
Appendix A: The Candidate-List Method

In this appendix, we will describe the candidate-list method of Miller and Myers (1988) as is implemented
for log-affine gap costs in Ngila. In a candidate-list method, the alignment algorithm maintains a list of
potential gaps for each column and row. The search is enhanced by removing gaps from the list when it is
possible to show that other gaps will always prove to be better. The method of Miller and Myers (1988)
provides an efficient way of calculating when gaps should be removed from the list, if the cost of a gap is
monotonic. Ngila uses the monotonic log-affine gap cost, wk = a+ bk+ c ln k. We will focus on a single row
when describing this method.

For this method, our goal is to globally align two sequences, X and Y , using dynamic programing and
find the alignment with lowest cost. This will be done by progressively filling in a table, C, such that C(x, y)
is the minimum cost of an alignment of subsequence X1···x and subsequence Y1···y, where 0 ≤ x ≤ NX and
0 ≤ y ≤ NY . Note that subsequences X1···0 and Y1···0 are considered to be empty.

Focusing on row y, let Cx = C(x, y) and N = NX . Now, the total cost of a horizontal gap of length
k ending at position x, y is calculated as G(x, y, k) = Cx−k + wk or alternatively as Cx′ + wx−x′ , where
x − x′ = k. The alignment algorithm maintains two sorted lists: ξ ⊆ {0 . . . N − 1} and χ ⊆ {1 . . . N}. The
former is the list of candidates for gap starting positions. The latter is an associated list of crossing points
that are used to cull the list when a new candidate is added.

This lists are updated as the algorithm proceeds down the row. When x = 0, both lists are empty, and
when x = 1, the list is ξ1 = {0} and χ1 = {N}. When x = 2, the lists will be updated only if x′ = 1 is a better
gap starting position than x′ = 0 for some x ∈ {2 . . . N}. This will be true if and only if C1 +w1 < C0 +w2

or C1 + wN−1 ≤ C0 + wN . (See Miller and Myers (1988) for a proof of this). Assuming that this is true,
then ξ2 = {1} and χ2 = {N} if C1 + wN−1 ≤ C0 + wN , and ξ2 = {1, 0} and χ2 = {x?(0, 1), N} otherwise.
Here, x?(0, 1) is the point at which gap cost curve starting at x′ = 1 crosses the curve starting at x′ = 0.
For log-affine gap costs,

x?(p, q) = p+

 q − p

1− exp
(

Cp−Cq+b(q−p)
c

)


At x = 3, updating the list becomes more complicating because x′ = 2 needs to be compared against
each candidate, and candidates that are dominated by x′ = 2 need to be eliminated from the list. This
comparing and culling is provided by the second method of Miller and Myers (1988), which is shown in the
following pseudocode.

if x == 1 then xi = {0}; chi = {N}; return; endif
if x > chi[1] then shift(xi); shift(chi); endif
if gcost(x-1, x) < gcost(xi[1], x) or gcost(x-1, N) <= gcost(xi[1], N) then

while |xi| > 0 and ( gcost(x-1, chi[1]) < gcost(xi[1], chi[1]) or
gcost(x-1, N) <= gcost(xi[1], N) ) do

shift(xi); shift(chi); done
if |xi| == 0 then unshift(chi, N); else unshift(chi, xstar(xi[1],x-1)); endif
unshift(xi, x-1);

endif

Appendix B: Divide and Conquer

The divide-and-conquer algorithm of Hirschberg (1975) provides a way of calculating maximum alignments
in linear space. In this algorithm, the traceback table is replaced by successive alignments of subsequences.
We will use a modified version of divide-and-conquer to demonstrate this.

Let C contain row y of the alignment table, and C ′ contain row y − 1. Furthermore, let Ξ contain the
set of NX + 2 candidate lists needed for the Miller and Myers (1988) algorithm. Now it can be easily shown
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that all the information for filling in C is contained by the set of C ′, Ξ, X, Y , and the alignment parameters.
After C has been filled in, setting C ′ = C allows the algorithm to procede to the next row. When the final
row has been filled out, the algorithm can determine whether the last event in the alignment is a homology, a
gap on X, or a gap on Y . Next, the algorithm realigns X and Y excluding the nucleotides that were covered
by the last event. For example, if the last event in the best alignment of X and Y is a homology, then the
next step of the algorithm aligns X1···NX−1 and Y1···NY −1, finding its final event. This continues until there
are no more nucleotides that need to be aligned.

This algorithm for finding the best alignment has achieved a linear space complexity at a cost of increasing
its time complexity because the majority of the sequence will be aligned multiple times. The cost of the
algorithm can be improved by making the split in the middle and not at the end of the best alignment. This
is achieved by filling in the top half of the table using a forward algorithm and the bottom half of the table
using a backward algorithm. When the two algorithms meet, the best middle event can be chosen.
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