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Supplementary Figure 1. Illustration of the angular momentum selection rules for stimulated

Raman backscattering amplification for various configurations. The vertical axis refers to the

wave number in the propagation direction, and the horizontal azis to the azimuthal wavenumber

corresponding to the orbital angular momentum. Blue refers to the pump, orange to the seed

and green to the daughter plasma (Langmuir) wave. In addition, subscripts 0, 1 and p in every

quantity correspond to the pump, seed and plasma wave. (a) shows Raman amplification matching

conditions without OAM. (b) Raman amplification for of an OAM seed by a Gaussian pump. (c)-

(d) Raman amplification for a scenario where both seed and pump have anti-parallel OAM, and

parallel angular momenta, respectively.
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p = -1 p = -1(a) (b)

Supplementary Figure 2. Illustration of the generation and amplification of a new OAM mode

using stimulated Raman backscattering. The colours have the same meaning as in Fig. 1. Dashed

lines indicate the new modes that are created at each step. The grey arrows indicate the coupling

of plasma waves to the lasers polarised both in the x and y directions. The figure illustrates an

initial configuration where the pump is polarised in x with a mode with OAM given by `0x = 0

and `0y = 1. In addition, the initial seed is polarised in y with `1x = 1. Panels (a) and (b) show

the wavenumber matching conditions for the x and y directions respectively.
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(a) - x component (b) - y component
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ky

kz

kx

kz
TEM00 (i)TEM 

(c) - y component (d) - x component

01 TEM00 (i)TEM 01

= 1
1x

= 1
1y

Supplementary Figure 3. Generation of OAM light from an initial configuration with no OAM.

The initial pump is a Gaussian in x and y, and the initial seed is a TEM10 in x and TEM01 in

y. The (i) in (a) and (d) denote TEM seed components that are π/2 out of phase. Dashed lines

indicate the new modes that are created at each step. The grey arrows indicate the coupling of

plasma waves to the lasers polarised both in the x and y directions. The black arrows in diagonal

indicate the coupling between the different laser modes that result in new OAM modes. Panels

(a) and (c) show the wavenumber matching conditions in x and in y for the pump and seed beams

that are initially present. Panels (b) and (d) show the wavenumber matching conditions in the y

and x directions for the new modes that are created.

SUPPLEMENTARY NOTE 1 - STIMULATED RAMAN BACKSCATTERING

To derive Orbital Angular Momentum (OAM) selection rules for Raman amplification we

write pump and seed laser vector potentials as Apump = A0(r, φ, t) exp(ik0z−iω0t)+c.c. and

Aseed = A1(r, φ, t) exp(−ik1z − iω1t) + c.c., where A0(r) and A1(r) are arbitrary functions

of the transverse coordinate r, being slowly varying envelopes for the pump (A0) and seed

(A1) respectively, and where (k0, ω0) and (k1, ω1) are the pump and seed lasers wavenumber

(k) and frequency (ω) respectively. Note that we use k0 and −k1 to indicate that the pulses

travel in opposite directions. In addition, we write the plasma electron density perturbation

(Langmuir wave) as (ne − n0)/n0 = δn exp(ikpz − iωpt) + c.c., where δn is a slowly varying

3



envelope, and where (kp, ωp) are, respectively, the plasma wavenumber (kp ≈ 2k0 − ωp/c)

and frequency ωp =
√
e2n0/ε0me, with c the speed of light, e the elementary charge, n0

the background plasma density, ε0 the vacuum electric permittivity, and me the electron

mass. We use cylindrical coordinates where (r, φ, z) are the radial distance to the axis

(r), the azimuthal angle (φ), and the longitudinal distance (z). Using the slowly varying

envelope approximation, the following equations describing Raman backscattering can be

derived [1–4]:

D0A0 = ω2
pδnA1 (1)

D1A1 = −ω2
pδn

∗A0 (2)

Dpδn =
e2k2p
2m2

e

(A0 ·A∗1) , (3)

where the superscript ∗ denotes the complex conjugate and where the operators D0, D1 and

Dp are given by:

D0 = c2
(
∇2
⊥ + 2ik0

∂

∂z

)
+ 2iω0

∂

∂t
(4)

D1 = c2
(
∇2
⊥ − 2ik1

∂

∂z

)
+ 2iω1

∂

∂t
(5)

Dp = 2iωp
∂

∂t
, (6)

where Eq. (6) is strictly valid for cold plasmas. In addition to Eqs. (1-6), the lasers and

plasma wavenumber and frequency matching conditions are given by k0 = k1 + kp, ω0 =

ω1 +ωp. Each laser also obeys the dispersion relation of electromagnetic waves in a plasma,

where k20,1c
2 = ω2

0,1 − ω2
p.

