.1						MTSNQLAG	YIDHTALTAE	KNEQDI
gi 50364936 ref YP_053361.1						MKLNE	CYIDHTLLKQD.	ATKAEI
gi 3913443 sp 026909.1					MVKM	NVETREELAS	SLIDHTNVRAD	ATENDI
gi 46576402 sp Q7MP37.1						MNI	YIDHTLLLAN	ATTKQI
gi 42525177 ref NP_970557.1						MQLSI	RYIDHTLLKPE	AQTAQI
OP9_cSCG.peg.1834	1	MNREELIERV	TKEVLARLQGV	SRSEEQRVRA	PQSSSECACD	LVLTPSDIA	RYIDHTLLRPD	ATRAMI
OP9_77CS.peg.1672	1	MNREELIERV	TKEVLARLQGV	SRSEEQRVRA	PQSSSECTCD	LVVTPSDIA	RYIDHTLLRPD	ATRAMI
JS1_TAbio_SAG232.peg.393	MNQ	EELITKITQE	VMKKFNEITGT	EKPSSVTKGK	RTVNECESGI	IINTPMDLA	PYIDHTLLKPD	AKQSQI
JS1_Sak_SAGco.peg.1694	MDIDKMDKKEL	IDKISDEIIS	KLKKTSSSDNL	SFKSDSGNKN	IQGSSVGGKI	QINTPADIA	IYIDHTLLKPD.	ATEAQV
JS1_Aarhus_SAGB17.peg.784		-MNEMDKKEL	INKISEEVISR	LKKIDKTDSI	STNDLERNNN	INSITPADVAL	RYIDHTLLKPE	ATEDQI
gi 34395642 sp Q877I0.1						MNKREIAI	RYIDQTNLKPY	ATKEDI
gi 22095574 sp Q8XIR2.1						MDKQQLAB	MIDHTILKPE	ADKASI
gi 1706363 sp P39121.2						MSLAN	IIDHTALKPH	TQKADI
gi 566000761 ref WP_023990385	5					MNIA	LIDHTLLRAD	ATKDEF
gi 517807074 ref WP_018977282	2					MNLAS	MIDHTLLRAD	AVEAEI
gi 496084215 ref WP_008808722	2					MKLNI	YIDHTLLKPE.	ATKEQI
gi 491031467 ref WP 004893153	3					MNIA	MIDHTLLKPE	ATKVQI

.

В	10	20	30	40	50	60	70	80
gi 152965884 ref YP_00136166	58			MTDLQWR	VVLAADEAGVS	YKDAIKADL	LKDPRVKEVL	DVGVNGDDD
gi 122612606 sp Q3LFG7 Q3LFG	7			MGFK	VAVAADAAGVI	YKEAIKADL	EADPRVDEVI	DVGIAPGE-
gi 81610879 sp Q6A5D5 Q6A5D5	j			MGLR	IVVAADPAAVE	YKDVVKADL	EADSRVDDVI	DVGVQAGDD
gi 74594794 sp Q5B0M3 Q5B0M3	[MSQSLR	IVFAADEAGQI	YKETLKEVL	SKNPNVSEVL	DVGVNSTSD
gi 81550224 sp Q9RJR1 Q9RJR1				-MTDKLR	IVVGSDDAGH	YKEALKODL	RGSALVAEVT	DVGVDADG-
gi 74603834 sp Q6BY53 Q6BY53				MSNIKLR	IVVGCDQAGY	YKEQIKKDL	ESNTNVEKVI	DVGVDSNGS
gi 74632993 sp Q6C393 Q6C393				MGFT	IVVGCDEAGVI	YKNRIKADL	EKSPRVDKVI	DVGVKASED
gi 74702033 sp Q4P9W0 Q4P9W0				-MAAPQQKWK	IAFGCDEAGVI	YKNALIKDF	EADARVESVI	DVGVPSNAD
gi 121783502 sp Q2H195 Q2H19	5			MSSPKWR	IVVGCDDAGV	YKNKIKADF	AADDRVASVI	DVGADD
gi 81412808 sp Q73QU1 Q73QU1				MK	IGFGSDHSGV	LKHILMEHV	RNKGYECV	DYGAADSKV
gi 220931175 ref YP_00250808	3			MKVIKNKQ	YVIGSDNAGY	LKEIIKELL	ESEGLEYE	DVGVDSDQD
gi 567925336 ref WP_02402800)5			MKK	VAIGCDHGGY	LKETLKLYL	TELGYEYL	DFGCKANE-
gi 500003248 ref WP_01168396	6		MAEDQ	LTALAPPERT	IAIGSDHGGFF	REALKPLL	EGLGLQVR	DVGV-NEEK
JS1_TAbio_SAG232.peg.392	MKKDSENTIRI	LNNVVNGLYSS	TITNQTNNL	PLNTKDKVLR	VAVGSDHGGFE	TKEKLKVFL	KELGYRVT	DVGTYNTE-
OP9_LHC_SAGco.peg.1835	MPERSFSRV	VQNVVGGLHAL	GTPPKTEPD	PVNQKDHVVR	VAIGSDHRGFE	AKEILKRYL	TSLGYRVY	DVGTFSGDQ
OP9_GBS_Meta.peg.1673	MPERSFSRV	VQNVVGGLHAL	GTPPKTEPD	PVNQKDHVVR	VAIGSDHRGFE	AKEILKRYL	TSLGYRVY	DVGTFSGDQ
JS1_TAbio_Meta.peg.1354	MSNDHVKI	IQNVVSGLHYA	DIPEEFKNN	EKAGSKV NW	VALGADHGGYE	AKEIISRFL	RGLGYRIT	DVGTYNKE-
JS1_Aarhus_SAGB17.peg.783	MTDKSNFKI	IDNVVSGLHST	TIPQKISSE	SNKVRIRVNG	VAIGADHGGFE	AKEIIKNYL	RTIGYRLT	DVGTFSKE-
JS1_Sak_SAGco.peg.1693	-MTDNINRIKI	IQNVVSGLYST	TTPEKVQPI	PNNVRDKVGC	VAIGSDHGGFE	AKEIIRDYL	RAIGYRVT	DVGTFSKD-
JS1_Aarhus_SAGI22.peg.1093	-MTDNINRIKI	IQNVVSGLYST	TTPEKAQPI	PNNVRDKVGC	VAIGSDHGGFE	AKEIIRDYL	RAIGYRVT	DVGTFSKD-
gi 122670312 sp Q4EM87 Q4EM8	87			MK	IAIGCDEMGYE	LKQTLITRL	KEKNIEFT	DFGSFENE-
gi 152979240 ref YP_00134486	9			MK	IAIGCDDAAYN	LKIELIKYL	ETLGIECD	DFGAGAGD-
gi 152979257 ref YP_00134488	6			MK	IAIGCDEAAYP	RLKVEIMKHL	DAIGVEYD	DFGAGEGD-
gi 116252293 ref YP_768131.1	.			MPATNR	IALSSDHAAIG	LRQAIAGHV	VAQGWIAV	DIGPTTPE-
gi 122612607 sp Q3LFG8				MR	IAMGSDHAGFE	LKEHLKGYL	QGKGHDVI	DVGTHSTE-
gi 122612605 sp Q3LFG6				MR	IAMGSDHAGFT	LKEHLKEYL	QGKGHEVI	DVGTHSTE-
gi 193885239 pdb 2VVR				MKK	IAFGCDHVGFI	LKHEIVAHL	VERGVEVI	DKGTWSSE-
gi 81388401 sp Q67LX4				MR	IAIGNDHVGTE	MKRAIAAHL	ESLGHEVV	NFGTDSTE-
gi 122672257 sp Q4EUA5				MK	IAIGNDHVGIE	LKPVIVAYL	QDLGHEVD	DFGAFSNE-

