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Supplementary Figure 1: Numerically generated nanocrystalline graphene. 2D peri-
odic nanocrystalline sample of size 128 Å with 4, 8, and 12 grains, respectively.
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Supplementary Figure 2: Numerically generated nanocrystalline graphene. 2D pe-
riodic nanocrystalline samples.(a) Size 128 Å, 16 grains, (b) size 256 Å, 64 grains, and (c) size
256 Å, 8 grains.



Supplementary Figure 3: Elastic response of nanocrystalline graphene. The stress-
strain response of a 2D periodic nanocrystalline samples with grain size 64 Å, loaded at a strain
rate of ε̇yy = 109s−1 at T = 300K. εyy is the applied strain in the y-direction, while σyy is the
measured stress in the y-direction.



Supplementary Figure 4: Failure of polycrystalline graphene under tension. Snap-
shots of simulation of uniaxial straining of a 2D periodic nanocrystalline sample.(a) Nanocrys-
talline domain boundaries, size 128 Å, 16 grains. The triple junctions near which the fatal flaws
eventually develop are marked by the dashed red circles. (b)-(i) Simulation snapshots at various
levels for strain εyy (the applied strain in the y-direction). Complete failure occurs soon after
εyy = 0.85.
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Supplementary Figure 5: Illustration of GB geometry in graphene. (a) Geometry of a
general grain boundary in graphene. (b) An example with θ1 = 24.79◦, θ2 = 3.0◦.



Supplementary Note 1. Simulations

Creating nanocrystalline graphene sheets for simulation

We use the following method to generate nanocrystalline graphene sheets with random grain

random shapes and orientations. A square sheet of size L and grain size µ has ng = L2/µ2 grains.

First we choose the ng points as ‘centers’ of the grains at random (distributed uniformly on the

sheet of area L2). Then a Voronoi construction with these points is used to generate the granular

regions associated with them. Then the orientation of lattice vectors in each grain is chosen at

random. The positions of carbon atoms in the grains and at the grain boundaries is assigned

with a recently proposed algorithm1. This algorithm results in well annealed nanocrystals.

Supplementary Fig. 1 (a), (c), (e) show some examples of nanocrystalline domains generated

with this method. Supplementary Fig. 1 (b), (d), (f) show the corresponding atomic positions.

Supplementary Fig. 2 shows some more nanocrystalline morphologies.

Simulations of nanocrystalline strength

We simulate 24 different combinations of (L, µ, ε̇) (64, 32, 1), (128, 64, 1), (128, 32
√
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nanocrystalline graphene sheet, µ is the grain size, and ε̇ is the strain rate. The units for L, µ

are Å, and the units for ε̇ are 109s−1. For each combination of parameters we perform statistical

sampling by simulating 104, 103, 102, 102 random nanocrystals for L = 64, 128, 256, 512 Å,

respectively. Thus, for the simulations of strength we simulate a total of 19,500 nanocrystals.

The simulations are carried out in the canonical ensemble with constant NVT integration using

a Nose/Hoover thermostat with the LAMMPS software2. A constant strain rate is imposed in

the y direction by using the SLLOD equations of motion3. The temperature is set to 300 K.

The interaction between the carbon atoms is modeled by using the AIREBO potential4–6, with

the modification to the interaction cutoff parameter rcmin applied as suggested in Ref. 6. As

the applied strain increase, the stress also increases initially. However, eventually fracture is

initiated and the sample fails. The peak stress obtained during the loading process is defined as

the strength of the nanocrystal. The stress-strain response of a typical polycrystalline sample



loaded uniaxially is shown in Supplementary Fig. 3. The thermal component of the stress is

subtracted from the net response. Supplementary Fig. 4 shows the loading of a representative

nanocrystal in this manner.

Simulations of nanocrystalline toughness

We evaluated the toughness of 500 samples of nanocrystalline graphene each for grain sizes of

µ = 16, 32, 64 Å. Nanocrystalline toughness is evaluated by generating a square nanocrystalline

graphene sheet of size L = 256 Å with the required grain size and random grain morphology as

discussed in the previous sections. A crack tip is introduced at the center of the nanocrystal by

applying the deformation field corresponding to a stress intensity factor KI as calculated from

linear elastic fracture mechanics, i.e.,

ux =
KI
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√
r
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(κ− cos θ) cos θ/2, uy =

KI

2G

√
r

2π
(κ− cos θ) sin θ/2, (1)

where r, θ are the polar coordinates of a point with the origin placed at the crack tip, G is the

shear modulus, and κ = (3− η)/(1 + η), and η is the Poisson’s ratio. Atoms outside a radius of

100 Å from the crack tip are held fixed at this displacement, while atoms inside this radius are

evolved with NVT dynamics. As before, we use the AIREBO potential to model the carbon-

carbon interaction. The stress intensity factor KI is incremented in steps of 0.1 MPa·m1/2, and

the system is held at each KI for 1 ps. The critical stress intensity factor, and thus the fracture

toughness, is defined as the lowest value of KI for which the crack grows in this manner.

