
© Oxford University Press 2005 1

Genetics and population analysis

HEALER: Homomorphic computation of ExAct Logistic rEgRes-
sion for secure rare disease variants analysis in GWAS
Shuang Wang1*§, Yuchen Zhang1,2, §, Wenrui Dai1,2, Kristin Lauter3, Miran Kim4, Yuzhe
Tang5, Hongkai Xiong2, and Xiaoqian Jiang1
1Department of Biomedical Informatics, University of California, San Diego, CA, 92093.
2Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
3Microsoft Research, San Diego, CA, 92122.
4Seoul National University, Seoul, 151-742, Republic of Korea.
5Department of EECS, Syracuse University, Syracuse, NY 13244.
Received on XXXXX; revised on XXXXX; accepted on XXXXX
Associate Editor: XXXXXXX

SUPPLEMENTARY

Table S1. List of frequently used symbols in this paper

Symbols Descriptions
𝒀 A set of independent binary random variables
𝒚 𝒚 = 𝑦%, 𝑦', … , 𝑦) * the realization of 𝒀 with 𝑛 observations
𝑛 Number of observations (records)
𝑚 Number of categorical groups
𝑝 A prime number serving as the modulus base
𝜋/ The response probability 𝜋/ for the 𝑖-th observation
𝑥/ The explanatory variable for the 𝑖-th observation
𝑧/ A nuisance variable may not be of direct interest
𝒅𝒊 A binary dummy vector for 𝑧/
𝝎, 𝜷 Model parameters with respect to the covariates 𝒛/ and 𝒙/

𝑡:
𝑡: = 𝑦/𝑥/)

/;% is the sufficient statistic of the explanatory vari-
able

𝑡<,= 𝑡<,= = 𝑦/𝑑/,=)
/;% is the sufficient statistic by each category

𝑟 Total number of samples
𝒀 Valid sample space
𝔂∗ 𝓎∗ = 𝓎%

∗ , 𝓎'
∗ , … , 𝓎C

∗ D random samples
Δ Encrypted version of variable or function Δ

𝒻 𝑐 A homomorphic encrypted indicator function for c = 0
𝑀KL A constant value in the 𝒻 𝑐 function
𝒽 𝑐 A homomorphic encrypted indicator function for c > 0
ℳ𝓀 Precomputed constants in the 𝒽 𝑐 function
𝐿%, 𝐿' Upper bounds on ciphertext 𝑐 in functions 𝒻 𝑐 and 𝒽 𝑐
𝐿R Number of slots in ciphertext

S1. Sampling methods for solving exact logistic regres-
sion

The goal of exact conditional analysis is to evaluate how likely an observed
response 𝒚 is with respect to all possible responses {𝒚∗} given sufficient sta-
tistics	
 𝒕𝑵. It is computationally infeasible to scan all 2) possible responses
as the complexity increases exponentially with respect to the number of rec-
ords 𝑛. For example, one would need to evaluate 2YZ different 𝒚∗ vectors in
the case of 𝑛 = 30. One workaround is to use sampling methods to approx-
imate the permutation distribution of its sufficient statistics through a set of

samples. In this paper, we only focus on building a secure exact logistic re-
gression model with a single categorical nuisance covariate 𝑧/ ∈ {0, 1, … ,𝑚}
(𝑚 is the number of categories) using homomorphic encryption. When the
nuisance variable 𝒛/ = (𝑧/%, 𝑧/', … 𝑧/_L) includes multiple categorical covari-
ates (i.e., ℎ% > 1), the sampling distribution is more complicated. The prob-
lem can be tackled by using the Markov Chain Monte Carlo (MCMC)
method (Mehta et al., 2000) but it is out of the scope of this work.

 To deal with a single categorical nuisance covariate 𝑧/ ∈ {1, … ,𝑚}, 𝑚 ≥
2, we first introduce a binary dummy vector representation of 𝑧/ as 𝒅𝒊 =

(𝑑/,%, 𝑑/,', … , 𝑑/,c) with 𝑑/,= =
1, if	
 𝑗 = 𝑧/	
 	
 	
 	

0, otherwise (see Section S4 in this supple-

mentary). Given the dummy coded representation, the sample space 𝒀 can
be represented as

𝒀 = {𝓎%
∗ , 𝓎'

∗ , … , 𝓎)
∗ : 𝓎/

∗
)

/;%
= 𝑡Z	
 and	
 𝓎/

∗𝑑/,=
)

/;%
= 𝑡<,=	

for	
 𝑗 ∈ {1,2, … ,m − 1}}
(S1)

where 𝑡<,= = 𝑦/𝑑/,=)
/;% is the sufficient statistic contributed by each cate-

gory 𝑗, 𝑗 ∈ {1, … ,𝑚 − 1}. Here, we only need to consider 𝑚 − 1 degrees of
freedom in Equation (S1) for 𝑚 categories. The null distribution of 	
 𝑡: =

𝑦/𝑥/)
/;% 	
 can be estimated based on the samples uniformly drawn from	
 𝒀.

Denote	
 𝔂(t) = 𝓎%
(t), 𝓎'

(t), … , 𝓎)
(t) with 𝑘 = 1,⋯ , 𝐶' as a total of 𝐶'	
 sam-

ples uniformly drawn from	
 𝒀 and denote	
 𝑡:
(t) = 𝓎/

(t)𝑥/)
/;% 	
 as its sufficient

statistics for the parameter 𝛽. The 𝑝-value of exact test based on “conditional
probability” (Mehta and Patel, 1995) is defined as the probability of getting
the observed value of the test statistic, or a value with even greater evidence
against the null hypothesis, can be calculated:

 𝑝yz{ =
1
𝐶'

𝐈(𝑡:
t ≥ 𝑡:)

}~

t;%

=
𝐶%
𝐶'

 (S2)

 Here 	
 𝐈 𝑡:
t ≥ 𝑡: ∈ {0,1}	
 is an indicator function for the compari-

son	
 𝑡:
(t) ≥ 𝑡: and 𝐶% = 𝐈(𝑡:

t ≥ 𝑡:)
}~
t;% . The secure calculation of the 𝑝-

value for 𝛽 is the goal of our study. The estimation of the parameter 𝛽 and
the predictive inference of a response at 𝑥/ are also possible. But they are not
the focus of this paper, we omit the details and interested readers can check
the paper (Mehta and Patel, 1995).