We can simplify Eq. (1-3) by making a general assumption that the vector potential

envelope of each laser can be written as A = Ax(t, z)Tx(r⊥, z)ex +Ay(t, z)Ty(r⊥, z)ey, where

Ax/y is a function of t and z and represents the longitudinal envelope profile, and where Tx/y

is a function of the coordinates r⊥ and z, and represents the transverse envelope profile. We

then use A0,x/yT0,x/y and A1,x/yT1,x/y to designate the pump and seed fields in the transverse

x and y directions respectively. We can also assume that plasma density perturbations

can be written as δn = δn̂(t, z)Tδn. Although our calculations are valid for any Tx,y, for a

Laguerre-Gaussian mode with OAM level ` and radial mode p, Tx,y (or Tδn) is given by:

T = LG|`|p (r⊥, z) exp

[
ikz

(1 + z2/z2r )

r2⊥
z2r

+ i`φ

]
exp[−iζ(z)] + c.c., (7)
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where we dropped the subscripts for simplicity, where

LG|`|p (r⊥, z) =
w0

2w(z)

(
r
√

2

w(z)

)|`|
L|`|p

(
− 2r2

w2(z)

)
exp

(
− r2

w2(z)

)
, (8)

is the Laguerre-Gaussian polynomial with azimutal index ` and radial index p, and where

ζ(z) = (2p+ |`|+ 1) arctan(z/zr), (9)

is the Gouy phase shift. In addition, zr = kw2
0/2 is the Rayleigh length, k is the wavenumber,

w0 is the spot-size at focus, and w(z) = w0(1 + z2/z2r )
1/2.

Since∇⊥Ax = ∇⊥Ay = 0 as Ax and Ay are functions of (t, z) only, and since ∂Tx/y/∂t = 0

because Tx/y depends on (x⊥, z) only, inserting Eq. (7) into Eq. (4) and (5) yields:

D0A0,x/y = c2
(
A0,x/y∇2

⊥T0,x/y + 2ik0A0,x/y

∂T0,x/y
∂z

+ 2ik0T0,x/y
∂A0,x/y

∂z

)
+ 2iω0T0,x/y

∂A0,x/y

∂t
, (10)

D1A1,x/y = c2
(
A1,x/y∇2

⊥T1,x/y − 2ik1A1,x/y

∂T1,x/y
∂z

− 2ik1T1,x/y
∂A1,x/y

∂z

)
− 2iω1T1,x/y

∂A1,x/y

∂t
. (11)

To explore all selection rules we can assume that the transverse laser envelopes T0 and

T1 obey to the paraxial approximation:

c2
(
∇2
⊥ + 2ik0

∂

∂z

)
T0,x/y ≈ 0, (12)

c2
(
∇2
⊥ − 2ik1

∂

∂z

)
T1,x/y ≈ 0. (13)

Using Eqs.(12) and (13), Eqs. (10) and (11) become given by:

D0A0,x/y = 2iT0,x/y

(
c2k0

∂A0,x/y

∂z
+ ω0

∂A0,x/y

∂t

)
, (14)

D1A1,x/y = 2iT1,x/y

(
c2k1

∂A1,x/y

∂z
− ω1

∂A1,x/y

∂t

)
. (15)

Using Eqs. (14) and (15), we can then recast Eqs. (1-2) as:

T0,x/y

(
c2k0

∂A0,x/y

∂z
+ ω0

∂A0,x/y

∂t

)
= −

iω2
pδn̂Tδn

2
A1,x/yT1,x/y, (16)
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T1,x/y

(
c2k1

∂A1,x/y

∂z
− ω1

∂A1,x/y

∂t

)
=
iω2

pδn̂
∗T ∗δn

2
A0,x/yT0,x/y. (17)

We note that Eqs. (18) and (19) generalise the well known plane wave stimulated Raman

backscattering equations for arbitrary transverse laser profiles. Thus, all selection rules for

the orbital angular momentum, including the creation of new modes can be derived using

Eq. (3) together with Eqs. (18-19) by ensuring that all phase factors cancel.