Simulation of strength of graphene grain boundaries

Grain boundaries (GBs) in graphene can be parameterized with two angles, θ1, θ2 as shown in

Supplementary Fig. 5 7. Another widely used parameterization employs the misorientation angle

θM = θ1+θ2, and the line angle θL = |θ1−θ2|, which is entirely equivalent to the parameterization

used here. The 6-fold rotation symmetry of the graphene lattice means 0 ≤ θ1, θ2 < π/3. The

reflection symmetry about the grain boundary results in the symmetry operation (θ1, θ2) →

(θ2, θ1), thus reducing the space of unique boundaries to θ1 ≥ θ2. The mirror symmetry about

the horizontal axis leads to the operation (θ1, θ2)→ (π/3− θ2, π/3− θ1), thus further requiring

that θ1 + θ2 < π/3. Thus, the space of unique grain boundaries is reduced to a triangle in the

(θ1, θ2) space.



In a recent publication1, we grid this space in steps of 0.5◦ and generate a grain boundary at

each point. We generate GBs with a width of 50 Å. We simulate fracture of the grain boundaries

under uniform strain applied perpendicular to the grain boundary. The simulation method is

similar to that used for nanocrystalline strength, the difference being that the GBs are periodic

only along the GB direction. Thus, to apply a strain loading, a strip of atoms 5 Å wide at the left

and right edges of the GB is moved rigidly at the required strain rate. The stress is recorded, an

the strength of the GB is defined as the largest stress achieved during the simulation. Since we

used a uniform grid, and random grain boundaries sample from a uniform probability density

over the (θ1, θ2) space, we can readily obtain an approximation for the survival probability,

ŜGB(σ), of a randomly chosen grain boundary. This probability is simply equal to the number

of GBs that survived at the stress σ divided by the total number of simulated GBs. A plot of

this survival probability can be found in Figure 5 of the main text.

Supplementary Note 2. Theoretical derivations

Detailed derivation of strain-rate and grain-size dependent survival probabil-

ity of nanocrystalline graphene

Consider an isolated defect in the graphene sheet which has a stress dependent energy barrier

given by ∆E(σ(t)) associated with it, where σ(t) is the stress at time t. In the case of polycrys-

talline graphene being considered here, this defect corresponds to individual pentagon-heptagon

pairs that make the graphene GBs and TJs as shown in Figures 1b and 2b of the main text. If

this barrier can be overcome by thermal fluctuations, then the defect will grow and cause global

failure. According to nucleation theory, the probability that the barrier will be overcome in a

small time dt is given by ωe−∆E(σ(t))/kTdt, where ω is a prefactor. Thus, the probability that

the defect survives during the time dt is given by:

S0(σ(t), dt) = 1− ωe−∆E(σ(t))/kTdt ∼ exp
(
−ωe−∆E(σ(t))/kTdt

)
. (2)

Since σ(t) = YRε̇t, where YR = Y/(1−η2) is the reduced modulus of elasticity for plane stress, Y

is the Young’s modulus, and η is the Poisson’s ration, we can remove the explicit dependence on

time from the above equation and get the probability that the defect survives a stress increment



of dσ = YRε̇dt in time increment dt as:

S0(dσ) = exp
(
−(ω/YRε̇)e

−∆E(σ)/kTdσ
)
. (3)

Now consider a population of non-interacting defects with a stress dependent density of barrier

heights given by f(∆E(σ)), and an area-density given by ρ. There are ρL2f(∆E)d∆E defects

with barrier height ∆E in a sample of area L2. The probability that all of the defects with

barrier height ∆E survive the stress increment of dσ, which happens in time increment dt is

simply a product of the individual probabilities, and is given by:

exp
(
−(ω/YRε̇)ρL

2e−∆E(σ)/kT f(∆E(σ))d∆Edσ
)
. (4)

Thus, the probability that all defects (and hence the graphene sheet) survives the stress incre-

ment dσ in time dt is obtained by integrating over the distribution of defects barrier heights,

and is given by:

exp

(
−(ω/YRε̇)ρL

2

∫ ∞
0

e−∆E(σ)/kT f(∆E)d∆Edσ

)
. (5)