S.Wang et al.

2

S2. Secure rejection sampling
As we need to draw samples from the sample space defined in Equation (S1),
a random sample 𝔂∗ = 𝓎%

∗ , 𝓎'
∗ , … , 𝓎)

∗ * is considered as a valid permuta-
tion of 𝒚 = 𝑦%, 𝑦', … , 𝑦) * i.f.f. 𝓎/

∗𝑑/,=)
/;% = 	
 𝑦/𝑑/,=)

/;% for ∀	
 𝑗 ∈
{1,2, … ,𝑚 − 1}. For example, in Supplementary Table S2, a valid permuta-
tion only takes place among 𝑦/ with the same color (i.e., in the same group).
However, after homomorphic encryption, it is infeasible to differentiate dif-
ferent encrypted 𝓎/

∗ for 𝑖 = 1, 2, … , 𝑛. For simplicity, we use Δ to denote the
encrypted version of variable or function Δ. To verify if a sample is valid
over encrypted data, it is equivalent to compare whether all differences be-
tween 𝑡<,= = 𝑦/𝑑/,=)

/;% and 𝑡<,=∗ = 𝓎/
∗𝑑/,=)

/;% for ∀	
 𝑗 ∈ {1,2, … ,𝑚 − 1}
are zeroes. Let’s denote 𝑐=∗ = 𝑡<,= − 𝑡<,=∗ the difference in the 𝑗-th group. A
negative integer 𝑐 will be encoded by its 𝑝’s-complement integer as 𝑝 − 𝑐 .
For example, given 𝑐 ∈ [−𝐿%, 𝐿%] and 𝑝 > 2𝐿%, its 𝑝’s-complement integer
will be in the range [0, 𝐿%] ∪ [𝑝 − 𝐿%, 𝑝 − 1] for non-negative and negative
plaintext 𝑐, respectively. Then, we can securely label (i.e., accept/reject) a
sample based on the output of the following secure comparison function,

ℱ 𝒄∗ = ℱZ 𝑐=∗ =
1, if	
 𝑐=∗ = 0, ∀	
 𝑗 ∈ {1,2, … ,𝑚 − 1}
0, otherwise	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

c�%

=;%

 (S3)

where 𝒄∗ = 𝑐%∗, 𝑐'∗, … , 𝑐c�%
∗ * is a vector of encrypted differences and the

function ℱZ 𝑐=∗ can be defined as

ℱZ 𝑐=∗ =
1, if	
 𝑐=∗ = 0	
 	
 	
 	
 	

0, otherwise

 (S4)

 Therefore, an encrypted output 1 can be used to label a valid sample. The
Equation (S4) can be realized through the proposed secure integer compari-
son protocol as discussed in the supplementary Equations (S7) and (S8).

Algorithm 1: Homomorphic rejection sampling
0: Inputs: encrypted vectors 𝒚 = 𝑦%, 𝑦', … , 𝑦) *and 𝒅𝒋 =

𝑑%,= , 𝑑',= , … , 𝑑),=
*
 for 𝑖 = 1, 2, … , 𝑛 and 𝑗 = 1,2, … ,𝑚 − 1

1: Compute 𝑡<,= = 𝑦/𝑑/,=)
/;% 	
 for each group 𝑗 = 1,2, … ,𝑚 − 1

2: For each sample 𝑘 = 1,2, … , 𝑟
3: Draw 𝔂(t) = randperm(𝒚) through random permutation of 𝒚
4: For each categorical group 𝑗 = 1,2, … ,𝑚 − 1
5: Compute 𝑡<,=

(t) = 𝑦R�∗𝑑/,=
)
/;% with ∗	
 = 𝑘

6: Compute rejection criterion 𝑐=
(t) = 𝑡<,= − 𝑡<,=

(t)
7: Evaluate 𝓋=

(t) = 𝒻 𝑐=
(t) based on supplementary Equation (S8)

8: end for
9: Compute 𝓋(t) = 𝓋=

(t)c�%
=;%

10: end for

11:
Outputs: all samples 𝔂 % ,𝔂 ' , … , 𝔂 � and the corresponding
labels 𝓋 % , 𝓋 ' , … , 𝓋 �

 Algorithm 1 (A1) summarizes the proposed homomorphic rejection sam-
pling method. The inputs of the algorithm are encrypted vectors 𝒚 =
𝑦%, 𝑦', … , 𝑦) * and 𝒅𝒋 = 𝑑%,= , 𝑑',= , … , 𝑑),=

*
 for 𝑖 = 1, 2, … , 𝑛 and 𝑗 =

1, … ,𝑚 − 1. Before drawing samples, the algorithm first computes the ob-
served sufficient statistic 𝑡<,= = 𝑦/𝑑/,=)

/;% 	
 contributed by each categorical
group 𝑗 ∈ {1,2, … ,𝑚 − 1} in A1 line 1. Then, we draw a total of 𝑟 independ-
ent samples through A1: lines 2 to 10. To generate the 𝑘-th sample 𝔂(t), we
define a random permutation function randperm(𝒚) with encrypted 𝒚 =
𝑦%, 𝑦', … , 𝑦) * as input (see A1: line 3). The output of the function
randperm(𝒚) is a vector 𝔂(t) = 𝑦RL∗ , 𝑦R~∗ , … , 𝑦R�∗ , where 𝒔∗ = (𝑠%∗, 𝑠'∗, … , 𝑠)∗)
with ∗= 𝑘 is the 𝑘-th permutation instance of the original index vector 𝒦 =

1,2, … , 𝑛 . In A1 lines 4 and 8, we evaluate the label 𝓋=
(t) for each categor-

ical group based on the difference 𝑐=
(t)	
 between observed sufficient statistic

𝑡<,= and sample sufficient statistic 𝑡<,=
(t). A1 line 7 securely evaluates the re-

jection criterion 𝑐=
(t) based Equation (S8) as 𝓋=

(t) = 𝒻 𝑐=
(t) , where a valid

or invalid sample 𝔂(t) for a given categorical group 𝑗 will be labeled as 1 or
0, respectively. In A1 line 9, we compute 𝓋(t) = 𝓋=

(t)c�%
=;% as the label of

a sample 𝔂(t) over the sample space defined in Equation (S1), where we se-
curely accept or reject a sample by labeling it as 1 or 0, respectively. Finally,
the algorithm 1 outputs all samples 𝔂 % ,𝔂 ' , … , 𝔂 � and the related la-
bels 𝓋 % , 𝓋 ' , … , 𝓋 � in A1 line 11.