Figure S4. Multiple sequence alignment of predicted N-terminal regions of (A) DERA and (B) ribose-5-phosphate isomerase in OP9 and JS1, which are associated with BMC clusters, and closest homologs (not associated with BMC clusters). Extended N-terminal regions in BMC-

associated sequences suggest that these proteins are targeted to the inside of the BMC (Fan et al., 2010).

Figure S5. Phylogeny of aldehyde dehydrogenase (conserved domain cd07121) and homologs in 'Atribacteria' BMC clusters (red branches) and other organisms inferred using RAxML. The scale bar indicates the number of changes per position, and blue numbers indicate the bootstrap support (out of 100 pseudoreplicates) for a given node.

Figure S6. Phylogeny of cobalamin reductase (COG4656) and homologs in 'Atribacteria' BMC clusters (red branches) and other organisms inferred using RAxML. The scale bar indicates the number of changes per position, and blue numbers indicate the bootstrap support (out of 100 pseudoreplicates) for a given node.

Figure S7. Phylogeny of deoxyribonucleotide aldolase (DERA, conserved domain cd00959) and homologs in 'Atribacteria' BMC clusters (red branches) and other organisms inferred using RAxML. The scale bar indicates the number of changes per position, and blue numbers indicate the bootstrap support (out of 100 pseudoreplicates) for a given node.

0.6

Figure S8. Phylogeny of ribose 5-phosphate isomerase (pfam02502) and homologs in 'Atribacteria' BMC clusters (red branches) and other organisms inferred using RAxML. The scale bar indicates the number of changes per position, and blue numbers indicate the bootstrap support (out of 100 pseudoreplicates) for a given node.

Figure S9. Phylogeny of putative phosphotransacetylase (PduL, pfam06130) and homologs in 'Atribacteria' BMC clusters (red branches) and other organisms inferred using RAxML. The scale bar indicates the number of changes per position, and blue numbers indicate the bootstrap support (out of 100 pseudoreplicates) for a given node.

Figure S10. Phylogeny of predicted bacterial microcompartment shell proteins (conserved domains cd07053 and cd07054 in pfam00936) in 'Atribacteria' BMC clusters (red branches) and other organisms inferred using RAxML. The scale bar indicates the number of changes per position, and blue numbers indicate the bootstrap support (out of 100 pseudoreplicates) for a given node.

Figure S11. Phylogeny of predicted bacterial microcompartment shell proteins (conserved domain cd07045 in pfam00936) in 'Atribacteria' BMC clusters (red branches) and other organisms inferred using RAxML. The scale bar indicates the number of changes per position, and blue numbers indicate the bootstrap support (out of 100 pseudoreplicates) for a given node.

Figure S12. Phylogeny of predicted bacterial microcompartment shell proteins (conserved domain cd01614 in pfam03319) in 'Atribacteria' BMC clusters (red branches) and other organisms inferred using RAxML. The scale bar indicates the number of changes per position, and blue numbers indicate the bootstrap support (out of 100 pseudoreplicates) for a given node.

Figure S13. Predicted propionate catabolism pathway in JS1-1 and JS1-2, saccharide fermentation in OP9-1, and shared pyruvate metabolism in 'Atribacteria'. JS1 propionate catabolism (green) is predicted to converge with sugar catabolism of OP9-1 (blue) by production of pyruvate. After pyruvate is oxidatively decarboxylated to acetyl-CoA, the acetyl-CoA can either feed into substrate level phosphorylation or acetaldehyde production within the bacterial microcompartment. JS1-1 and JS1-2 reoxidize acetaldehyde to acetyl-CoA to generate reduced ferredoxin (Fd), while OP9-1 further reduces acetaldehyde to ethanol to dispose of reducing power and regenerate NAD⁺. Enzymes participating in propionate catabolism in JS1-1 and JS1-2 indicated by bold numbers are: 1, methylmalonyl-CoA decarboxylase; 2, methylmalonyl-CoA epimerase; 3, methylmalonyl-CoA mutase; 4, succinyl-CoA synthetase; 5, succinate dehydrogenase/fumarate reductase; 6, fumarate hydratase; 7, malate dehydrogenase (decarboxylating).

Contigs in metagenome bins. Metagenomes are publicly available on IMG/M.

