SUPPLEMENTARY ONLINE MATERIALS (SOM)

Gene	TGI [*] Acc. No.	Primer	Primer sequence
TaFDL1	TC269520	FDL1-F	5'-AA <u>GGATCC</u> ATATGGCGTCGGAGATGAGC-3'**
		FDL1-R	5'-CC <u>CTCGAG</u> GTCACCAGATGCAGCTGCC-3'
	CV207210	FDL2-F	5'-CG <u>GAATTC</u> ATGGCAGGCCCTTTCATGG-3'
TaFDL2	CK205318	FDL2-R	5'-CC <u>CTCGAG</u> GTCAAACAGGGGCAGAACT-3'
Taedi 2	TC227194	FDL3-F	5'-CG <u>GAATTC</u> ACGCGTCCGCAACCGCTG-3'
TUFDLS	1C23/184	FDL3-R	5'-CC <u>CTCGAG</u> GTTAGAATGAGGTCGATCT-3'
TaFDL4	TC254871	FDL4-F	5'-CG <u>GAATTC</u> ATGATTCAGGCAATGGCG-3'
		FDL4-R	5'-CC <u>CTCGAG</u> GTCAAACAGGGGCAGAACT-3'
Taedi 5	TC240536	FDL5-F	5'-CG <u>GAATTC</u> ATGGCCATGGAGGCCGAC-3'
Turdes		FDL5-R	5'-CC <u>CTCGAG</u> GTCAGAAGGGCGCCGAGAG-3'
TaFDL6	TC237183	FDL6-F	5'-AA <u>GGATCC</u> ATATGAGCTCTGAAGGCGGTG-3'
		FDL6-R	5'-CC <u>CTCGAG</u> GTCAGAATGAGGTCGATCT-3'
TaEDI 7	ТС256075	FDL7 - F	5'-CG <u>GAATTC</u> ATGGCGTCGGAGATGAGC-3'
Tur DL/	10250575	FDL7-R	5'-CC <u>CTCGAG</u> GTCACCAGATGCAGCTGCC-3'
TaFDI 8	ТС241658	FDL8-F	5'-CG <u>GAATTC</u> ATGGCGTCGGAGATGAGC-3'
TurbLo	10241038	FDL8-R	5'AT <u>GGATCC</u> ATCAGAAGCTGGCCGAGTT-3'
TaFDI 0	тс242710	FDL9-F	5'-CG <u>GAATTC</u> ATGATGGAGGTTGACATG-3'
TarDLy	1C242/10	FDL9-R	5'-CC <u>CTCGAG</u> GTCACCAGATGCAGCTACC-3'
TaFDI 10	BU100519	FDL10-F	5'-CG <u>GAATTC</u> GACCGGTGGCAGCGCCGG-3'
Turbhio		FDL10-R	5'-CC <u>CTCGAG</u> GTCATGGCGCAGGGGCGGA-3'
TaEDI 11	CA624383	FDL11 - F	F 5'-CGGAATTCATGTCGTCGTCACGCCGG-3'
		FDL11-R	R 5'-AT <u>GGATCC</u> ATTAGCTAGATTTCAAACC-3'
TaFDI 12	TC240537	FDL12-F	5'-CG <u>GAATTC</u> ATGGCGAACTACCGGCTC-3'
IUFDL12		FDL12-R	5'-CC <u>CTCGAG</u> GTCAGAACTGAGTGGATGA-3'
TaFDL13	CD891994	FDL13-F	5'-CG <u>GAATTC</u> ATGTCGTGGGAGGAGCCC-3'
		FDL13-R	5'-AT <u>GGATCC</u> ATTAACTAATTACCCATGC-3'
TaFDL14	TC267564	FDL14-F	5'-CG <u>GAATTC</u> GGCTTCAACTCCCTCGCC-3'
		FDL14-R	5'-AT <u>GGATCC</u> ACTAGAACTGAGTGGACGA-3'
Taedi 15	TC267565	FDL15-F	F 5'-CGGAATTCATGTCGTGGGAGGAGCCC-3'
141 DU15		FDL15-R	R 5'-AT <u>GGATCC</u> ACTAGAACTGAGTGGACGA-3'
TaFDL16	CA625328	FDL16-F	5'-CG <u>GAATTC</u> AACAGGGAGTCTGCGCTG-3'
141 DE10		FDL16-R	5'-CC <u>CTCGAG</u> GCTAGAGCTGAGTGGATGA-3'

Table S1. Primers used to amplify *FD-like* cDNA fragments from wheat leaves.