S3. Secure 𝒑-value computation

Given an encrypted sample 𝔂 t = 𝓎%
t , 𝓎'

t , … , 𝓎)
t *

, one can evaluate

the encrypted statistic as 𝑡:
(t) = 𝓎/

(t)𝑥/)
/;% . Based on Equation (S2), secure

𝑝 -value calculation involves securely evaluating the indicator function
𝑰 𝑡:

t ≥ 𝑡: ∈ {0,1}	
 for the comparison	
 𝑡:
t ≥ 𝑡: . Because it also requires

the comparison over ciphertext, we need to build an equivalent secure indi-
cator function as follows

 ℋ 𝑐 = 	
 1, if	
 𝑐 ≥ 	
 0
0,	
 	
 	
 	
 otherwise

 (S5)

where we denote 𝑐 = 𝑡:
(t) − 𝑡: the encrypted difference between two en-

crypted sufficient statistics 𝑡:
(t) and 𝑡:. We also use the 𝑝’s-complement in-

teger representation for a negative integer 𝑐 as 𝑝 − 𝑐 . Given the definition
of 𝑐 = 𝑡:

(t) − 𝑡:, we can find that its 𝑝’s-complement integer will be in the
range 0, 𝐿' ∪ 	
 [𝑝 − 𝐿', 𝑝 − 1] with 𝐿' ≤

)
'

 and 𝑝 > 2𝐿' . The equation
(S5) can be rewritten as

 ℋ 𝑐 = 1, if	
 𝑐 ∈ 0, 𝐿' 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

0, if	
 𝑐 ∈ [𝑝 − 𝐿', 𝑝 − 1]

 (S6)

 Based on the similar idea used in the previous subsection, we can realize
Equation (S6) through supplementary Equation (S11).

Algorithm 2: secure 𝒑-value computation
0: Inputs: all samples 𝔂 % ,𝔂 ' , … , 𝔂 � and the corresponding la-

bels 𝓋 % , 𝓋 ' , … , 𝓋 � from the outputs of Algorithm 1; initial-
ize two encrypted variables 𝑐% and 𝑐' as zeroes.

1: Compute the observed sufficient statistic 𝑡: = 𝑦/𝑥/)
/;%

2: For each sample 𝔂 t , 𝑘 = 1,2, … , 𝑟
3: Compute the sampled sufficient statistic 𝑡:

(t) = 𝓎/
(t)𝑥/)

/;% 	

4: Compute the encrypted difference 𝑐(t) = 𝑡:

(t) − 𝑡:
5: Evaluate ℐ(t) = 𝒽 𝑐(t) based on supplementary Equation (S11)
6: Update the counters 𝑐' = 𝑐' + 𝓋 t and 	
 𝑐% = 𝑐% + 𝓋 t ℐ(t) to

accumulate the contribution from valid samples (i.e., 𝓋 t = 1)
7: end for

8: Outputs: two counters 𝑐% (i.e., encrypted numerator) and 𝑐' (i.e., en-
crypted denominator) to user for 𝑝-value evaluation in Equation (S2)

 Algorithm 2 (A2) summarizes the proposed secure 𝑝-value computation
method. The inputs are all samples 𝔂 % ,𝔂 ' , … , 𝔂 � and the correspond-
ing labels 𝓋 % , 𝓋 ' , … , 𝓋 � from the outputs of Algorithm 1. In addition,
we create two encrypted variables 𝑐% and 𝑐' with initial value as zeroes to
count the number of ones in the indicator function 𝑰 𝑡:

t ≥ 𝑡: and the num-
ber of valid samples, respectively. In A2 line 1, we compute the encrypted
sufficient statistic 𝑡: = 𝑦/𝑥/)

/;% based on encrypted observations. For each
sample 𝒚 t , 𝑘 = 1,2, … , 𝑟 , we compute the encrypted sufficient statistic

HEALER: Homomorphic computation of ExAct Logistic rEgRession for secure rare disease variants analysis in GWAS

3

𝑡:
(t) = 𝓎/

(t)𝑥/)
/;% 	
 based on the encrypted sample (A2 : line 3). Then, A2

line 4 securely computes the difference 𝑐(t) = 𝑡:
(t) − 𝑡: between the sample

and observed sufficient statistics. We evaluate the secure integer comparison
function ℐ(t) = 𝒽 𝑐(t) based on supplementary Equation (S11) in A2 line
5 and update the counters as 𝑐' = 𝑐' + 𝓋 t and 	
 𝑐% = 𝑐% + 𝓋 t ℐ(t) in A2
line 6. As only a valid sample has a non-zero label 𝓋 t = 1, both counters
can exactly aggregate the contribution from valid samples. Finally, A2 line
8 outputs the two encrypted counters 𝑐% (i.e., numerator) and 𝑐' (i.e., denom-
inator) to user for 𝑝-value evaluation in Equation (7).

 The performance analysis of both algorithms in terms of acceptance rate,
circuit depth and the number of homomorphic operations can be found in the
discussion section in the main text and this supplementary.

S4. Examples of dummy vector representation
Table S2 shows an example of the dummy coding for a covariate with three
categories. We use 𝑚 dummy variables to represent a covariate with 𝑚 cat-
egories in this setting (although an 𝑚-category covariate only have 𝑚 − 1
degrees of freedom) to facilitate the algorithm description in the main text.