OP9_GBS_Meta77CS contigs	JS1_TA_Meta contigs	JS1_Sak_Meta contigs				
in metagenome 3300000106	in metagenome 3300001095	in metagenome 2263328000				
GBSCECS77c_c1000076	JGI12104J13512_1001551	SakLake120mDRAFT_c0001362				
GBSCECS77c_c1000082	JGI12104J13512_1002021	SakLake120mDRAFT_c0002315				
GBSCECS77c_c1000092	JGI12104J13512_1002403	SakLake120mDRAFT_c0005075				
GBSCECS77c_c1000099	JGI12104J13512_1002522	SakLake120mDRAFT_c0006462				
GBSCECS77c_c1000148	JGI12104J13512_1002757	SakLake120mDRAFT_c0009265				
GBSCECS77c_c1000154	JGI12104J13512_1003021	SakLake120mDRAFT_c0010081				
GBSCECS77c_c1000162	JGI12104J13512_1003169	SakLake120mDRAFT_c0010429				
GBSCECS77c_c1000172	JGI12104J13512_1003170	SakLake120mDRAFT_c0010471				
GBSCECS77c_c1000195	JGI12104J13512_1003203	SakLake120mDRAFT_c0012504				
GBSCECS77c_c1000207	JGI12104J13512_1003227	SakLake120mDRAFT_c0012589				
GBSCECS77c_c1000209	JGI12104J13512_1003306	SakLake120mDRAFT_c0012635				
GBSCECS77c_c1000217	JGI12104J13512_1003503	SakLake120mDRAFT_c0013271				
GBSCECS77c_c1000245	JGI12104J13512_1003571	SakLake120mDRAFT_c0014028				
GBSCECS77c_c1000261	JGI12104J13512_1003577	SakLake120mDRAFT_c0014553				
GBSCECS77c_c1000268	JGI12104J13512_1003696	SakLake120mDRAFT_c0014769				
GBSCECS77c_c1000287	JGI12104J13512_1003743	SakLake120mDRAFT_c0015377				
GBSCECS77c_c1000301	JGI12104J13512_1003763	SakLake120mDRAFT_c0015975				
GBSCECS77c_c1000315	JGI12104J13512_1003790	SakLake120mDRAFT_c0016008				
GBSCECS77c_c1000351	JGI12104J13512_1003866	SakLake120mDRAFT_c0016221				
GBSCECS77c_c1000368	JGI12104J13512_1003870	SakLake120mDRAFT_c0016355				
GBSCECS77c_c1000376	JGI12104J13512_1003892	SakLake120mDRAFT_c0016773				
GBSCECS77c_c1000392	JGI12104J13512_1003957	SakLake120mDRAFT_c0017202				
GBSCECS77c_c1000394	JGI12104J13512_1003974	SakLake120mDRAFT_c0018615				
GBSCECS77c_c1000402	JGI12104J13512_1004035	SakLake120mDRAFT_c0018747				
GBSCECS77c_c1000410	JGI12104J13512_1004058	SakLake120mDRAFT_c0019226				
GBSCECS77c_c1000422	JGI12104J13512_1004116	SakLake120mDRAFT_c0019938				
GBSCECS77c_c1000423	JGI12104J13512_1004139	SakLake120mDRAFT_c0020030				
GBSCECS77c_c1000442	JGI12104J13512_1004154	SakLake120mDRAFT_c0020241				
GBSCECS77c_c1000448	JGI12104J13512_1004384	SakLake120mDRAFT_c0020352				
GBSCECS77c_c1000449	JGI12104J13512_1004425	SakLake120mDRAFT_c0020513				
GBSCECS77c_c1000451	JGI12104J13512_1004465	SakLake120mDRAFT_c0021152				
GBSCECS77c_c1000475	JGI12104J13512_1004573	SakLake120mDRAFT_c0021197				
GBSCECS77c_c1000513	JGI12104J13512_1004802	SakLake120mDRAFT_c0021232				
GBSCECS77c_c1000515	JGI12104J13512_1004817	SakLake120mDRAFT_c0021340				
GBSCECS77c_c1000516	JGI12104J13512_1004846	SakLake120mDRAFT_c0021481				
GBSCECS77c_c1000528	JGI12104J13512_1004862	SakLake120mDRAFT_c0021487				
GBSCECS77c_c1000540	JGI12104J13512_1004901	SakLake120mDRAFT_c0021730				
GBSCECS77c_c1000548	JGI12104J13512_1005002	SakLake120mDRAFT_c0022030				
GBSCECS77c_c1000551	JGI12104J13512_1005012	SakLake120mDRAFT_c0022043				

