Supplementary Figure 1. Biological characteristics of Smarcb1^{flox/flox}; Rosa26-Cre^{ERT2}; lymphomas

Ingenuity analyses of genes with significantly different expression (t-test analyses, $p \le 0.05$, Fold Change $|FC| \ge 1.2$) in *Smarcb1*-deficient mouse lymphomas (Lymph_{Smarcb1}) as compared with Mb (a) and Nb (c); similar analyses comparing *Ctnnb*^{del_ex3} T-cell lymphomas (Lymp_{Ctnnb1}) with Mb (b) and Nb (d); similar analysis between the two types of lymphomas (e). Pathways are ranked from the most (up) to the less (down) significantly represented ones. The columns' length represents the percentage of genes in the pathway that are significantly differentially expressed. Genes involved in the pathways are numbered at the end of the columns. Genes overexpressed in lymphomas as compared with Mb are shown in red, under-expressed genes in green. The yellow curve indicates the p.value for each overrepresented pathway. (f) Significant overlaps of the differential expressions between each type of lymphomas and Mb (upper panel) and Nb (lower panels).

Supplementary Figure 2. Rosa26-Cre dependent recombination throughout mouse development

(a) Semi-quantitative PCR on mouse brains and livers, five days after treatment with tamoxifen (Tam, 1mg/20g) and vehicle at various time points (from E6 to birth). Del: deleted allele; flox: floxed allele. (b) Similar diffuse β -galactosidase staining in brains at E15 in Rosa26-Cre^{ERT2};Rosa26-LacZ mice treated with tamoxifen at E6 (left upper panel) and E9 (right upper panel) ; scale bars represent 5mm. HES staining of control mouse at E15. Right panel: higher magnification focusing on brains ; scale bars for high magnification represent 1mm

P0: birth day. W8: 8 weeks of life. M5: 5 months of life. Mice showed no phenotype when treated with tamoxifen from E12 to E18 with standard doses (1.5-2mg/20g); therefore, we didn't use reduced doses after E12.

Supplementary Figure 4. Mouse intra-cranial tumors are split in two entities

(a) Unsupervised hierarchical clustering on 3161 genes; mIC clusterize with neuronal tumors (Mb and Nb) while mE/IC clusterize with lymphomas (b) whole genome correlation between *Smarcb1*-deficient mouse tumors; a high correlation is found between intracranial tumors of the mE/IC group and the soft-tissue tumors. i.e. mE/IC arising in the paw (pa) and the face (fa). (c) Non Negative Matrix Factorization on the whole set of mouse *Smarcb1*-deficient tumors . Mb and Nb; the most robust and lowest number of clusters that split Mb from Nb is k=5: Mb, Nb, the Lymphoma group and 2 distinct groups within *Smarcb1*^{flox/flox};Rosa26-Cre^{ERT2} intracranial mouse tumors. (d) Consensus clustering on the same set of tumors showing that a number of clusters lower than 5 is unable to split Mb from Nb.

Supplementary Figure 5. Human intra-cranial tumors are split in three entities

(a) Unsupervised hierarchical clustering on 3630 genes; 4 clusters within all *SMARCB1*-deficient tumors; hEC: human extra-cranial tumors; hIC: human extra-cranial tumors, groups 1, 2 and 3: MB: human medulloblastomas; NB: human neuroblastomas; NA: non assigned (b) Non Negative Matrix Factorization on the whole set of human *SMARCB1*-deficient tumors, MB and NB; the most robust (highest cophenetic coefficient) and lowest number of clusters that split MB from NB is 6, confirming 4 distinct groups within *SMARCB1*-deficient tumors. (c) Consensus clustering on the same set of tumors, showing that a number of cluster lower than 6 is unable to split MB from NB.