Table S2. An example of the dummy coding scheme for the categorical co-
variate 𝑧/ ∈ {1, 2, 3} . A binary dummy vector with three elements 𝒅𝒊 =
(𝑑/,%, 𝑑/,', 𝑑/,Y) is used to encode each group, where 𝑑/,= is non-zero if and
only if 𝑗 = 𝑧/ and the same categorical group is shaded in the same color.

𝑖 𝑦/ 𝑧/
Dummy coding representation

𝑑/,% 𝑑/,' 𝑑/,Y

1 0 2 0 1 0

2 1 3 0 0 1

3 1 1 1 0 0

4 0 1 1 0 0

5 1 3 0 0 1

6 0 3 0 0 1

7 1 2 0 1 0

8 1 2 0 1 0

9 0 1 1 0 0

S5. Homomorphic comparison of 𝐜𝒋∗ = 𝟎

To realize Equations (S3) and (S4), we need to securely verify the equality
𝑐=∗ = 0 in function ℱZ 𝑐=∗ for 𝑗 = 1,2, … ,𝑚 − 1. Previous studies (Cheon et
al., 2015; Togan and Plesca, 2014; Ayday et al., 2013) demonstrated the fea-
sibility of secure integer comparison over the finite field 𝐺𝐹(2�). For exam-
ple, the integer 𝑎 = 13 over a finite field 𝐺𝐹 2� can be expressed as a bi-
nary vector 𝒂𝒃𝒊𝒏 = 𝑎(%), 𝑎('), 𝑎(Y), 𝑎(�) = (1, 1, 0, 1). Then, one can con-
struct a secure function ℊ 𝑎({), 𝑏({) = 𝑎({) + 𝑏({) + 1 for bit-wise compari-
son between the 𝑙-th encrypted bits 𝑎({) and 𝑏({) of two integers 𝒂𝒃𝒊𝒏 and
𝒃𝒃𝒊𝒏, where the output of ℊ 𝑎({), 𝑏({) is 1, i.f.f. 𝑎({) = 𝑏({). However, a ma-
jor problem of these methods is the high computational cost of the addition
and multiplication operations over binary representation, as these operations
require bit-wise operations, which need a deep circuit for large integers. In
this section, we introduce an algorithm for secure integer comparison with-
out using binary representation, by which addition and multiplication opera-
tions after comparison can be carried out directly over integers.

Based on the Wilson’s Theorem (Silverman, 2006) 𝑝 − 1 ! ≡ −1	
 (𝑚𝑜𝑑	
 𝑝)
with 𝑝 as a prime number greater than 2, we can realize the secure compari-
son function ℱZ 𝑐=∗ in Equation (S4) with an encrypted integer input, where
𝑐=∗ ∈ [0, 𝐿%] ∪ [𝑝 − 𝐿%, 𝑝 − 1] as follow:

 𝒻Z 𝑐=∗ ≡ − ℓ𝓁 − 𝑐=∗
¦�%

ℓ𝓁;%

	
 (𝑚𝑜𝑑	
 𝑞) (S7)

where 𝑞 is the ciphertext modulus (i.e., a product of primes under double-
CRT representation in the BGV scheme (Brakerski et al., 2012)). We can
verify Equation (S7) in plaintext domain as 𝒻Z 𝑐=∗ = 0 = − 𝑝 − 1 ! ≡
1	
 (𝑚𝑜𝑑	
 𝑝). For 𝑐=∗ ∈ [1, 𝑝 − 1] and ℓ𝓁 = 1,2, … , 𝑝 − 1 in Equation (S7), as
one of the terms (ℓ𝓁 − 𝑐=∗) will yield a zero, the product in (S7) will be also
zero with 𝑐=∗ ∈ [1, 𝑝 − 1].

The evaluation of Equation (S7) could be very expensive, as it requires 𝑝 −
1 times homomorphic multiplications and 𝑝 can be a large number. If the
bounds of plaintext are known as 𝑐=∗ ∈ [0, 𝐿%] ∪ [𝑝 − 𝐿%, 𝑝 − 1], we can re-
formulate Equation (S7) in a more efficient way as

𝒻 𝑐=∗ ≡ − ℓ𝓁 − 𝑐=∗
KL

ℓ𝓁;%

¨
¦�KL�%

𝒿;KLª%

« − 𝑐=∗
¦�%

𝒾;¦�KL

𝑚𝑜𝑑	
 𝑞

≡ −𝑀KL ℓ𝓁 − 𝑐=∗
KL

ℓ𝓁;%

	
 « − 𝑐=∗
¦�%

𝒾;¦�KL

(𝑚𝑜𝑑	
 𝑞)

(S8)

In Equation (S8), as 𝑀KL = ¨¦�KL�%
¨;KLª%

 is independent of ciphertext 𝑐=∗ given
the bound 𝐿%, we can precompute 𝑀KL as a constant value in our problem.
For example, when considering the difference 𝑐=∗ = 𝑡<,= − 𝑡<,=∗ (see Section
S2), we can find that 𝐿% is no larger than)

'
.

S6. Homomorphic comparison of 𝐜 ≥ 𝟎

Based on the similar idea used in Equation (S8), we can realize Equation
(S6) as follows with 𝑝 > 2𝐿'.
𝒽 𝑐