GBSCECS77c_c1000588	JGI12104J13512_1005086	SakLake120mDRAFT_c0022047
GBSCECS77c_c1000610	JGI12104J13512_1005099	SakLake120mDRAFT_c0022541
GBSCECS77c_c1000611	JGI12104J13512_1005118	SakLake120mDRAFT_c0022601
GBSCECS77c_c1000641	JGI12104J13512_1005234	SakLake120mDRAFT_c0022630
GBSCECS77c_c1000653	JGI12104J13512_1005265	SakLake120mDRAFT_c0022816
GBSCECS77c_c1000672	JGI12104J13512_1005275	SakLake120mDRAFT_c0022977
GBSCECS77c_c1000715	JGI12104J13512_1005289	SakLake120mDRAFT_c0023061
GBSCECS77c_c1000716	JGI12104J13512_1005331	SakLake120mDRAFT_c0023419
GBSCECS77c_c1000744	JGI12104J13512_1005492	SakLake120mDRAFT_c0023665
GBSCECS77c_c1000749	JGI12104J13512_1005506	SakLake120mDRAFT_c0023987
GBSCECS77c_c1000753	JGI12104J13512_1005521	SakLake120mDRAFT_c0024056
GBSCECS77c_c1000781	JGI12104J13512_1005637	SakLake120mDRAFT_c0024156
GBSCECS77c_c1000794	JGI12104J13512_1005689	SakLake120mDRAFT_c0024208
GBSCECS77c_c1000797	JGI12104J13512_1005694	SakLake120mDRAFT_c0024233
GBSCECS77c_c1000798	JGI12104J13512_1005696	SakLake120mDRAFT_c0024577
GBSCECS77c_c1000806	JGI12104J13512_1005698	SakLake120mDRAFT_c0024612
GBSCECS77c_c1000812	JGI12104J13512_1005722	SakLake120mDRAFT_c0024662
GBSCECS77c_c1000827	JGI12104J13512_1005753	SakLake120mDRAFT_c0025026
GBSCECS77c_c1000830	JGI12104J13512_1005783	SakLake120mDRAFT_c0025123
GBSCECS77c_c1000892	JGI12104J13512_1005788	SakLake120mDRAFT_c0025356
GBSCECS77c_c1000897	JGI12104J13512_1006049	SakLake120mDRAFT_c0025669
GBSCECS77c_c1000919	JGI12104J13512_1006051	SakLake120mDRAFT_c0026036
GBSCECS77c_c1000927	JGI12104J13512_1006144	SakLake120mDRAFT_c0026266
GBSCECS77c_c1000941	JGI12104J13512_1006146	SakLake120mDRAFT_c0026529
GBSCECS77c_c1000951	JGI12104J13512_1006157	SakLake120mDRAFT_c0026927
GBSCECS77c_c1001005	JGI12104J13512_1006159	SakLake120mDRAFT_c0027243
GBSCECS77c_c1001026	JGI12104J13512_1006166	SakLake120mDRAFT_c0027302
GBSCECS77c_c1001054	JGI12104J13512_1006182	SakLake120mDRAFT_c0027327
GBSCECS77c_c1001069	JGI12104J13512_1006229	SakLake120mDRAFT_c0027525
GBSCECS77c_c1001100	JGI12104J13512_1006270	SakLake120mDRAFT_c0027604
GBSCECS77c_c1001122	JGI12104J13512_1006306	SakLake120mDRAFT_c0027634
GBSCECS77c_c1001134	JGI12104J13512_1006332	SakLake120mDRAFT_c0027649
GBSCECS77c_c1001146	JGI12104J13512_1006349	SakLake120mDRAFT_c0027736
GBSCECS77c_c1001247	JGI12104J13512_1006392	SakLake120mDRAFT_c0027807
GBSCECS77c_c1001252	JGI12104J13512_1006427	SakLake120mDRAFT_c0028204
GBSCECS77c_c1001253	JGI12104J13512_1006472	SakLake120mDRAFT_c0028215
GBSCECS77c_c1001272	JGI12104J13512_1006473	SakLake120mDRAFT_c0028459
GBSCECS77c_c1001279	JGI12104J13512_1006492	SakLake120mDRAFT_c0028477
GBSCECS77c_c1001281	JGI12104J13512_1006525	SakLake120mDRAFT_c0028495
GBSCECS77c_c1001315	JGI12104J13512_1006539	SakLake120mDRAFT_c0028523
GBSCECS77c_c1001327	JGI12104J13512_1006540	SakLake120mDRAFT_c0028553
GBSCECS77c_c1001333	JGI12104J13512_1006543	SakLake120mDRAFT_c0028709
GBSCECS77c_c1001372	JGI12104J13512_1006578	SakLake120mDRAFT_c0028920

GBSCECS77c_c1001383	JGI12104J13512_1006580	SakLake120mDRAFT_c0029160
GBSCECS77c_c1001387	JGI12104J13512_1006588	SakLake120mDRAFT_c0029765
GBSCECS77c_c1001510	JGI12104J13512_1006599	SakLake120mDRAFT_c0030313
GBSCECS77c_c1001528	JGI12104J13512_1006600	SakLake120mDRAFT_c0030510
GBSCECS77c_c1001531	JGI12104J13512_1006624	SakLake120mDRAFT_c0030916
GBSCECS77c_c1001730	JGI12104J13512_1006632	SakLake120mDRAFT_c0030969
GBSCECS77c_c1001734	JGI12104J13512_1006652	SakLake120mDRAFT_c0031373
GBSCECS77c_c1001745	JGI12104J13512_1006655	SakLake120mDRAFT_c0031389
GBSCECS77c_c1001761	JGI12104J13512_1006672	SakLake120mDRAFT_c0031546
GBSCECS77c_c1001779	JGI12104J13512_1006692	SakLake120mDRAFT_c0032745
GBSCECS77c_c1001809	JGI12104J13512_1006769	SakLake120mDRAFT_c0033291
GBSCECS77c_c1001845	JGI12104J13512_1006778	SakLake120mDRAFT_c0035900
GBSCECS77c_c1001967	JGI12104J13512_1006804	SakLake120mDRAFT_c0036016
GBSCECS77c_c1001978	JGI12104J13512_1006819	SakLake120mDRAFT_c0037333
GBSCECS77c_c1002063	JGI12104J13512_1006837	SakLake120mDRAFT_c0039603
GBSCECS77c_c1002090	JGI12104J13512_1006843	SakLake120mDRAFT_c0040528
GBSCECS77c_c1002106	JGI12104J13512_1006970	SakLake120mDRAFT_c0041501
GBSCECS77c_c1002113	JGI12104J13512_1006994	SakLake120mDRAFT_c0041795
GBSCECS77c_c1002164	JGI12104J13512_1007014	SakLake120mDRAFT_c0042986
GBSCECS77c_c1002175	JGI12104J13512_1007037	SakLake120mDRAFT_c0043924
GBSCECS77c_c1002177	JGI12104J13512_1007129	SakLake120mDRAFT_c0044026
GBSCECS77c_c1002265	JGI12104J13512_1007148	SakLake120mDRAFT_c0044236
GBSCECS77c_c1002270	JGI12104J13512_1007154	SakLake120mDRAFT_c0044929
GBSCECS77c_c1002292	JGI12104J13512_1007201	SakLake120mDRAFT_c0044946
GBSCECS77c_c1002351	JGI12104J13512_1007205	SakLake120mDRAFT_c0045142
GBSCECS77c_c1002389	JGI12104J13512_1007228	SakLake120mDRAFT_c0045428
GBSCECS77c_c1002514	JGI12104J13512_1007297	SakLake120mDRAFT_c0046759
GBSCECS77c_c1002563	JGI12104J13512_1007315	SakLake120mDRAFT_c0048071
GBSCECS77c_c1002616	JGI12104J13512_1007422	SakLake120mDRAFT_c0048800
GBSCECS77c_c1002647	JGI12104J13512_1007427	SakLake120mDRAFT_c0050472
GBSCECS77c_c1002659	JGI12104J13512_1007482	SakLake120mDRAFT_c0050640
GBSCECS77c_c1002692	JGI12104J13512_1007496	SakLake120mDRAFT_c0051191
GBSCECS77c_c1002764	JGI12104J13512_1007519	SakLake120mDRAFT_c0051210
GBSCECS77c_c1002788	JGI12104J13512_1007536	SakLake120mDRAFT_c0051393
GBSCECS77c_c1002900	JGI12104J13512_1007563	SakLake120mDRAFT_c0052215
GBSCECS77c_c1002931	JGI12104J13512_1007566	SakLake120mDRAFT_c0052216
GBSCECS77c_c1002979	JGI12104J13512_1007570	SakLake120mDRAFT_c0052410
GBSCECS77c_c1003193	JGI12104J13512_1007575	SakLake120mDRAFT_c0052462
GBSCECS77c_c1003280	JGI12104J13512_1007576	SakLake120mDRAFT_c0052558
GBSCECS77c_c1003633	JGI12104J13512_1007610	SakLake120mDRAFT_c0052831
GBSCECS77c_c1003639	JGI12104J13512_1007625	SakLake120mDRAFT_c0055046
GBSCECS77c_c1003732	JGI12104J13512_1007655	SakLake120mDRAFT_c0055338
GBSCECS77c_c1003860	JGI12104J13512_1007708	SakLake120mDRAFT_c0056371

