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Supplementary Figure 1: Drug target and degree information. Histograms of (a)

number of drug targets per drug (the mean is 3.5 and the median is 2) and (b) degree of

the targets in the interactome (the mean is 28.6 and the median is 12). The drug target

with the highest degree is GRB2 (with 872 interactions).

a b
seed

subset
target
subset

target & seed
subset

0 1 2 3 4 1 2 30 1 2 38 04 4
Distance limit (l)

(dc)
(ds)

Supplementary Figure 2: Prediction performance of the closest method using

only a subset of targets or disease proteins. (a) AUC values using a subset of

disease proteins (seeds), drug targets and both drug targets and seeds in which the subset

is defined by the distance from drug targets to disease proteins (and vice versa) using the

closest measure. In subset li, a disease protein (drug target) is included in the set if it is

at most i steps away from the closest drug target (disease protein). (b) The plot shows

the cumulative probability distribution of closest and shortest distances from drug targets

to disease proteins.
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Supplementary Figure 3: Proximity versus number and degrees of drug targets

and disease proteins. The plots show the proximity of known (blue) and unknown (blue)

drug-disease pairs versus (a) the degree of drug targets, (b) the number of drug targets,

(c) the degree of disease proteins, and (d) the number of disease proteins.
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Supplementary Figure 4: Assessing prediction performance of proximity. (a)

Plot shows Sensitivity and Specificity curves over different proximity values. The proximity

has both fair true positive rate (Sensitivity) and true negative rate (Specificity) at zc =

−0.15 (the point where the curves meet). (b) F-score (harmonic mean of Precision and

Sensitivity) versus proximity using all unknown drug-disease associations as negatives.

The low f-score is due to the positives constituting a small portion of the all drug-disease

associations and the negatives including potential “positives” (repurposing opportunities

or drugs worsening the disease condition), giving rise to low Precision. (c) F-score versus

proximity using 100 groups of randomly sampled unknown drug-disease associations as

negatives. Each group contains the same number of negative instances as positive instances

(known drug-disease pairs). The blue line shows the average F-score over 100 random

groupings. The balanced number of positive and negative instances yields better F-scores.

(d) The AUC values of distance measures using 100 groups of randomly sampled unknown

drug-disease associations as negatives. The AUC values are consistent with the values

observed using all unknown pairs as negatives, closest measure outperforming the remaining

measures. The lines show standard error over 100 different groupings of the unknown drug-

disease associations.
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Supplementary Table 1: Top 10 proximal pathways for donepezil and glyburide.

Pathway n z

Donepezil
synthesis of phosphatidylcholine 11 -3.3
serotonin receptors 11 -3.3
adenylate cyclase inhibitory pathway 13 -2.2
IL-6 signaling 10 -2.1
the NLRP3 inflammasome 11 -2.1
regulation of insulin secretion by acetylcholine 10 -2.1
regulation of IFN gamma signaling 13 -2.0
growth hormone receptor signaling 24 -2.0
advanced glycosylation endproduct receptor signaling 13 -2.0
ADP signalling through P2RY12 21 -1.9
Glyburide
inwardly rectifying K+ channels 30 -9.0
ABC family proteins mediated transport 22 -8.5
Inhibition of voltage gated Ca+2 channels via G beta gamma
subunits

25 -4.3

GABAB receptor activation 38 -4.1
regulation of insulin secretion by acetylcholine 10 -3.3
Na+/Cl− dependent neurotransmitter transporters 9 -3.3
trafficking of GluR2 containing AMPA receptors 15 -2.8
amine compound SLC transporters 14 -2.8
amine ligand binding receptors 31 -2.6
gap junction degradation 10 -2.5
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Supplementary Table 2: Prediction performance of the drug-disease proximity (zc)
using various data sets.