≡ − ℓ𝓁 − 𝑐
K~

ℓ𝓁;%

¨
¦�K~�%

𝒿;K~ª%

« − 𝑐
¦�%

𝒾;¦�K~

D­®¯	
 𝓉± ²

− ℓ𝓁 − 𝑐
K~

ℓ𝓁;Z
ℓ𝓁³𝓀

¨ − 𝓀
¦�K~�%

𝒿;K~ª%

« − 𝑐
¦�%

𝒾;¦�K~

D­®¯	
 𝓉𝓀 ²

(𝑚𝑜𝑑	
 𝑞)
K~

𝓀;%

(S9)

where 𝑞 is the ciphertext modulus (i.e., a product of primes under double-
CRT representation in the BGV scheme (Brakerski et al., 2012)). In Equation
(S9), there are 𝐿' + 1 options to get an output of 1. It is easy to verify terms
in plaintext as 𝓉Z 𝑐 = 0 ≡ − 𝑝 − 1 ! 𝑚𝑜𝑑	
 𝑝 ≡ 1 and 𝓉𝓀 𝑐 = 0 ≡ 0

due to the factor ℓ𝓁 − 𝑐K~
ℓ𝓁;Z
ℓ𝓁³𝓀

. For 𝑐 ∈ 1, 𝐿' , terms 𝓉Z 𝑐 and 𝓉𝓀³² 𝑐

always yield zeroes due to the factor ℓ𝓁 − 𝑐K~
ℓ𝓁;% and ℓ𝓁 − 𝑐K~

ℓ𝓁;Z
ℓ𝓁³𝓀

, respec-

tively. The only non-zero term is 𝓉𝓀;² 𝑐 ≡ −𝑐 ℓ𝓁 −²�%
ℓ𝓁´;%

𝑐 ℓ𝓁′′ − 𝑐¦�%
ℓ𝓁´´;²ª% ≡ 𝑝 − 1 ! 𝑚𝑜𝑑	
 𝑝 ≡ −1 . Therefore, the output of

𝒽 𝑐 ≡ 𝓉Z 𝑐 − 𝓉𝓀 𝑐K~
𝓀;% is equal to 1	
 for 𝑐 ∈ 1, 𝐿' . Based on the same

idea, we can verify that the output of 𝒽 𝑐 	
 will be 0 for 𝑐 ∈ 𝑝 − 𝐿', 𝑝 − 1
due to the factor « − 𝑐¦�%

𝒾;¦�K~ . To reduce the number of homomorphic
multiplication, we can simplify the Equation (S9) as

S.Wang et al.

4

𝒽 𝑐 ≡ « − 𝑐
¦�%

𝒾;¦�K~
¶·®¸¹	
 ¹­®¯

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

ℓ𝓁 − 𝑐
K~

ℓ𝓁;%

+ ℳ𝓀 ℓ𝓁 − 𝑐
K~

ℓ𝓁;Z
ℓ𝓁³𝓀

K~

𝓀;%

º­»¼C½	
 ¹­®¯

𝑚𝑜𝑑	
 𝑞

(S10)

where ℳ𝓀 = ¨ − 𝓀¦�K~�%
𝒿;K~ª% ,𝓀 = 1,2, … , 𝐿' are precomputed constants

as they are independent of input 𝑐 given 𝐿' and 𝑝. Noticing that the second
term in Equation (S10) is a polynomial of degree 𝐿', we can further reduce
its complexity by representing it with a recursive function as follows

𝒽 𝑐 ≡ ℓ𝓁 − 𝑐
¦�%

ℓ𝓁;¦�K~
¶·®¸¹	
 ¹­®¯

ℛ 𝑐, log 𝐿' + 1 , 𝐿' + 1, 𝜶 (S11)

where ℛ 𝑐, log 𝐿' + 1 , 𝐿' + 1, 𝜶 is a recursive function defined as
ℛ 𝑐, ℓ𝓁%, ℓ𝓁', 𝓪

=
𝑐𝛼ℓ𝓁~�% + 𝛼ℓ𝓁~�'	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 𝑖𝑓	
 ℓ𝓁% ≤ 1

ℛ 𝑐, 0,
ℓ𝓁'
2ℓ𝓁L�%

, 𝜶 + 𝑐'ℓ𝓁ÅLℛ 𝑐, ℓ𝓁 − 1,
ℓ𝓁'
2ℓ𝓁L�ℓ𝓁

, 𝜶 	

ℓ𝓁L

ℓ𝓁;'
	
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The ceiling function Δ returns the smallest integer not less than Δ. Here,
𝓪 = (𝒶K~, 𝒶K~�%, … , 𝒶Z	
) is the coefficient vector of the polynomial after ap-
plying polynomial expansion on the second term in Equation (S10). For ex-
ample, the recursive function ℛ 𝑐, log' 𝐿' + 1 − 1, 𝐿' + 1, 𝓪 for 𝐿' = 7
calculates the following

𝑐' ' 𝑐' 𝑐𝒶Ê + 𝒶Ë
ℛ ²,ℓ𝓁L;%,ℓ𝓁~;Ì,𝓪

+ 𝑐𝒶Í + 𝒶�
ℛ ²,ℓ𝓁L;Z,ℓ𝓁~;�,𝓪

ℛ ²,ℓ𝓁L;',ℓ𝓁~;Ì,𝓪

+ 𝑐' 𝑐𝒶Y + 𝒶'
ℛ ²,ℓ𝓁L;%,ℓ𝓁~;�,𝓪

+ 𝑐𝒶% + 𝒶Z
ℛ ²,ℓ𝓁L;Z,ℓ𝓁~;',𝓪

ℛ ²,ℓ𝓁L;Y,ℓ𝓁~;Ì,𝓪

where the coefficient vector 𝓪 can be calculated based on the second term in
Equation (S10) in advance. The benefit of representing 𝒽 𝑐 with a recur-
sive function is that we reuse partial results and balance the circuit depth and
number of homomorphic multiplications. This will be discussed in more de-
tail in Section S7.

Table S3. Complexity analysis in terms of cumulative circuit depth (CCD),
of homomorphic additions (HA) and # of homomorphic multiplications
(HM) in Algorithm 1 (secure rejection sampling), where the # of HA and
HM could be reduced by a factor of 𝐿R using 𝐿R-slot in SIMD parallel com-
putation

Algorithm 1 CCD # of HA # of HM

1:
 𝑡<,= = 𝑦/𝑑/,=)

/;% 	
 for
𝑗 = 1,2, … ,𝑚 − 1

1 (𝑛 − 1)(𝑚
− 1) 𝑛(𝑚 − 1)