* <u>http://compbio.dfci.harvard.edu/tgi/</u> ** Underlined bases indicate restriction site

Construct name	Primers	Restriction sites	Function
pGBKT7- <i>Ta</i> FT	CG GAATTC ATGGCCGGGAGGGACAGGG	EcoRI & SalI	Bait
	CC <u>GTCGAC</u> GTCAATTGTACATCCTCCTGC		
pGADT7-TaFT	CG GAATTC ATGGCCGGGAGGGACAGGG	EcoRI & XhoI	Prey
	CC <u>CTCGAG</u> GTCAATTGTACATCCTCCTGC		
pGBKT7-TaFT2	CC CATATG ATGGTGGGGAGCGGCATG	NdeI & EcoRI	Bait
	AC GAATTC TCACATCCTTCTCCCGCC		
pGADT7-TaFT2	CC CATATG ATGGTGGGGAGCGGCATG	NdeI & EcoRI	Prey
	AC GAATTC TCACATCCTTCTCCCGCC		
pGADT7-TaFDL2	CG GAATTC ATGGCAGGCCCTTTCATGG	EcoRI & XhoI	Prey
	CC <u>CTCGAG</u> GTCAAACAGGGGCAGAACT		
pGADT7-TaFDL3	CG GAATTC ACGCGTCCGCAACCGCTG	EcoRI & XhoI	Prey
	CC <u>CTCGAG</u> GTTAGAATGAGGTCGATCT		
pGADT7-TaFDL6	AA GGATCC ATATGAGCTCTGAAGGCGGTG	BamHI & XhoI	Prey
	CC <u>CTCGAG</u> GTCAGAATGAGGTCGATCT		
pGADT7-TaFDL13	CG GAATTC ATGTCGTGGGAGGAGCCC	EcoRI & BamHI	Prey
	AT <u>GGATCC</u> ATTAACTAATTACCCATGC		
pGADT7-TaFDL15	CG GAATTC ATGTCGTGGGAGGAGCCC	EcoRI & BamHI	Prey
	AT <u>GGATCC</u> ACTAGAACTGAGTGGACGA		

Table S2. Primers and restriction sites used in the construction of yeast plasmids.

Table S3	Drimora	hopu	in	tha	EMGV	avparimanta
I able SJ.	LIIIICI 2	useu	ш	uic	LIVISA	experiments.

Name	Forward primer	Reverse primer	Function
TaFDL2	CG GAATTC ATGGCAGGCCCTTTCATGG	CC <u>CTCGAG</u> TCAAACAGGGGCAGAACT	GST fus.
TaFDL6	AA GGATCC ATGAGCTCTGAAGGCGGTG	CC <u>CTCGAG</u> TCAGAATGAGGTCGATCT	GST fus.
TaFDL13	CG GAATTC ATGTCGTGGGAGGAGCCC	AT <u>CTCGAG</u> ATTAACTAATTACCCATGC	GST fus.
A/G H	CAAGCATTTGGAACTCTGACA	TTGCGGTGTATCTCCAAGAA	EMSA
A/C H	ATCGGTCATAAAGAGCAGCA	AAATGACCACTTTGCAACCA	EMSA
G-box	GCGTCACACAAAAAGGTCAG	CGAATTTGACCTATGGACGA	EMSA
G/AH-G/CH	ATGATTTGGGGAAAGCAAAA	GTCCTGCAGCCACACGAT	EMSA
Wt bZIP	GATC C <u>ACGT</u> GGC <u>ACGT</u> GTC <u>ACGT</u> GGC <u>A</u> <u>CGT</u> GTCA [*]	AGCT TGAC <u>ACGT</u> GCC <u>ACGT</u> GAC <u>ACGT</u> G CC <u>ACGT</u> G	EMSA
Mut bZIP	GATC C <u>AATT</u> GGC <u>AATT</u> GTC <u>AATT</u> GGC <u>A</u> <u>ATT</u> GTCA ^{**}	AGCT TGAC <u>AATT</u> GCC <u>AATT</u> GAC <u>AATT</u> G CC <u>AATT</u> G	EMSA