Data set Number
of diseases

Number
of drugs

Number
of drug-
disease
pairs

AUC (%)

Original 78 238 402 65.7
Protein interactions
Binary interactome 50 129 226 58.3
STRING 77 233 396 61.3
Disease-gene associations
OMIM 35 114 155 71.2
GWAS 44 157 260 60.2
Drug-target associations
STITCH 73 212 359 64.8
Disease-drug associations
NDF-RT 61 160 233 66.2
KEGG 16 74 76 71.3
Original data set filtered using
Diseases with at least one pro-
tein

304 462 1192 58.6

Diseases excluding broader
MeSH term

53 205 282 67.2

Drugs with at least three tar-
gets

49 95 144 64.6

Drugs whose targets are not
disease proteins

76 227 384 64.5
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Supplementary Note 1: Drugs target two-step neighborhood of the disease

genes

To pinpoint drug-disease associations even when the target is not a disease protein, we

defined the drug-disease proximity using several network-based distance measures. We

observe that the closest measure captures the drug-disease proximity better than the re-

maining measures, suggesting that drug targets do not necessarily have to be close to all

the proteins in the disease module. Motivated by this observation, we test the performance

of the network-based proximity using only (i) disease proteins at most l steps away from

a drug target (seed subset), (ii) the drug targets at most l steps away from a disease

protein (target subset), (iii) the drug target and disease protein pairs that are at most

l steps away from each other (target-seed subset). Note that the seed and target subset

approaches are not symmetric: Given a set of drug targets T = {t1, t2} and a set of disease

proteins S = {s1, s2}, say while the closest disease protein to the drug target t1 is s1, the

closest drug target to s1 might be t2 but not t1. To restrict the distance calculation to a

given distance l, we first calculate the shortest path distances between each pair of drug

target (ti) and disease protein (sj), sort these distances and then consider only the pairs

(ti, sj) for which d(ti, sj) ≤ l.

Through exhaustive search of parameter space (l ∈ {0, 1, 2, 3, 4}), we find that the AUC

does not change significantly after l = 2 (Supplementary Fig. 2a). Furthermore, the AUC

at l = 2 is comparable to AUCs when all disease genes or all drug targets are considered.

Indeed, the distribution of distances between drug targets and disease proteins among
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known drug-disease pairs shows that 90% of the drugs have a known disease protein within

two steps (Supplementary Fig. 2b). This suggests that most drugs exert their therapeutic

effect on the disease proteins that are at most two steps away.

Supplementary Note 2: Proximity does not depend on the number and degree

of drug targets and disease proteins

Several factors such as the number and degree of the drug targets and disease proteins can

influence the discriminatory performance of the drug-disease proximity measure. Drugs

with more targets or whose targets are more central are expected to be closer to a disease

protein (and vice versa). To check whether proposed proximity measure is biased towards

such drugs, we plot proximity versus number of drug targets and degree of drug targets

among all possible drug-disease associations. We find that both number of targets of a drug

and the average degree of the drug’s targets show almost no correlation with proximity

(Spearman’s rank correlation coefficient, Suuplementary Fig. 3a-b, ρ = 0.08, P = 9.6 ×

10−31 and ρ = −0.10, P = 1.9×10−46, respectively). Similarly, the drug-disease proximity

is not correlated with neither the number of disease proteins (Supplementary Fig. 3c-

d, ρ = −0.01, P = 0.12), nor with the average degree of disease proteins (ρ = 0.03,

P = 3.1× 10−5).

Supplementary Note 3: Proximity and drug similarity based repurposing

Drug-drug similarity is often used to predict a novel use for a given drug. The similarity

between two drugs is usually defined based on sharing chemical structure[1], targets[1, 2, 3],
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functional annotations (of the targets)[1] or side effects[4, 1] as well as shortest path distance

between targets in the interactome[1]. Accordingly, given two drugs X and Y with targets

TX and TY , we calculate:

(i) the interactome-based distance between the targets of X and Y :

δtarget PPI(X,Y ) = e−l(X,Y )

where l(X,Y ) is defined as

l(X,Y ) =

∑
u∈TX ,v∈TY

d(u, v)

‖TX ∪ TY ‖

and d(u, v) denoting the shortest path distance between proteins (u, v) in the inter-

actome. Accordingly, two drugs X and Y are similar if their targets are close to each

other in the interactome. For defining proximity-based similarity, we use zc(X,Y )

instead of l(X,Y ).