GBSCECS77c_c1004052	JGI12104J13512_1007718	SakLake120mDRAFT_c0056529
GBSCECS77c_c1004078	JGI12104J13512_1007752	SakLake120mDRAFT_c0056908
GBSCECS77c_c1004268	JGI12104J13512_1007762	SakLake120mDRAFT_c0059439
GBSCECS77c_c1004334	JGI12104J13512_1007784	SakLake120mDRAFT_c0059460
GBSCECS77c_c1004753	JGI12104J13512_1007823	SakLake120mDRAFT_c0060996
GBSCECS77c_c1004795	JGI12104J13512_1007888	SakLake120mDRAFT_c0061020
GBSCECS77c_c1004921	JGI12104J13512_1007939	SakLake120mDRAFT_c0061525
GBSCECS77c_c1004967	JGI12104J13512_1007944	SakLake120mDRAFT_c0062157
GBSCECS77c_c1005028	JGI12104J13512_1007949	SakLake120mDRAFT_c0062503
GBSCECS77c_c1005117	JGI12104J13512_1007978	SakLake120mDRAFT_c0062886
GBSCECS77c_c1005279	JGI12104J13512_1008022	SakLake120mDRAFT_c0064317
GBSCECS77c_c1005327	JGI12104J13512_1008034	SakLake120mDRAFT_c0064373
GBSCECS77c_c1005457	JGI12104J13512_1008046	SakLake120mDRAFT_c0065022
GBSCECS77c_c1005755	JGI12104J13512_1008054	SakLake120mDRAFT_c0065300
GBSCECS77c_c1006083	JGI12104J13512_1008067	SakLake120mDRAFT_c0066940
GBSCECS77c_c1006593	JGI12104J13512_1008085	SakLake120mDRAFT_c0067752
GBSCECS77c_c1006800	JGI12104J13512_1008091	SakLake120mDRAFT_c0068071
GBSCECS77c_c1007127	JGI12104J13512_1008129	SakLake120mDRAFT_c0069133
GBSCECS77c_c1007183	JGI12104J13512_1008205	SakLake120mDRAFT_c0069305
GBSCECS77c_c1007627	JGI12104J13512_1008214	SakLake120mDRAFT_c0069935
GBSCECS77c_c1008253	JGI12104J13512_1008231	SakLake120mDRAFT_c0069987
GBSCECS77c_c1008582	JGI12104J13512_1008242	SakLake120mDRAFT_c0071257
GBSCECS77c_c1008828	JGI12104J13512_1008292	SakLake120mDRAFT_c0072807
GBSCECS77c_c1009168	JGI12104J13512_1008348	SakLake120mDRAFT_c0073154
GBSCECS77c_c1009204	JGI12104J13512_1008387	SakLake120mDRAFT_c0074168
GBSCECS77c_c1009412	JGI12104J13512_1008404	
GBSCECS77c_c1009445	JGI12104J13512_1008533	
GBSCECS77c_c1013567	JGI12104J13512_1008534	
	JGI12104J13512_1008543	
	JGI12104J13512_1008563	
	JGI12104J13512_1008582	
	JGI12104J13512_1008583	
	JGI12104J13512_1008683	
	JGI12104J13512_1008714	
	JGI12104J13512_1008750	
	JGI12104J13512_1008790	
	JGI12104J13512_1008861	
	JGI12104J13512_1008864	
	JGI12104J13512_1008879	
	JGI12104J13512_1008887	
	JGI12104J13512_1008893	
	JGI12104J13512 1008894	

JGI12104J13512_1008904

JGI12104J13512_1008926
JGI12104J13512_1008955
JGI12104J13512_1008957
JGI12104J13512_1009007
JGI12104J13512_1009024
JGI12104J13512_1009038
JGI12104J13512_1009048
JGI12104J13512_1009172
JGI12104J13512_1009179
JGI12104J13512_1009193
JGI12104J13512_1009221
JGI12104J13512_1009243
JGI12104J13512_1009280
JGI12104J13512_1009306
JGI12104J13512_1009315
JGI12104J13512_1009345
JGI12104J13512_1009350
JGI12104J13512_1009355
JGI12104J13512_1009420
JGI12104J13512_1009433
JGI12104J13512_1009526
JGI12104J13512_1009528
JGI12104J13512_1009540
JGI12104J13512_1009542
JGI12104J13512_1009550
JGI12104J13512_1009553
JGI12104J13512_1009558
JGI12104J13512_1009629
JGI12104J13512_1009630
JGI12104J13512_1009674
JGI12104J13512_1009677
JGI12104J13512_1009681
JGI12104J13512_1009749
JGI12104J13512_1009751
JGI12104J13512_1009824
JGI12104J13512_1009907
JGI12104J13512_1009918
JGI12104J13512_1009993
JGI12104J13512_1010000
JGI12104J13512_1010021
JGI12104J13512_1010033
JGI12104J13512_1010040
JGI12104J13512_1010050