Finally, the probability that the sheet survives till stress σ (time t = σ/YRε̇) is again obtained

by taking a product of the survival probabilities over small increments, which corresponds to

integrating the term in the exponential in the above equation, and is given by:

S(σ) = exp

(
−(ω/YRε̇)ρL

2

∫ σ

0

∫ ∞
0

e−∆E(σ′)/kT f(∆E)d∆Edσ′
)
. (6)

To make connection to the theory of extreme value statistics and Weibull distribution, note

that the above can be written as:

S(σ) = exp

(
−ωYR

∫ σ

0

∫ ∞
0

e−∆E(σ′)/kT f(∆E)d∆Edσ′
)ρL2/ε̇

. (7)

The right hand side of the above equation is of the form F (σ)ρL
2/ε̇, where F (σ) can be identified

with the exponential term. An important theorem from extreme value theory8–10 tells us that

for any distribution function F (σ), the following holds under very mild restrictions:

F (σ)N → Λ((σ − bN )/aN ), (8)



where Λ(·) is of the Weibull, Gumbell or Frechet form, and aN , bN are constants. This is a

very powerful result, in that it does not depend on the details of the distribution function

f(∆E); thus we do not need detailed knowledge of the distribution of defects to obtain a very

good approximation of the global survival probability. The Weibull form emerges whenever the

function F (σ) has a power-law tail. For the Weibull form the function Λ(σ) is given by exp(−σm),

where m is a positive real number. Under this assumption (which we verify numerically), we

can approximate the survival probability as:

S(σ) = F (σ)ρL
2/ε̇ → exp

(
−
(
σ − b
a

)m)
, (9)

where a, b are constants that depend on ρL2/ε̇.

The scaling suggested in Eq. 3 of the text can be arrived at on the basis of the physical

reasoning hinted at in the manuscript; however, here we take a more mathematical approach.

The assumption that Λ(·) is of the Weibull form essentially amounts to assuming that F (σ) has

a power law expansion, i.e.,

F (σ) ∼ 1− α(σ − σ0)m + h.o.t, (10)

then,

F ((αN)−1/mσ + σ0)N ∼
(

1− σm

N

)N
→ e−σ

m
, (11)

which gives:

F (σ)N → exp

(
−
(

σ − σ0

(αN)−1/m

)m)
= exp

(
−N

(
σ − σ0

(α)−1/m

)m)
. (12)

Thus,

S(σ) = F (σ)ρL
2/ε̇ → exp

(
−ρL2ε̇

(
σ − σ0

(α)−1/m

)m)
. (13)

Finally, realizing that the density of defects goes as ρ ≈ c/µ2, where µ is the linear grain size,

and c is a constant, and normalizing with a reference strain rate ε̇0 gives us:

S(σ|L, µ, ε̇) = exp

(
−(L/µ)2

ε̇/ε̇0

(
σ − σ0

v

)m)
, (14)

where v = (ε̇0/cα)1/m.



Supplementary Note 3. Statistical methods

Maximum likelihood estimator for survival distribution of strength

Given the survival distribution function for the strength of nanocrystalline graphene S(σ|L, µ, ε̇),

the corresponding probability density is:

s(σ|L, µ, ε̇) = −∂σS(σ|L, µ, ε̇)

= exp

(
−(L/µ)2

ε̇/ε̇0

(
σ − σ0

v

)m) (L/µ)2

ε̇/ε̇0

m

v

(
σ − σ0

v

)m−1

. (15)

If for a single dataset the data σi are observed, then the corresponding log-likelihood function is

given by
∑

i log s(σi|L, µ, ε̇). If we have q datasets D1, D2, . . . , Dq consisting of n1, n2, . . . , nq

data points, obtained at configurations (L1, µ1, ε̇1), . . . , (Lq, µq, ε̇q), then the parameters σ0, v, m

can be obtained by a joint fit of data obtained by maximizing the following log likelihood func-

tion:

L =

q∑
j=1

nj∑
i=1

1

nj
log s(σji |Lj , µj , ε̇j), (16)

where the dataset Dj consists of observations σj1, σ
j
2, . . . , σ

j
nj of fracture strengths. The

normalization with the number of points in the dataset, nj , is carried out to avoid a bias

towards datasets with larger number of observations, because these are typically datasets with

smaller values of L that can be simulated at smaller numerical cost.

Maximum likelihood estimator for survival distribution of toughness

The estimation of parameter α for the toughness model (Eq. 3 of the main text) is similar to

the discussion in the previous section. However, one key difference should be noted. In the case

of strength we were able to get a closed form formula and take the derivative in Supplementary

Eq.15 analytically. As the corresponding operation cannot be performed analytically with Eq. 3

of the main text, the derivative has to be taken numerically by using finite differences.
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