In its most simple configuration considering lasers with identical transverse profiles in

every polarisation direction, it is possible to readily recover the usual plane wave solutions.

Cancellation of all phase factors leads to:(
c2k0

∂A0,x/y

∂z
+ ω0

∂A0,x/y

∂t

)
= −

iω2
pδn̂

2
A1,x/y, (18)

(
c2k1

∂A1,x/y

∂z
− ω1

∂A1,x/y

∂t

)
=
iω2

pδn̂
∗

2
A0,x/y. (19)

For Laguerre Gaussian lasers with orbital angular momentum, cancelling phase factors read-

ily implies the conservation of orbital angular momentum, `0 = `1 + `p, the conservation of

energy, ω0 = ω1 + ωp, and the conservation of linear momentum, k0 = k1 + kp.

It is possible to further simplify Eqs. (14) and (15) assuming that the spot-size does

not change during propagation (a valid approximation to interpret our simulations since

the Rayleigh length is much larger than the interaction length). In this case ∂zTA =

T∂zA+A∂zT ' T∂zA because A∂zT � T∂zA. Thus, Eqs. (3), (14) and (15) may also take

the more familiar form of the plane wave equations for Raman amplification [3, 5]:(
c2k0

∂

∂z
+ ω0

∂

∂t

)
A0 ≈ −

iω2
pδn

2
A1 (20)

(
c2k1

∂

∂z
+ ω1

∂

∂t

)
A1 ≈

iω2
pδn

∗

2
A0 (21)

2iωp
∂δn

∂t
=
e2k2p
2m2

e

(A0 ·A∗1) , (22)

Hence the 1D spatial-temporal amplification process is independent of the transverse laser

profiles, under the condition that the above selection rule for angular momentum conserva-

tion is obeyed, in addition to the usual selection rules for conservation of energy and linear

momentum.

In order to derive scalings for the growth rate of the instability, we assume a long laser

such that k0,1∂A(0,1)/∂z � ω0,1∂A(0,1)/∂t, in order to explore the temporal problem (note
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that this same approximation could be done directly to Eqs. (14) and (15) yielding the

same result, without the need of assuming that A⊥ was a function of z only). In this case,

stimulated Raman scattering equations become:

ω0
dA0

dt
= −

iω2
pδnA1

2
, (23)

ω1
dA1

dt
=
iω2

pδn
∗A0

2
, (24)

ωp
dδn

dt
= −

ie2k2p
4m2

e

(A∗1 ·A0) . (25)

The selection rules for the orbital angular momentum, which ensure conservation of angular

momentum described in the main Manuscript, also follow directly from Eqns. (23)-(25).

These rules will be derived and studied in more detail below. We note that Eqs. (23)-(25)

are valid for arbitrary transverse pump and seed envelope profiles.

We can derive Raman backscattering growth rates assuming that the amplitude of the

pump laser remains constant during its interaction with the plasma wave and the seed laser.

The latter assumption also implies that the intensity of the seed pulse is much smaller

than the intensity of the pump laser. Thus, combining Eq. (24) with the time derivative of

Eq. (25) and neglecting ∂tA0(t), we find:

∂2δn∗

∂t2
= i

e2k2p
4ωpm2

e

(
A∗0 ·

∂A1

∂t

)
. (26)

Equation (26) can be further simplified by substituting Eq. (24) into Eq. (26) giving:

∂2δn∗

∂t2
=

e2k2pω
2
p

8ωpω1m2
e

|A0|2δn∗. (27)

Equation (27), which can be solved exactly, determines the plasma density perturbation

associated with the interaction between pump and seed. By assuming that δn∗(t = 0) = 0,

and that ∂tδn
∗(t = 0) = ie2k2p/(4ωpm

2
e) [A∗0 ·A1(t = 0)] (c.f. Eq. (25)), leads to:

δn∗ = i
e2k2p

4ωpm2
e

[A∗0 ·A1(t = 0)]
sinh (Γt)

Γ
, (28)

Γ2 =
e2k2pω

2
p

8ωpω1m2
e

|A0|2 (29)

where Γ is the growth rate of the instability.