2: For	
 	
 𝑘 = 1,2,⋯ , 𝑟
3: 𝔂(t) = randperm(𝒚) 0 − −
4: For	
 𝑗 = 1,2,⋯ ,𝑚 − 1
5: 𝑡<,=

(t) = 𝑦R�∗𝑑/,=
)
/;% 1 𝑛 − 1 𝑛

6: 𝑐=
(t) ← 𝑡<,= − 𝑡<,=

(t) 1 1 −

7: 𝓋=
(t) = 𝒻 𝑐=

(t) 1 + log 𝑛 𝑛 𝑛
8: end for
9: 𝓋 t = 𝓋=

tc�%
=;% log 2𝑛(𝑚 − 1) − 𝑚 − 2

10: end for

Total: log 2𝑛(𝑚 − 1) ((2𝑟 + 1)𝑛− 1)(𝑚 − 1)

(2𝑟 + 1 𝑛
+ 𝑟) 𝑚 − 1
− 𝑟

S7. Performance Analysis

As a supplementary to section 4.1, we provide the detailed performance anal-
ysis for Algorithms 1 and 2 in Tables S3 and S4, respectively. Table S3 an-
alyzes the circuit depth and the number of homomorphic additions and mul-
tiplications in Algorithm 1 for secure rejection sampling. As shown in Table
S3, a total number of 2𝑟 + 1 𝑛 + 𝑟 𝑚 − 1 − 𝑟 homomorphic multipli-
cations is required by Algorithm 1 to obtain 𝑟 number of samples 𝔂 t 	
 and
their corresponding labels 𝓋 t with 𝑘 = 1,… , 𝑟 . Moreover, the circuit
depth of the Algorithm 1 is also analyzed in Table S3. According to Equation
(S8), given precomputed 𝑀K , line 7 needs 1 + log 𝑛 levels based on opti-
mized binary tree multiplication scheme as illustrated in Fig. S1. Accord-
ingly, the levels for line 9 can also be derived as log 2𝑛 𝑚 − 1 . Since line
9 can be conducted independently for all samples, the circuit depth of Algo-
rithm 1 is log 2𝑛 𝑚 − 1 .

1 − 𝑐̂𝑗
(𝑘)	
 𝑝 − 1 − 𝑐̂𝑗

(𝑘)	
 𝑝 − 2 − 𝑐̂𝑗
(𝑘)	

×	

×	

×	
 ×	

×	

×	

Level of Sequential
Homomorphic
Multiplications

log(𝑛) + 1	

1	

2	

⋯	
 ⋯	

⋯	

⋯
	

𝓋3𝑗
(𝑘) = 𝒻6 7𝑐̂𝑗

(𝑘)8	

⋯	

2 − 𝑐̂𝑗
(𝑘)	
 𝑛

2 − 𝑐̂𝑗
(𝑘)	
 𝑝 −

𝑛
2 − 𝑐̂𝑗

(𝑘)	

⋯	

Fig. S1. Conceptual diagram for binary tree of product with 1 −

𝑐=
t ,⋯ ,)

'
− 𝑐=

t , 𝑝 −)
'
− 𝑐=

t , … , 𝑝 − 1 − 𝑐=
t for Algorithm 1 line 7.

Table S4. Complexity analysis in terms of cumulative circuit depth (CCD),
of homomorphic additions (HA) and # of homomorphic multiplications
(HM) in Algorithm 2 (secure 𝑝-value computation)

As shown in Table S4, Algorithm 2 compares the sufficient statistics 𝑡:
(t) of

each sample 𝔂(t) with 𝑡:, and aggregates valid count based on the label 𝓋 t
of each sample. Line 5 in Algorithm 2 requires 1 + log 𝑛 levels for 𝑛 +
log)

'
 homomorphic multiplications by using the optimized multiplication

scheme. As a result, given	
 𝑟	
 samples 𝔂(t), 𝑘 = 1⋯ , 𝑟, the comparison of
sufficient statistics proposed in Algorithm 2 requires a circuit depth of
log 4𝑛 𝑚 − 1 , 𝑟 2𝑛 + 2 + 𝑛 − 1 homomorphic additions and 𝑟 2𝑛 +
log 𝑛 + 𝑛 homomorphic multiplications.

Algorithm 2 CCD # of HA # of HM
1: 𝑡: ← 𝑦/𝑥/)

/;% 1 𝑛 − 1 𝑛
2: for each 𝔂 t , 𝑘 = 1,2, … , 𝑟
3: 𝑡:

(t) ← 𝓎/
(t)𝑥/)

/;% 1 𝑛 − 1 𝑛
4: 𝑐(t) ← 𝑡:

(t) − 𝑡: 1 1 −
5: ℐ(t) ← 𝒽 𝑐(t) 1 + log 𝑛 𝑛 𝑛 + log

𝑛
2

6.1: 𝑐' ← 𝑐' + 𝓋 t log 2𝑛 𝑚 − 1 1 −
6.2: 𝑐% ← 𝑐% + 𝓋 t ℐ(t) log 4𝑛 𝑚 − 1 1 1

7: end for

Total log 4𝑛 𝑚 − 1
𝑟 2𝑛 + 2
+ 𝑛 − 1

𝑟 2𝑛 + log 𝑛
+ 𝑛

HEALER: Homomorphic computation of ExAct Logistic rEgRession for secure rare disease variants analysis in GWAS

5

It is worth mentioning that if the ciphertext base 𝑝 is larger than 32, the above
circuit depth analysis needs to be adjusted by a factor 2 for 32 < 𝑝 < 2%Í.

S8. Computing environment and datasets descriptions

Our HEALER framework was implemented with the HElib, which is an open
source homomorphic encryption library developed by the IBM research team
(S. Halevi and Shoup). The performance was evaluated in three Ubuntu
12.04 virtual machines (VMs), each equipped with 96 GB memory and 8
threads, where two VMs have Intel(R) Xeon(R) CPU E7-4870 @ 2.40GHz
and one VM has Intel(R) Xeon(R) CPU E7-4870 v2 @ 2.30GHz. The three
VMs were hosted in the iDASH cloud (Ohno-Machado et al., 2012) at Uni-
versity of California, San Diego (UCSD). We tested the proposed HEALER
protocol using three real rare Kawasaki Disease (KD) Coronary Artery An-
eurysm (CAA) datasets with 15 or 30 records. These datasets are composed
of 180, 372, and 744 SNPs, respectively, and one additional categorical nui-
sance variable (i.e., Percent C-reactive Protein (PCRP) expression level)
with 𝑚 = 3 categorical groups. Data in these KD datasets are from three dif-
ferent geographical locations including UCSD, University of Emory, and
Genome Institute of Singapore. The PRCP values were grouped into three
categories based on the following three regions [−9, 9.0667) ,
[9.0667, 27.1333) and [27.1333, 45.2]. Fig. S2 shows the distributions of
the case population and control population in these three PRCP categories.
Moreover, the time and storage costs of key generation for above datasets
are also described in Table S5.