JGI12104J13512_1010066
JGI12104J13512_1010111
JGI12104J13512_1010114
JGI12104J13512_1010127
JGI12104J13512_1010143
JGI12104J13512_1010166
JGI12104J13512_1010174
JGI12104J13512_1010203
JGI12104J13512_1010259
JGI12104J13512_1010343
JGI12104J13512_1010345
JGI12104J13512_1010347
JGI12104J13512_1010356
JGI12104J13512_1010378
JGI12104J13512_1010403
JGI12104J13512_1010495
JGI12104J13512_1010511
JGI12104J13512_1010525
JGI12104J13512_1010531
JGI12104J13512_1010578
JGI12104J13512_1010651
JGI12104J13512_1010658
JGI12104J13512_1010664
JGI12104J13512_1010666
JGI12104J13512_1010697
JGI12104J13512_1010789
JGI12104J13512_1010837
JGI12104J13512_1010893
JGI12104J13512_1010931
JGI12104J13512_1010935
JGI12104J13512_1011022
JGI12104J13512_1011046
JGI12104J13512_1011115
JGI12104J13512_1011127
JGI12104J13512_1011199
JGI12104J13512_1011301
JGI12104J13512_1011368
JGI12104J13512_1011370
JGI12104J13512_1011400
JGI12104J13512_1011427
JGI12104J13512_1011490
JGI12104J13512_1011543
JGI12104J13512_1011556

JGI12104J13512_1011639
JGI12104J13512_1011640
JGI12104J13512_1011650
JGI12104J13512_1011657
JGI12104J13512_1011667
JGI12104J13512_1011757
JGI12104J13512_1011763
JGI12104J13512_1011782
JGI12104J13512_1011789
JGI12104J13512_1011844
JGI12104J13512_1011902
JGI12104J13512_1011910
JGI12104J13512_1011912
JGI12104J13512_1011988
JGI12104J13512_1012014
JGI12104J13512_1012035
JGI12104J13512_1012048
JGI12104J13512_1012060
JGI12104J13512_1012073
JGI12104J13512_1012150
JGI12104J13512_1012157
JGI12104J13512_1012167
JGI12104J13512_1012187
JGI12104J13512_1012228
JGI12104J13512_1012236
JGI12104J13512_1012283
JGI12104J13512_1012300
JGI12104J13512_1012313
JGI12104J13512_1012315
JGI12104J13512_1012320
JGI12104J13512_1012343
JGI12104J13512_1012346
JGI12104J13512_1012384
JGI12104J13512_1012388
JGI12104J13512_1012417
JGI12104J13512_1012497
JGI12104J13512_1012531
JGI12104J13512_1012543
JGI12104J13512_1012555
JGI12104J13512_1012639
JGI12104J13512_1012677
JGI12104J13512_1012735
JGI12104J13512_1012753

JGI12104J13512_1012795
JGI12104J13512_1012803
JGI12104J13512_1012814
JGI12104J13512_1012838
JGI12104J13512_1012876
JGI12104J13512_1012889
JGI12104J13512_1012920
JGI12104J13512_1012932
JGI12104J13512_1012933
JGI12104J13512_1012952
JGI12104J13512_1012955
JGI12104J13512_1012986
JGI12104J13512_1013038
JGI12104J13512_1013050
JGI12104J13512_1013060
JGI12104J13512_1013066
JGI12104J13512_1013084
JGI12104J13512_1013106
JGI12104J13512_1013152
JGI12104J13512_1013183
JGI12104J13512_1013185
JGI12104J13512_1013190
JGI12104J13512_1013264
JGI12104J13512_1013294
JGI12104J13512_1013302
JGI12104J13512_1013359
JGI12104J13512_1013375
JGI12104J13512_1013391
JGI12104J13512_1013398
JGI12104J13512_1013422
JGI12104J13512_1013467
JGI12104J13512_1013470
JGI12104J13512_1013498
JGI12104J13512_1013564
JGI12104J13512_1013609
JGI12104J13512_1013614
JGI12104J13512_1013617
JGI12104J13512_1013625
JGI12104J13512_1013647
JGI12104J13512_1013669
JGI12104J13512_1013679
JGI12104J13512_1013737
JGI12104J13512_1013742

JGI12104J13512_1013768
JGI12104J13512_1013823
JGI12104J13512_1013833
JGI12104J13512_1013874
JGI12104J13512_1013930
JGI12104J13512_1013944
JGI12104J13512_1013960
JGI12104J13512_1013983
JGI12104J13512_1013995
JGI12104J13512_1014022
JGI12104J13512_1014025
JGI12104J13512_1014049
JGI12104J13512_1014055
JGI12104J13512_1014077
JGI12104J13512_1014088
JGI12104J13512_1014099
JGI12104J13512_1014137
JGI12104J13512_1014167
JGI12104J13512_1014170
JGI12104J13512_1014183
JGI12104J13512_1014204
JGI12104J13512_1014210
JGI12104J13512_1014221
JGI12104J13512_1014227
JGI12104J13512_1014261
JGI12104J13512_1014293
JGI12104J13512_1014336
JGI12104J13512_1014337
JGI12104J13512_1014342
JGI12104J13512_1014367
JGI12104J13512_1014384
JGI12104J13512_1014432
JGI12104J13512_1014449
JGI12104J13512_1014553
JGI12104J13512_1014561
JGI12104J13512_1014655
JGI12104J13512_1014656
JGI12104J13512_1014715
JGI12104J13512_1014726
JGI12104J13512_1014736
JGI12104J13512_1014738
JGI12104J13512_1014755
JGI12104J13512_1014767

JGI12104J13512_1014791
JGI12104J13512_1014800
JGI12104J13512_1014863
JGI12104J13512_1014881
JGI12104J13512_1014894
JGI12104J13512_1014951
JGI12104J13512_1014957
JGI12104J13512_1015006
JGI12104J13512_1015068
JGI12104J13512_1015071
JGI12104J13512_1015246
JGI12104J13512_1015274
JGI12104J13512_1015332
JGI12104J13512_1015338
JGI12104J13512_1015344
JGI12104J13512_1015345
JGI12104J13512_1015359
JGI12104J13512_1015360
JGI12104J13512_1015376
JGI12104J13512_1015398
JGI12104J13512_1015410
JGI12104J13512_1015483
JGI12104J13512_1015490
JGI12104J13512_1015493
JGI12104J13512_1015519
JGI12104J13512_1015534
JGI12104J13512_1015578
JGI12104J13512_1015587
JGI12104J13512_1015604
JGI12104J13512_1015628
JGI12104J13512_1015648
JGI12104J13512_1015655
JGI12104J13512_1015656
JGI12104J13512_1015670
JGI12104J13512_1015699
JGI12104J13512_1015748
JGI12104J13512_1015755
JGI12104J13512_1015759
JGI12104J13512_1015779
JGI12104J13512_1015788
JGI12104J13512_1015814
JGI12104J13512_1015828
JGI12104J13512_1015842