(ii) the ratio of common drug targets of X and Y :

δtarget(X,Y ) =

∑
t∈TX∩TY

wt

‖TX ∪ TY ‖

where wt, the disease-specificity of each target (the number of diseases for which a

drug with target t is used), is given by
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wt =
1∑

i∈D
Iti

with D being all the diseases analyzed in this study and Iti being an indicator variable

defined as

Iti =


1, t is targeted by a drug used for disease i

0, otherwise

That is, the similarity between drugs X and Y is based on the number and disease-

specificity of their shared targets. Note that if wt = 1 for all targets, the similarity

reduces to the Jaccard index of the targets of X and Y ignoring whether the targets

are disease-specific or not.

(iii) chemical similarity between X and Y :

δchemical(X,Y ) =
‖FX ∧ FY ‖
‖FX ∨ FY ‖

where FX , FY are 2D SMILES fingerprints of drug X and Y , respectively. That

is, the chemical similarity of drugs X and Y is defined as the Tanimoto index of

the SMILES fingerprints of X and Y . We first converted the SMILES fingerprints

to aromatic form and then calculated Tanimoto index using Indigo Python toolkit

(lifescience.opensource.epam.com/indigo).

(iv) the ratio of GO terms shared among the targets of X and Y :

10



δGO(X,Y ) =

∑
m∈MX∩MY

wm

‖MX ∪MY ‖

where MX and MY are the set of GO molecular function terms annotated for TX and

TY , respectively and wm is the disease-specificity of each common GO term m calcu-

lated based on the number of diseases m appears among the targets of the drugs used

for each disease. Thus, δGO(X,Y ) gives the functional similarity of drugs X and Y

as the common disease-specific molecular function GO terms. Gene annotations were

downloaded from GO web page (geneontology.org/page/downloads) in July, 2013.

(v) the ratio of common side effects of X and Y:

δside effect(X,Y ) =

∑
e∈EX∩EY

em

‖EX ∪ EY ‖

where EX and EY are known side effects of drugs X and Y , respectively and we is

the disease-specificity of each common side effect e calculated based on the number of

diseases for which a drug with e exists. The side effects of drugs are retrieved using

SIDER database[5]. The drugs are mapped to each other via the PubChem identifiers

provided in DrugBank and SIDER databases.

(vi) the perturbation profile similarity of X and Y :

δLINCS(X,Y ) =
‖PX ∩ PY ‖
‖PX ∪ PY ‖
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corresponding to the ratio of common differentially regulated genes in the pertur-

bation profiles of X and Y in LINCS database located at lincsproject.org where

PX and PY are the gene sets that are differentially expressed upon perturbation

by drugs X and Y , respectively. The differentially expressed 100 landmark genes

(lm100) upon drug perturbations were retrieved using LINCS API in June, 2014

(api.lincscloud.org) and in case of multiple perturbations for the same drug (i.e. mul-

tiple cell lines, perturbation times or dosages), the perturbations resulting in highest

similarity (δLINCS(X,Y )) are used.

Although predicted side effects, drug targets or disease-disease similarity information

can increase the coverage of these methods, their use is likely to have a significant impact

on the prediction performance due to the limited reliability of available prediction methods.

Furthermore, it is not possible to discover novel drugs whose targets have not been explored

for a particular disease or to find drugs that do not have a certain (e.g., undesired) side

effect because of the dependence on the existing drug and disease information. Drug-disease

proximity overcomes these limitations, as it does not depend on the existing knowledge of

drug-disease associations.