 * Underlined sequences indicate the ACGT binding sites

** Underlined sequences indicate ACGT binding site mutated to AATT

Table S4. RT-PCR and SYBR GREEN® quantitative PCR systems for *TaFT2*, *TaFDL2*,*TaFDL6* and *TaFDL13*

Name	Forward $(5' \rightarrow 3')$	Reverse $(5' \rightarrow 3')$	Amplification efficiency		
TaFT2	TTTCTACACGCTGGTGATGG	GTGACCAGCCAGTGCAAGTA	96%		
TaFDL2	CGAGGAAGCAGGCTTACACT	CCGGAGTTGATACTTGGGTTC	99%		
TaFDL6	GTTGCAATCCCTTCGACAAT	GCTCGTTTGTGTAGGCCTGT	97%		
TaFDL13	AGGAGCTCGAGAAGGAGGTC	AGAGAGATGGCACTGGAGGA	ND		
ND: not determined					

Figure S1

Figure S1. *Ta*FDL2 protein binds to bZIP binding sites in a concentration dependent manner, but not to a bZIP mutant sequence. **A)** Radiolabeled oligonucleotides corresponding to wild-type bZIP binding sequence (Wt bZIP) were used in the binding reactions with purified *Ta*FDL2 protein: lane 1, probe alone; lane 2-4, addition of increasing amounts of *Ta*FDL2 protein; lane 5-8, competition with 5-, 10-, 20- and 50-fold excess of unlabeled Wt bZIP oligonucleotides. **B)** Radiolabeled oligonucleotides with four copies of a mutant version of bZIP binding site (Mut bZIP) were used in the binding reactions with *Ta*FDL2 protein: lane 1, probe alone; lane 2-4, addition of increasing amounts of *Ta*FDL2 protein: lane 1, probe alone; lane 2-4, addition of increasing amounts of *Ta*FDL2 protein: lane 1, probe alone; lane 2-4, addition of increasing amounts of *Ta*FDL2 protein: lane 1, probe alone; lane 2-4, addition of increasing amounts of *Ta*FDL2 protein: lane 1, probe alone; lane 2-4, addition of increasing amounts of *Ta*FDL2 protein: lane 1, probe alone; lane 2-4, addition of increasing amounts of *Ta*FDL2 protein. Radiolabeled probes are marked with an asterisk. The presence of two retarded bands instead of one (as observed in Figure 4 in the manuscript) is likely the result of the use of oligonucleotide probes.

Figure S2. Transcript levels of *TaFDL2* in the leaves of vernalized ($V=4 \ ^{\circ}C$) and unvernalized ($RT=20-24 \ ^{\circ}C$) plants of Chinese Spring (CS) and Chinese Spring – Hope substitution line 7B (CS(H)) carrying the dominant *Vrn-B3* allele. Plants kept at room temperature were induced to flower during the course of the experiment. The same RNA samples showed increased transcript levels of *FT* and *VRN1* in both vernalized and unvernalized plants with significantly higher transcript levels in CS(H) relative to CS (Yan et al. 2006).