The temporal evolution of the seed is found by combining Eq. (28) with Eq. (24):

A1(t) =

(
A1(t = 0) · A∗0

|A0|

)
A0

|A0|
cosh (Γt) + C, (30)
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where C is a constant specified by the initial seed laser vector potential profile. Equation (30)

describes the temporal growth of the Raman backscattering amplified seed pulse assuming

a non-evolving pump laser with an arbitrary transverse envelope.

The derivation of Eq. (30) is valid for arbitrary transverse electromagnetic field profiles of

both pump and seed beams and for arbitrary pump and seed polarisations, as long as both

pump and seed obey the paraxial approximation. This is a valid assumption because both

Laguerre-Gaussian modes with orbital angular momentum and transverse electro-magnetic

(TEM) modes are solutions of Maxwell’s equations under the paraxial equation, valid as

long as the transverse size of the laser is much larger than the laser wavelength at the focal

plane, or, more generally, valid in the limit of small angles from the axis. Equations (29)

and (30) then show that the growth rates are fully determined by the intensity profile of

the pump. The initial seed for stimulated Raman scattering, which determines the level

of amplification as a function of the interaction length, will depend on the initial overlap

between pump and probe according to Eq. (30).

The main assumption of Eqs. (26)-(30) is that the pump energy does not change during

the interaction. Although this assumption is strictly valid at sufficiently early times when

compared with the growth rates, the model accurately predicts all selection rules, together

with the creation and amplification of new OAM modes. We have confirmed all these

predictions using 3D PIC simulations. Therefore inclusion of pump depletion effects will not

affect the phenomenology for the OAM beam amplification, although they may change the

growth rates according to Ref. [6].

SUPPLEMENTARY NOTE 2 - AMPLIFICATION OF AN EXISTING OAM MODE

In this section, we study the Raman amplification of laser pulses with orbital angular

momentum, and derive selection rules for the OAM of the pump and seed pulses and the

plasma wave. In this and the subsequent sections, we assume that each laser with OAM

`laser can be described as alaser ∼ exp(i`laserφ) and each plasma wave OAM mode can be

described by δn ∼ exp(i`pφ).

We start by studying the case leading to the amplification of an existing OAM seed. We

then consider a seed laser with OAM component given by a1 ∼ exp (i`1xφ) ex, and a pump

with a0 ∼ exp (i`0xφ) ex where ex is the unit vector in the x direction, indicating the direction

8



of polarisation. Direct substituion in Eq. (25) shows that the pump and the seed create a

OAM plasma wave perturbation with δn ∼ exp (i`pφ). Thus, the OAM of the plasma wave

is `p = `0x − `1x, ensuring angular momentum conservation. The same selection rule has

also been derived above in Eqs. (23) and (24), proving that these equations are mutually

consistent. Thus, a pump with a single, but arbitrary OAM mode, or even without any OAM

at all, can be used to amplify a seed pulse with a single and also arbitrary OAM mode,

because the plasma wave will carry all excess angular momentum. This is schematically

shown in Fig. 1, which illustrates several examples of stimulated Raman amplification for

various combinations of pump/seed OAM modes. Figure 1(a) then shows the matching

conditions for a Gaussian pump and seed, where only the longitudinal wavenumber matching

conditions need to be satisfied. Figure 1b shows the matching conditions for the amplification

of an OAM seed by a Gaussian pump. Amplification also occurs in this case because the

plasma wave carries excess angular momentum from the seed, ensuring the conservation of

angular momentum. This setup is relevant because it shows that the amplification of an

OAM seed beam does not necessarily requires a pump with OAM. Figures 1(c)-(d) show

additional configurations leading to the amplification of an OAM seed.

A similar calculation can be performed for the case of circular polarisation, leading to

the same selection rules.