JGI12104J13512_1015870
JGI12104J13512_1015894
JGI12104J13512_1015895
JGI12104J13512_1015911
JGI12104J13512_1015926
JGI12104J13512_1015958
JGI12104J13512_1015987
JGI12104J13512_1015999
JGI12104J13512_1016036
JGI12104J13512_1016038
JGI12104J13512_1016064
JGI12104J13512_1016079
JGI12104J13512_1016098
JGI12104J13512_1016099
JGI12104J13512_1016101
JGI12104J13512_1016129
JGI12104J13512_1016147
JGI12104J13512_1016221
JGI12104J13512_1016240
JGI12104J13512_1016287
JGI12104J13512_1016309
JGI12104J13512_1016318
JGI12104J13512_1016328
JGI12104J13512_1016415
JGI12104J13512_1016439
JGI12104J13512_1016447
JGI12104J13512_1016471
JGI12104J13512_1016507
JGI12104J13512_1016528
JGI12104J13512_1016530
JGI12104J13512_1016561
JGI12104J13512_1016605
JGI12104J13512_1016618
JGI12104J13512_1016637
JGI12104J13512_1016638
JGI12104J13512_1016665
JGI12104J13512_1016672
JGI12104J13512_1016695
JGI12104J13512_1016697
JGI12104J13512_1016751
JGI12104J13512_1016821
JGI12104J13512_1016835
JGI12104J13512_1016872

JGI12104J13512_1017004
JGI12104J13512_1017039
JGI12104J13512_1017041
JGI12104J13512_1017083
JGI12104J13512_1017091
JGI12104J13512_1017103
JGI12104J13512_1017105
JGI12104J13512_1017172
JGI12104J13512_1017218
JGI12104J13512_1017257
JGI12104J13512_1017278
JGI12104J13512_1017315
JGI12104J13512_1017366
JGI12104J13512_1017386
JGI12104J13512_1017432
JGI12104J13512_1017443
JGI12104J13512_1017492
JGI12104J13512_1017511
JGI12104J13512_1017516
JGI12104J13512_1017546
JGI12104J13512_1017567
JGI12104J13512_1017576
JGI12104J13512_1017631
JGI12104J13512_1017747
JGI12104J13512_1017772
JGI12104J13512_1017780
JGI12104J13512_1017800
JGI12104J13512_1017815
JGI12104J13512_1017883
JGI12104J13512_1017906
JGI12104J13512_1017952
JGI12104J13512_1017976
JGI12104J13512_1018043
JGI12104J13512_1018048
JGI12104J13512_1018051
JGI12104J13512_1018067
JGI12104J13512_1018179
JGI12104J13512_1018232
JGI12104J13512_1018235
JGI12104J13512_1018289
JGI12104J13512_1018340
JGI12104J13512_1018360
JGI12104J13512_1018475

JGI12104J13512_1018487
JGI12104J13512_1018509
JGI12104J13512_1018522
JGI12104J13512_1018549
JGI12104J13512_1018559
JGI12104J13512_1018585
JGI12104J13512_1018607
JGI12104J13512_1018639
JGI12104J13512_1018644
JGI12104J13512_1018649
JGI12104J13512_1018741
JGI12104J13512_1018816
JGI12104J13512_1018826
JGI12104J13512_1018865
JGI12104J13512_1018989
JGI12104J13512_1018995
JGI12104J13512_1018998
JGI12104J13512_1019033
JGI12104J13512_1019064
JGI12104J13512_1019140
JGI12104J13512_1019224
JGI12104J13512_1019243
JGI12104J13512_1019269
JGI12104J13512_1019296
JGI12104J13512_1019300
JGI12104J13512_1019306
JGI12104J13512_1019391
JGI12104J13512_1019394
JGI12104J13512_1019419
JGI12104J13512_1019468
JGI12104J13512_1019532
JGI12104J13512_1019543
JGI12104J13512_1019561
JGI12104J13512_1019569
JGI12104J13512_1019597
JGI12104J13512_1019686
JGI12104J13512_1019706
JGI12104J13512_1019787
JGI12104J13512_1019809
JGI12104J13512_1019842
JGI12104J13512_1019879
JGI12104J13512_1019935
JGI12104J13512_1020105

JGI12104J13512_1020175
JGI12104J13512_1020226
JGI12104J13512_1020275
JGI12104J13512_1020313
JGI12104J13512_1020330
JGI12104J13512_1020332
JGI12104J13512_1020339
JGI12104J13512_1020473
JGI12104J13512_1020524
JGI12104J13512_1020526
JGI12104J13512_1020544
JGI12104J13512_1020582
JGI12104J13512_1020584
JGI12104J13512_1020655
JGI12104J13512_1020668
JGI12104J13512_1020713
JGI12104J13512_1020718
JGI12104J13512_1020802
JGI12104J13512_1020829
JGI12104J13512_1020846
JGI12104J13512_1020863
JGI12104J13512_1020878
JGI12104J13512_1020895
JGI12104J13512_1020935
JGI12104J13512_1020955
JGI12104J13512_1021056
JGI12104J13512_1021084
JGI12104J13512_1021085
JGI12104J13512_1021154
JGI12104J13512_1021191
JGI12104J13512_1021243
JGI12104J13512_1021250
JGI12104J13512_1021264
JGI12104J13512_1021356
JGI12104J13512_1021402
JGI12104J13512_1021428
JGI12104J13512_1021467
JGI12104J13512_1021544
JGI12104J13512_1021552
JGI12104J13512_1021643
JGI12104J13512_1021653
JGI12104J13512_1021697
JGI12104J13512_1021698