Supplementary Note 4: Comparing proximity to gene expression based repur-

posing

To identify drugs that can potentially account for the gene expression changes induced by

diseases, recent studies proposed using correlation of gene expression between the disease

state and after treatment with drug[6, 7]. The premise of these studies is to find drugs whose
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perturbation profiles are anti-correlated with the genes perturbed in the disease such that

the treatment with the drug can revert the expression changes in the disease state. That is,

for instance, if a gene is over-expressed in the disease condition, the goal is to find a drug

that yields the under-expression of that gene. We test this hypothesis using Drug versus

Disease (DvD) R package[8] to correlate drug and disease gene expression profiles from

public microarray repositories. DvD provides the precalculated reference ranked gene lists

based on differential expression from disease states in Gene Expression Omnibus (GEO,

ncbi.nlm.nih.gov/geo) and drug perturbations in Connectivity Map[9] (DrugVsDiseasedata

and cMap2data R data packages, respectively). In DvD, disease profiles are defined for

45 diseases based on various data sets in GEO and drug profiles are defined by merging

multiple samples for the same compound for 1309 compounds in Connectivity Map version

2[10, 8]. The 200 significantly differentially expressed genes (top and bottom 100 genes in

the ranked lists) are used to calculate an enrichment score based on Kolomgorov-Smirnov

statistic (i.e. calculateES function in the R package), corresponding to the strength of the

anti-correlation of drug and disease profiles. DvD had information for 72 drugs and 14

diseases in our data set covering 95 out of 402 known drug-disease pairs and 1,885 out of

18,162 unknown pairs.

Supplementary Note 5: Robustness of drug-disease proximity threshold

To define proximal and distant drug-disease pairs, we examine the coverage of known

and unknown drug-disease associations at various thresholds and choose the threshold,

zthreshold, that gives both high coverage and low false positive rate (Sensitivity and 1-
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Specificity, respectively) identified by the threshold for which Sensitivity and Specificity

have both high values. We use ROCR package[11] to calculate the Sensitivity and Speci-

ficity values and then find the cutoff for which these values are equally high (i.e. the

difference between the two values are within |∆| ≤ 1%). For the original data set used in

the analysis, zthreshold = −0.15 with a Sensitivity of 59% and Specificity of 60%.

We confirm that the selected interactome-based proximity threshold does not change

significantly by repeating our analyses using drug-disease associations from (i) NDF-RT

and (ii) KEGG. On both data sets, we find that the threshold is similar to that of the

original data set (zthreshold
NDF−RT = −0.10 and zthreshold

KEGG = −0.07, respectively). We also check the

enrichment of known drug-disease pairs among proximal and distant drug-disease pairs to

ensure that our findings on the relationship between the proximity and a drug’s therapeutic

effect generalizes over different data sets. Consistent with the original analysis we find that

drugs proximal to a disease are at least 2 times more likely to be effective on that disease

in both data sets (Fisher’s exact test, OR = 2.2, P = 4.8 × 10−9 using NDF-RT and

OR = 3.0, P = 4.8× 10−6 using KEGG).

Supplementary Note 6: Controlling for data quality

Data incompleteness and study bias pose substantial challenges in the systematic analysis

and interpretation of biological data. Current literature provides a snapshot of drugs

known to be effective in several diseases, known drug targets, disease genes and protein-

protein interactions. To make sure that the drug, disease and interaction data sets used

in our analysis constitute an accurate representation of the state-of-the-art, we test the
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performance of drug-disease proximity measure across different data sets (Supplementary

Table 2).

To evaluate the effect of the underlying network on proximity, in addition to the in-

tegrated human interactome (PPI), we use the binary human interactome compiled from

high-quality yeast two-hybrid interaction detection screens and literature[12] (Lit-BM-13

and HI-II-14 at interactome.dfci.harvard.edu/H sapiens/host.php). The binary interac-

tome covers 7,544 proteins and 24,202 interactions between them, thus it is much smaller

than PPI. The AUC corresponding to discrimination of known and unknown drug-disease

pairs drops significantly, indicating that the coverage of the interactome has a significant

effect on the drug-disease proximity. Though binary assays provide systematic high-quality

data, their coverage is limited[13]. To counterbalance this limitation, we use a functional

association network from STRING database [14] containing interactions with a confidence

score 700 or higher. The STRING network has 16,086 proteins and 314,656 interactions,

more than double the number of interactions in the PPI network. Yet, the AUC is slightly

higher than that of binary interactome, suggesting that both the quality and the coverage

of the protein interaction data have a significant impact on the proximity between drugs

and diseases.