SUPPLEMENTARY NOTE 3 - GENERATION OF NEW OAM MODES

In order to explore the generation and amplification of new OAM modes in the seed, we

consider a pump with a0 ∼ exp(i`0xφ)ex + exp(i`0yφ)ey, and a seed with a1 ∼ exp(i`1xφ)ex.

Hence, the pump has an OAM mode linearly polarised in each transverse direction, and

the seed contains a single OAM mode linearly polarised in the x direction. According to

Eq. (25), the seed component in x interacts with the pump component also polarised in x,

generating a plasma wave with `p = `0x− `1x. This daughter plasma wave can interact with

the pump component polarised in the y direction, leading to the generation of a new seed

OAM mode polarised in the y direction with `1y = `0y − `p = `0y − `0x + `1x, in agreement

with Eq. (30).

Figure 2 illustrates this step where the matching conditions are satisfied for the x direction

from the start of the interaction for a particular case where the pump OAM in x is `0x = 0
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and in y is `0y = 1, and where the initial seed is polarised in x with `1x = 1. In Fig. 2(a),

the x pump component interacts with the existing OAM seed component in x to produce

a plasma wave with OAM given by `p = `0x − `1x = −1 (green dashed line). Figure 2(b)

illustrates this second step where the matching conditions are satisfied for the y direction

once a new seed is created in that direction. In Fig. 2(b), the plasma wave then interacts

with the pump polarised in y and lead to a new seed polarised in y with `1y = `0y − `p = 2

(orange dashed line) In addition, the existing seed mode linearly polarised in x [exp(i`1xφ)]

will continue to be amplified. Figure 2 illustrates these steps leading to the generation of

a new linearly polarised OAM seed. It is important to note that the new `1y mode in the

seed cannot interact with the `0x mode in the pump since these modes have orthogonal

polarisation.

An identical setup can also be used to generate and amplify a new mode with circular po-

larisation. This is possible because right-handed and left-handed circularly polarised modes

do not interact, just as linearly polarised modes in two orthogonal directions do not interact.

We now consider an initial pump with a0 ∼ exp(i`0+φ) (ex + iey)+exp(i`0−φ) (ex − iey) and

an initial seed with a1 ∼ exp(i`1+φ) (ex + iey). Hence, the pump has a single OAM mode `0+

circularly polarised in e+ and a single OAM mode `0− circularly polarised in e−. The seed,

with an initial single OAM mode `1+, is circularly polarised in the anti-clock wise direction.

According to Eq. (30), the anti-clock wise seed and pump generate a plasma wave with `p =

`0+−`1+. The plasma wave then interacts with the pump circularly polarised in the clockwise

direction and produces a new seed mode, also circularly polarised in the clockwise direction

with `1− = `0− − `p = `0− − `0+ + `1+. Direct substitution of pump and seed expressions in

Eq. (30) then yields a1 ∼ exp(i`1+φ) (ex + iey) + exp [i (−`0x + `1x + `0y)φ] (ex − iey), con-

sistent with the conservation of orbital angular momentum. As a result, and in addition to

the amplification of the existing circularly polarised mode, a new circularly polarised OAM

seed can also be produced and amplified with a handedness opposite to the initial seed.

SUPPLEMENTARY NOTE 4 - CONVERSION FROM TEM TO OAM MODES

Figure 3 shows the generation of OAM from initial TEM modes, where we consider

a pump given by a0 ∼ TEM00 (ex + ey), and an initial seed given by a1 ∼ TEM10ex +

iTEM01ey, i.e. the y seed component is π/2 out of phase with respect to the seed x com-
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ponent. Initial pump modes are shown in Figs. 3(a) and (c). The TEM00 pump polarised

in x then interacts with the TEM10 seed also polarised in x to generate a TEM plasma

wave with TEM10 (plasma wave represented by the green dashed lines in Fig. 3(a)). This

daughter plasma wave then interacts with the TEM00 pump polarised in y yielding a new

TEM10 seed mode polarised in y (new seed mode in y represented by the orange dashed lines

in Fig. 3(b)). Simultaneously, the TEM00 pump polarised in y interacts with the iTEM01

seed also polarised in y to generate a plasma wave with iTEM01. (new plasma wave mode

represented in dashed green in Fig. 3c). This daughter plasma wave then interacts with the