Table S5. Parameters used in our experiments, where 𝑝 is plaintext base; 𝑟′
is lifting parameter for plaintext base; 𝑘′ specifies the security level; 𝐿′ is
number of levels in modulus chain; 𝑐′ is the number of columns in key
switching matrix; and 𝑑′ is hamming distance. Moreover, the time and stor-
age costs of key generation are also provided as reference.

#	
 of	

records	
 𝑝	
 𝑟′	
 𝑘′	
 𝐿′	
 𝑐′	
 𝑑′	
 𝐿R 	

Key	

generation	

Public	

key	
 size	

Private	

key	
 size	

15	
 31	
 1	
 80	
 10	
 2	
 64	
 180	
 10.344s	
 69.3MB	
 70.4MB	

30	
 11	
 372	
 10.697s	
 117	
 MB	
 118	
 MB	

Fig. S2. Distributions of the case population (red bar) and control population
(blue bar) in three different PRCP categories.

S9. Sensitivity of 𝒑-value when protecting research out-
comes after computation using differential privacy

The 𝑝-value in exact logistic regression for the 𝐶'	
 samples uniformly drawn
from	
 𝒀 is defined in Equation (S2), where the sample space 𝒀 is defined in
(S1). Let us define 𝐷 = 𝑦/, 𝑥/, 𝑑/= :	
 𝑖 ∈ 1,⋯ , 𝑛 	
 and	
 𝑗 = {1,⋯ ,𝑚} as
the set collecting all the 𝑦/ ∈ 0,1 , , 𝑥/ ∈ 0,1 and 𝑑/= ∈ 0,1 . Hence, we
define the neighboring dataset of 𝐷 with the same sample size.

Definition S1. 𝐷Ö = 𝑦/Ö, 𝑥/Ö, 𝑑/=Ö : 𝑖 ∈ 1,⋯ , 𝑛 	
 and	
 𝑗 ∈ {1,⋯ ,𝑚} is called
a neighboring dataset of 𝐷 , when there exists 𝑠 ∈ 1,⋯ , 𝑛 such
that	
 𝑦RÖ, 𝑥RÖ , 𝑑R=Ö ≠ (𝑦R, 𝑥R, 𝑑R=) and 𝑦/Ö, 𝑥/Ö, 𝑑/=Ö = 𝑦/, 𝑥/, 𝑑/= for ∀𝑖 ≠ 𝑠.

 To find the lower bound of sensitivity of 𝑝yz{, we consider an extreme
case for 𝐷 and 𝐷Ö. Suppose 𝑦 = (1,0,⋯ ,0) and 𝑥 = 0,0,⋯ ,0 for 𝐷. The
sufficient statistics 𝑡: and 𝑡:

(t) are all zeroes, which means 𝑝yz{Ø = 1. From
Definition S1, we set 𝑦Ö = (1,0,⋯ ,0) and 𝑥Ö = 1,0,⋯ ,0 in 𝐷Ö, which de-
rives that 𝑡: = 1 and

 𝑡:
t = 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 𝑦(t) = 𝑦Ö

0	
 	
 	
 	
 	
 	
 	
 	
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (S12)

Thus, 𝑝yz{Ø´ = 1 𝒀 . According to equation (S1), given arbitrary 𝓎∗ ∈ 𝒀, it
satisfies 𝑦/∗ = 𝑡Z = 1)

/;% . Therefore, the sensitivity is bounded by

 𝑝yz{Ø − 𝑝yz{Ø´ ＝1 −
1
𝒀
≤ 1 −

1
𝑛
. (S13)

In equation (S13), 𝒀 = 𝑛 can be achieved with proper 𝑑/= ’s. Thus, the
lower bound of the sensitivity of 𝑝yz{ is 1 − 1 𝑛.

S10. Parallel Computation using multiple slots
The proposed HEALER framework also supports parallel computation using
encryption schemes with ciphertext space	
 ℤÚ

KÛ , which supports single instruc-
tion multiple data (SIMD) with 𝐿R slots. It is worth mentioning that packing
multiple ciphertexts into multiple slots have no impact on the size of en-
crypted data. Suppose 𝒂 = 𝑎%, 𝑎', … , 𝑎KÛ and 𝒃 = 𝑏%, 𝑏', … , 𝑏KÛ are two
encrypted ciphertext with 𝐿R slots. Then, the addition 𝒂 + 𝒃 = 𝑎% +
𝑏%, 𝑎'+𝑏', … , 𝑎KÛ + 𝑏KÛ and multiplication 𝒂 ∙ 𝒃 = 𝑎% ∙ 𝑏%, 𝑎' ∙ 𝑏', … , 𝑎KÛ ∙
𝑏KÛ can be carried out in a SIMD manner in parallel. As shown in Fig. S3,
we can utilize the multiple slots by packing: (i) pre-permuted vectors of the
same observation 𝒚 or (ii) covariates from different models.

X:	
 Multiple	
 slots	
 in	
 ciphertext	
 using	
 SIMD	

𝑖	
 𝓎#𝑠𝑖1 	
 𝓎#𝑠𝑖2 	
 …	
 𝓎#𝑠𝑖
𝐿𝑠 	

1	
 0	
 1	
 …	
 0	

2	
 1	
 0	
 …	
 1	

3	
 1	
 0	
 …	
 0	

4	
 0	
 1	
 …	
 0	

5	
 1	
 1	
 …	
 0	

6	
 0	
 1	
 …	
 1	

.	
 .	
 .	

.	
 .	
 .	

.	
 .	
 .	