Next, we assess the effect of disease annotations on drug-disease proximity by using only

disease gene information from either the OMIM database or the GWAS Catalogue. The

AUC using only OMIM data is higher than the original AUC (using both OMIM and GWAS

genes), whereas the AUC using only GWAS data is substantially lower. However, among

78 diseases in the original data set, there are 43 diseases that have no associated genes in
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OMIM database. Therefore, using the data from both OMIM and GWAS substantially

increases the coverage of the diseases.

To account for the limitations of drug-target association data[15], we also use drug

target information from STITCH database[16] that integrates known and predicted drug

target associations based on evidence in the literature. For each drug, the proteins with

confidence score greater than 700 are considered to be targeted by the drug in addition to

the targets provided in DrugBank. This data set contains 2,244 distinct targets for 212

drugs. The median number of targets per drug using STITCH is significantly higher (15

targets per drug vs. 2 targets per drug using DrugBank). Nonetheless, the AUC is slightly

lower, suggesting that quality of drug-target information is at least as important as the

coverage.

To make sure that the drug-disease annotations used in our analysis is of high confi-

dence, in addition to MEDI-HPS, we collect drug-disease assocations from National Drug

File - Resource Terminology (NDF-RT)[17] and Kyoto Encyclopedia of Genes and Genomes

(KEGG)[18]. We retrieve the drug-disease associations using NDF-RT (rxnav.nlm.nih.gov/

NdfrtAPIs.html) and KEGG (rest.kegg.jp) REST APIs, respectively. In NDF-RT, a drug

is considered to be indicated for a disease if and only if the drug’s NDF-RT entry contained

a “may treat” relationship with the disease. Similar to the drug-disease associations used

in the original analysis, we filter these drug-disease associations using Metab2Mesh[19] (q-

value < 1 × 10−8). The AUC is considerably higher using drug-disease associations from

KEGG, suggesting that the annotations in KEGG tend to be more reliable. Nonetheless,

the number of drugs and diseases included in the analysis is significantly lower compared to
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the annotations from MEDI-HPS. Hence, MEDI-HPS offers a good compromise between

accuracy and coverage of drug-disease associations, allowing us to analyze the most number

of drugs and diseases.

We also examine the AUC value for all diseases with one or more corresponding gene, as

opposed to restricting to the diseases with at least 20 genes. As expected, the inclusion of

these diseases with fewer genes are known lowers the prediction performance, yet it remains

significantly higher than the random expectation. Given that the drug disease proximity is

not biased with respect to number of disease genes, the drop in the AUC can be attributed

to the diseases with less genes being genetically less understood. On the other hand, as

several diseases used in the original analysis are broader categories involving more specific

conditions, we assess the effect of excluding the broader MeSH disease categories from the

analysis (e.g., liver cirrhosis is removed and liver cirrhosis biliary is kept). To do this we

identify the disease pairs that have substantial portion of their genes in common (i.e. that

have a Jaccard index higher than 0.5) and keep only the specific MeSH term in the MeSH

hierarchy (lower in the hierarchy). We observe that the resulting prediction accuracy is

comparable to the AUC using all the diseases.

In the original analysis, we assume that the known drug targets are typically the thera-

peutic targets (for which the drug is intended for). To check whether the analysis depends

on the number of targets a drug has, we limit the analysis to those drugs that had at

least three targets. In line with our expectation, the AUC does not change substantially

compared to using all drugs. Similarly, to confirm that proximity can pick drug-disease

associations for drugs whose targets are not disease genes, we repeat the analysis excluding
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the drug-disease pairs in which all drug targets are also disease genes (dc = 0). The AUC

values are only slightly lower, suggesting that relative proximity can successfully identify

indirect relationships between drugs and diseases.
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