TEM00 pump polarised in x and generates a new iTEM01 seed polarised in x (new seed in

x represented by orange dashed lines in Fig. 3d). As a result, a new seed is created and

amplified with a1 ∼ (TEM10 + iTEM01)(ex + ey). According to Ref. [7], this corresponds to

new OAM modes with `1x = `1y = 1. Equivalently, substituting pump and seed expressions

into Eq. (30) leads to a2 ∼ TEM00 (TEM10 + iTEM01) (ex + ey), where TEM00 ∼ 1 in this

context.

An alternative way to view this scheme is to define new ortogonal unit vectors given by

e1,2 = (ex ± ey)/
√

2 and write the seed pulse as a1 ∼ (TEM10 + iTEM01)e1 + (TEM10 −

iTEM01)e2. While this pulse has no overall OAM, the e1 and e2 components have OAM

of ` = 1 and ` = −1 respectively. Since the pump pulse is given by a0 ∼ TEM00e1, it

will amplify the ` = 1 mode (same polarisation) while leaving the ` = −1 mode untouched

(orthogonal polarisation). The amplified seed pulse will then end up with overal OAM of

level ` = 1, while it had no OAM initially. This example also illustrates that it is possible

to selectively amplify OAM modes in the seed pulse based on their polarisation relative to

the polarisation of the pump pulse.

SUPPLEMENTARY NOTE 5 - PLASMAS AND KERR MEDIA

In stimulated Raman scattering in plasmas the electromagnetic pump wave decays into a

scattered electromagnetic wave with the Langmuir wave providing the coupling between the

other two electromagnetic waves. In other nonlinear optical media, the role of the Langmuir

wave would be replaced by molecular vibrations, for example. Equations for three wave
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mixing processes in nonlinear anisotropic optical media with Kerr nonlinearity are [8]:

dA
(3)
i

dz
= i

k3
n2

dijkA
(1)
j A

(2)
k (31)

dA
(1)
i

dz
= i

k1
n2

dijkA
(3)
j A

(2)∗
k (32)

dA
(2)
i

dz
= i

k2
n2

dijkA
(3)
j A

(1)∗
k , (33)

where A
(m)
i is the electromagnetic field envelope component in the x(i = 1), y(i = 2),

and z(i = 3) direction. The superscript m = 1, 2, 3 defines each of the three waves that

participate in the process. In addition, z is the propagation direction, (k1, k2, k3) are the

laser wavenumbers of each laser, n =
√

1 + χ0 with χ0 being the linear susceptibility, and

the dikj are the susceptibility coefficients. Eq. (31)-(33) assumes frequency and wavenumber

matching conditions given by ω3 = ω1 + ω2 and k3 = k1 + k2.

We now assume that A
(2)
i is now polarised in x (i.e. A

(2)
1 6= 0, A

(2)
2 = A

(2)
3 = 0) with

the role of being an idler beam that will cary the excess angular momentum between the

pump and the seed, analogous to the electron plasma wave in this respect. In this case

Eq. (31)-(33) is formally identical to Eqs. (23)-(25) as long as d111 = d221 = d122 = d 6= 0,

with dijk = 0 for any other combination of the triad (ijk) with i 6= 3, since z (i = 3) is the

propagation direction. In these conditions, Eqs. (31)-(33) become:

dA(3)

dz
= id

k3
n2
A

(2)
1 A(1) (34)

dA(1)

dz
= id

k1
n2
A

(2)∗
1 A(3) (35)

dA(2)

dz
= id

k2
n2

A(3) ·A(1)∗. (36)

Equations (34)-(36) are identical to the stimulated Raman backscattering in a plasma given

by Eqs. (23)-(25). If d111 6= d221 6= d122, the coupling between the three waves will differ

from the plasma case. If other non-zero components of dijk appear, then the coupling

between each wave in the different polarisation directions will also differ from the plasma

case. Still the ideas and principles established in our work will still hold. The plasma, under

the approximations we have performed and for which Eq. (23)-(25) are valid, is therefore a

special case of a non-linear optical medium.
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