Appendix S1. Electrophoretic Mobility Shift Assays (EMSA)

TaFDL2, TaFDL6 and *TaFDL13* cDNA fragments were amplified by PCR using primers listed in Table S3. After sequencing confirmation, PCR products were digested with appropriate restriction enzymes (restriction sites are underlined in Table S3) and cloned in frame with GST coding region into the corresponding sites of pGEX-6p-1 (GE Healthcare, Piscataway, NJ) to generate *Ta*FDL2-GST, *Ta*FDL6-GST and *Ta*FDL13-GST fusion constructs. Constructs were transformed into *E. coli* BL21 for protein expression. Protein induction was done at 30°C for 2-4 h with addition of 0.5 mM IPTG. GST SpinTrap purification columns (GE Healthcare, Piscataway, NJ) were used to purify GST-tagged proteins. Purified proteins *Ta*FDL2-GST, *Ta*FDL6-GST and *Ta*FDL13-GST were cleaved from the GST tag using PreScission protease (GE Healthcare, Piscataway, NJ) and then repurified.

Four *VRN1* promoter fragments containing one or two putative bZIP binding sites were generated by PCR (primers are listed in Table S3) and cloned in pGEM-T easy vector (Promega, Madison, WI, USA). DNA fragments were excised with *Eco*RI, radiolabeled with α -³²P-dATP and α -³²P-dTTP (3000 Ci/mole, Perkin Elmer) using the Klenow subunit of DNA polymerase, and purified with MicroSpinTM G-25 columns (GE Healthcare, Piscataway, NJ). Additional oligonucleotides including either four copies of the wild type bZIP binding sequence or a mutant version in which the ACGT core sequences were mutated to AATT (Table S3) were synthesized, annealed and used in the competition binding assays. The annealed double-stranded oligos carry GATC and AGCT two overhangs to facilitate probe labeling. Overhangs were filled in with 33µM each of cold dATP, dTTP, dGTP and 5µl of α -³²P-dCTP (3000 Ci/mole, Perkin Elmer) using the Klenow subunit of DNA polymerase.

Binding reactions: Binding reactions were conducted at room temperature for 20 min in 25 μl containing 20 mM Tris-HCl (pH 8.5), 50 mM KCl, 5 mM MgCl₂, 1 mM EDTA, 1 mM DTT, 200 ng/μl BSA, 10% glycerol, 1 μg poly(dI-dC), 1 ng of labeled probe and 0.1-1 μg of protein. For competition experiments, a 5- to 50-fold molar excess of unlabeled

cold competitor was added 15 minutes before the hot probe. Five percent non-denaturing polyacrylamide gels were used to resolve protein: DNA complexes from free DNA probes in a Tris-glycine electrophoresis buffer (25 mM Tris-Cl, 190 mM Glycine, 1 mM EDTA, pH 8.3). Gels were dried and exposed to Kodak X-AR films at room temperature.

Supershift EMSA: To test the presence of a *Ta*FT-*Ta*FDL2-*VRN1* complex in wheat, we performed supershift EMSA experiments including both *Ta*FT and *Ta*FDL2 proteins in the same binding reaction with the *VRN1* promoter segments. Since protein-protein interactions depend heavily on binding conditions, we tested three different binding buffer conditions. The first binding buffer was the same as the one used in our previous EMSA experiments for single proteins (see Experimental procedures). The second buffer included 10mM Tris (pH 7.8), 50mM NaCl, 1 mM EDTA, 0.5mM DTT and 5% glycerol (Mosser *et al.*, 1988). The third buffer contained 10mM HEPES/NaOH PH 7.2, 1mM EDTA, 1mM DTT, 200 ng/ml BSA and 10% glycerol (Grunwald *et al.*, 1998). The three buffers showed similar results: the *Ta*FDL2 protein was able to bind to the *VRN1* promoter, but no supershift was observed in the presence of both *Ta*FT and *Ta*FDL2. We also tested different conditions and times of protein incubation prior to the addition of the radiolabeled probes, including incubation on ice or room temperature for 30 min to 12 hours. No

SOM References

- Mosser, D.D., Theodorakis, N.G. and Morimoto, R.I. (1988) Coordinate changes in heat shock element-binding activity and HSP70 gene transcription rates in human cells. *Mol Cell Biol.*, **8**, 4736-4744
- Grunwald, M.E., Yu, W.P., Yu, H.H., Yau, K.W. (1998) Identification of a domain on the beta-subunit of the rod cGMP-gated cation channel that mediates inhibition by calcium-calmodulin. *J Biol Chem.*, **273**, 9148-57.