JGI12104J13512_1021730
JGI12104J13512_1021814
JGI12104J13512_1021823
JGI12104J13512_1021841
JGI12104J13512_1021898
JGI12104J13512_1021921
JGI12104J13512_1021957
JGI12104J13512_1022015
JGI12104J13512_1022059
JGI12104J13512_1022074
JGI12104J13512_1022075
JGI12104J13512_1022085
JGI12104J13512_1022111
JGI12104J13512_1022114
JGI12104J13512_1022156
JGI12104J13512_1022168
JGI12104J13512_1022170
JGI12104J13512_1022224
JGI12104J13512_1022275
JGI12104J13512_1022283
JGI12104J13512_1022349
JGI12104J13512_1022354
JGI12104J13512_1022441
JGI12104J13512_1022523
JGI12104J13512_1022544
JGI12104J13512_1022613
JGI12104J13512_1022624
JGI12104J13512_1022651
JGI12104J13512_1022661
JGI12104J13512_1022673
JGI12104J13512_1022689
JGI12104J13512_1022776
JGI12104J13512_1022902
JGI12104J13512_1022919
JGI12104J13512_1022963
JGI12104J13512_1022990
JGI12104J13512_1023062
JGI12104J13512_1023130
JGI12104J13512_1023161
JGI12104J13512_1023208
JGI12104J13512_1023298
JGI12104J13512_1023412
JGI12104J13512_1023540

JGI12104J13512_1023721
JGI12104J13512_1023734
JGI12104J13512_1023768
JGI12104J13512_1023791
JGI12104J13512_1024031
JGI12104J13512_1024129
JGI12104J13512_1024174
JGI12104J13512_1024274
JGI12104J13512_1024310
JGI12104J13512_1024364
JGI12104J13512_1024402
JGI12104J13512_1024546
JGI12104J13512_1024574
JGI12104J13512_1024586
JGI12104J13512_1024668
JGI12104J13512_1024730
JGI12104J13512_1024740
JGI12104J13512_1024742
JGI12104J13512_1024830
JGI12104J13512_1024868
JGI12104J13512_1024874
JGI12104J13512_1024929
JGI12104J13512_1024959
JGI12104J13512_1025000
JGI12104J13512_1025008
JGI12104J13512_1025092
JGI12104J13512_1025227
JGI12104J13512_1025242
JGI12104J13512_1025318
JGI12104J13512_1025324
JGI12104J13512_1025371
JGI12104J13512_1025412
JGI12104J13512_1025425
JGI12104J13512_1025646
JGI12104J13512_1025649
JGI12104J13512_1025701
JGI12104J13512_1025731
JGI12104J13512_1025837
JGI12104J13512_1025852
JGI12104J13512_1025875
JGI12104J13512_1025936
JGI12104J13512_1025941
JGI12104J13512_1026079

JGI12104J13512_1026097
JGI12104J13512_1026100
JGI12104J13512_1026149
JGI12104J13512_1026194
JGI12104J13512_1026210
JGI12104J13512_1026372
JGI12104J13512_1026460
JGI12104J13512_1026486
JGI12104J13512_1026677
JGI12104J13512_1026821
JGI12104J13512_1027002
JGI12104J13512_1027012
JGI12104J13512_1027065
JGI12104J13512_1027151
JGI12104J13512_1027195
JGI12104J13512_1027218
JGI12104J13512_1027232
JGI12104J13512_1027271
JGI12104J13512_1027314
JGI12104J13512_1027421
JGI12104J13512_1027423
JGI12104J13512_1027435
JGI12104J13512_1027439
JGI12104J13512_1027456
JGI12104J13512_1027501
JGI12104J13512_1027533
JGI12104J13512_1027610
JGI12104J13512_1027630
JGI12104J13512_1027710
JGI12104J13512_1027922
JGI12104J13512_1027934
JGI12104J13512_1027936
JGI12104J13512_1028019
JGI12104J13512_1028020
JGI12104J13512_1028280
JGI12104J13512_1028322
JGI12104J13512_1028381
JGI12104J13512_1028585
JGI12104J13512_1028721
JGI12104J13512_1028820
JGI12104J13512_1028838
JGI12104J13512_1028867
JGI12104J13512_1028913

JGI12104J13512_1028953
JGI12104J13512_1029191
JGI12104J13512_1029423
JGI12104J13512_1029441
JGI12104J13512_1029494
JGI12104J13512_1029565
JGI12104J13512_1029634
JGI12104J13512_1029638
JGI12104J13512_1029647
JGI12104J13512_1029712
JGI12104J13512_1029726
JGI12104J13512_1029753
JGI12104J13512_1029844
JGI12104J13512_1029849
JGI12104J13512_1029906
JGI12104J13512_1029914
JGI12104J13512_1030040
JGI12104J13512_1044467
JGI12104J13512_1044481
JGI12104J13512_1044578
JGI12104J13512_1045026
JGI12104J13512_1046246
JGI12104J13512_1046731
JGI12104J13512_1046838
JGI12104J13512_1047471
JGI12104J13512_1048575
JGI12104J13512_1049055
JGI12104J13512_1049146
JGI12104J13512_1049649
JGI12104J13512_1050041
JGI12104J13512_1050055
JGI12104J13512_1050091
JGI12104J13512_1050515
JGI12104J13512_1050540
JGI12104J13512_1050720
JGI12104J13512_1050867
JGI12104J13512_1051150
JGI12104J13512_1051666
JGI12104J13512_1051790
JGI12104J13512_1051913
JGI12104J13512_1052019
JGI12104J13512_1052041
JGI12104J13512_1053855

JGI12104J13512_1053985
JGI12104J13512_1056477
JGI12104J13512_1057454
JGI12104J13512_1057620
JGI12104J13512_1058050
JGI12104J13512_1058781
JGI12104J13512_1059339
JGI12104J13512_1059710
JGI12104J13512_1059785
JGI12104J13512_1060719
JGI12104J13512_1060777
JGI12104J13512_1061581
JGI12104J13512_1062238
JGI12104J13512_1063346
JGI12104J13512_1063590
JGI12104J13512_1064024
JGI12104J13512_1064087
JGI12104J13512_1064652
JGI12104J13512_1065601