.	
 .	
 .	

.	
 .	
 .	

𝑛-­‐2	
 1	
 0	
 …	
 1	

𝑛-­‐1	
 1	
 1	
 …	
 1	

𝑛	
 0	
 0	
 …	
 1	
 	

𝑖	
 𝑥#𝑖1	
 𝑥#𝑖2	
 …	
 𝑥#𝑖
𝐿𝑠 	

1	
 0	
 1	
 …	
 1	

2	
 1	
 0	
 …	
 1	

3	
 0	
 1	
 …	
 0	

4	
 0	
 1	
 …	
 0	

5	
 1	
 1	
 …	
 1	

6	
 0	
 0	
 …	
 0	

.	
 .	
 .	

.	
 .	
 .	

.	
 .	
 .	

.	
 .	
 .	

.	
 .	
 .	

𝑛-­‐2	
 1	
 0	
 …	
 1	

𝑛-­‐1	
 1	
 1	
 …	
 1	

𝑛	
 0	
 0	
 …	
 1	
 	

(a)	
 Sample	
 multiple	
 vectors	
 in	
 parallel	
 (b)	
 Learn	
 multiple	
 models	
 in	
 parallel	

Y:
Di
ffe

re
nt
	
 re

co
rd
s

Fig. S3. An example of packing data into multiple slots for SIMD computa-
tion, where (a) samples multiple vectors in parallel for the same model; (b)
learns multiple models with different covariates (e.g., SNPs) in parallel

S11. Comparison with perturbation based protection
methods
In this section, we provide additional results for the comparison between
HEALER and perturbation based protection methods based on Differential
Privacy (DP). To compare with the methods of applying DP before compu-
tation (DPBC) and DP after computation (DPAC), we select a KD dataset
with 30 records and 744 SNPs. We selected three 𝑝-value cutoffs as 0.05,
0.01 and 0.005 to evaluate how many significant SNPs can be correctly pre-
served in the DPBC protected data (in terms of Recall and Precision) under

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

PCRP group

Pe
rc

en
ta

ge

case group
control group

S.Wang et al.

6

different privacy budgets (i.e., 𝜀 = 1 and 0.5). The number of significate
SNPs based on the raw data under different cutoffs are also provided in Table
S6. Table S6 shows that the recalls of DPBC method are less than 0.05 for
all setups, which means that less than 5% of the originally significant SNPs
with 𝑝-value less than 0.05 can be preserved. For 𝑝-value cutoffs of 0.01 and
0.005, DPBC failed to preserve any originally significant SNPs. In contrast,
the proposed HEALER framework can provide accurate results as well as
protect the computation.

Table S6: Comparison between HEALER and DPBC methods in term of
Recall and Precision in preserving significant SNPs with different 𝑝-value
cutoffs 0.05, 0.01 and 0.005, and privacy budget 𝜀 = 1, and 0.5

𝑝-value
Cutoff

HEALER Protection before computation
of significant SNPs 𝜀 = 1 𝜀 = 0.5

Recall Precision Recall Precision Recall Precision
0.05 1 1 0.0428 0.1034 0.0286 0.0556 70
0.01 1 1 0 0 0 0 11

0.005 1 1 0 0 0 0 5

 Based on the idea of DPAC in (Yu and Ji, 2014), we also derived the cor-
responding DP algorithm for exact logistic regression in Section S9 in sup-
plementary. Table S7 presents the comparison between HEALER and the
DPAC methods. The results in terms of recall and precision in DPAC in Ta-
ble 7 are better than these of DPBC in Table 6. However, when 𝑝-value cut-
off is under 0.01, there is still no significant SNPs that can be preserved in
DPAC. Tables 6 and 7 imply that it is hard to preserve significant SNPs after
applying either DPBC or DPAC methods when record number is small.

Table S7: Comparison between HEALER and DPAC methods in term of
Recall and Precision in preserving significant SNPs with different 𝑝-value
cutoffs 0.05, 0.01 and 0.005, and privacy budget 𝜀 = 1, and 0.5

𝑝-value
Cutoff

HEALER Protection after computation
of significant SNPs 𝜀 = 1 𝜀 = 0.5

Recall Precision Recall Precision Recall Precision
0.05 1 1 0.0714 0.2174 0.0571 0.1481 70
0.01 1 1 0 0 0 0 11

0.005 1 1 0 0 0 0 5

References

Ayday,E. et al. (2013) Privacy-Preserving Computation of Disease
Risk by Using Genomic , Clinical , and Environmental Data.
In, Proceedings of USENIX Security Workshop on Health
Information Technologies (HealthTech" 13).

Brakerski,Z. et al. (2012) (Leveled) fully homomorphic encryption
without bootstrapping. In, Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference on
- ITCS ’12. ACM Press, New York, NY, USA, pp. 309–325.

Cheon,J.H. et al. (2015) Homomorphic Computation of Edit
Distance. In, WAHC’15 - 3rd Workshop on Encrypted
Computing and Applied Homomorphic Cryptography.

Mehta,C.R. et al. (2000) Efficient Monte Carlo Methods for
Conditional Logistic Regression. J. Am. Stat. Assoc., 95,
99–108.

Mehta,C.R. and Patel,N.R. (1995) Exact logistic regression:
Theory and examples. Stat. Med., 14, 2143–2160.

Ohno-Machado,L. et al. (2012) iDASH. Integrating data for
analysis, anonymization, and sharing. J. Am. Med.
Informatics Assoc., 19, 196–201.

S. Halevi and Shoup,V. https://github.com/shaih/HElib.
Silverman,J.H. (2006) A friendly introduction to number theory.

Am Math Compet, 10, 12.

Togan,M. and Plesca,C. (2014) Comparison-based computations
over fully homomorphic encrypted data. In,
Communications (COMM), 2014 10th International
Conference on., pp. 1–6.

Yu,F. and Ji,Z. (2014) Scalable Privacy-Preserving Data Sharing
Methodology for Genome-Wide Association Studies: An
Application to iDASH Healthcare Privacy Protection
Challenge. BMC Med. Inform. Decis. Mak., 14, S3.