Supplementary Figure 6. RT-PCR confirmation on a subset of selected genes

8 genes that distinguish mE/IC from mIC were assessed on human tumor subgroups (hEC, n=5; hIC1, n=5, hIC2, n=5, and hIC3, n=5) and mouse tumors subgroups (mIC, n=4, and mE/IC, n=4); the levels of expression in the face tumor from the heterozygous model (mEC_{Hz}, n=1) are also separately depicted to show the similarity of their expression profile with other tumors from the mE/IC group. In box-plots, the central rectangle spans the first quartile to the third quartile (*interquartile range* or *IQR*); the horizontal line inside the rectangle shows the median; whiskers are taken to 1.5×*IQR* from the quartile ; circles show outliers

In box-plots, the central rectangle spans the first quartile to the third quartile (*interquartile range* or *IQR*); the horizontal line inside the rectangle shows the median; whiskers are taken to $1.5 \times IQR$ from the quartile ; circles show outliers hIC1, n=11 ; hIC2, n=;12 hIC3, n=5; hEC, n=20; mIC, n=5; mE/IC, n=4; mEC_{hz}, n=1.

Supplementary Figure 8. Full gel showing the PCR results on wild type, knock out (KO) and floxed alleles of *Smarcb1*

bp: base pair; Tam: tamoxifen; wt: wild type.

	Genetic	Tumour	Phenotype	Mean Latency
	background	penetrance		
Guidi et al,	Promoter trap	15%	Head and neck	25weeks
Moll Cell Biol,	in intron 3		soft-tissues	
2001			tumours	
			Sarcomas,	
			lymphoma	
Klochendler-	Deletion of	32%	Intracranial	9 months
Yeivin et al,	exons 1 & 2		paraspinal	
EMBO, 2000			subcutaneous	
			tumors	
			Pleomorphic	
			Rhabdoid cells	
Roberts et al,	Deletion of	6.5%	Face and Neck	6 months
PNAS, 2000	exon1		soft-tissue	
			tumors	
			Pleomorphic	
			Rhabdoid cells	
Tsitikis et al.	Deletion of	26%	Face and neck	11 months
PNAS, 2005	exons 6&7	7 0	Soft-tissue	
			tumors	
			Pleomorphic	
			Rhabdoid cells	
Roberts et al.	Conditionnal	100%	Spleen and	3months
Cancer Cell.	Inversion		liver	
2002			lymphomas	
Moreno et al.	Promoter	0%	Cerebellum	Not applicable
I Neuroscience.	specific for		hypoplasia	
2015	granule cell		nypopiasia	
2010	nrecursors ·			
	Atoh1_Cro			
	Atom-Cre			

	Sense	Anti-sense	
Human SOX2	GCCCCCAGCAGACTTCACAT	AGGGGCAGTGTGCCGTTAAT	
Human FABP7	TCATCAGGACTCTCAGCACATTCAA	CCATCCAGGCTAACAACAGACTTACA	
Human GAFP	CAGAAGCTCCAGGATGAAACCAA	GTGGCTTCATCTGCTTCCTGTCT	
Human ASCL1	CGTCCTGTCGCCCACCATCT	GGGGCTGAGCGGGTCGTAA	
Human HES5	GAAGCACAGCAAAGCCTTCGT	GTAGCCTTCGCTGTAGTCCTGGT	
Human GLI2	AAGTCACTCAAGGATTCCTGCTCA	GTTTTCCAGGATGGAGCCACTT	
Human MYC	ACCACCAGCAGCGACTCTGA	TCCAGCAGAAGGTGATCCAGACT	
Human HMOX1	CAGTCAGGCAGAGGGTGATAGAAGA	CTGCAACTCCTCAAAGAGCTGGAT	
Mouse SOX2	CACATGGCCCAGCACTAC	CCCTCCCAATTCCCTTGTATC	
Mouse FABP7	TGTAAGTCTGTGGTTCGGTTG	AGGGGCAGTGTGCCGTTAAT	
Human FABP7	TCATCAGGACTCTCAGCACATTCAA	AGCAACGATATCCCCAAAGG	
Mouse GAFP	GAAAACCGCATCACCATTCC	CTTAATGACCTCACCATCCCG	
Mouse ASCL1	GACTTGAACTCTATGGCGGG	TTCCAAAGTCCATTCCCAGG	
Mouse HES5	CGGTGGAGATGCTCAGTC	CTTGGAGTTGGGCTGGTG	
Mouse GLI2	GCTCCACACCCCGCAACA	AAGTTTTCCAGGACAGAACCATTGA	
Mouse MYC	ACCACCAGCAGCGACTCTGA	GGAATGGAGATGAGCCCGACT	
Mouse HMOX1	ACAGAGGAACACAAAGACCAG	GTGTCTGGGATGAGCTAGTG	