Supplementary information

Supplementary Figures

Supplementary Figure 1.

Recombinant PEXEL proteins do not bind PI(3)P. (a) Gel filtration analysis of HRPII^{WT} and HRPII^{RLE>A} proteins shows the proteins are monomeric. **(b)** Surface plasmon resonance (SPR) analysis of recombinant protein binding to a PI(3)P liposome-coated chip. Binding to PC/PE control liposomes was subtracted to give the presented sensorgrams as performed in ¹. Recombinant p40PX (PI(3)P Grip from Echelon Biosciences) bound the liposomes (Kd 196 μ M). KAHRP, GBP130 and HRPII proteins with a native PEXEL (WT) do not bind PI(3)P liposomes more than proteins possessing the corresponding mutant PEXEL (RLQ>A and RLE>A, respectively). Experiments were performed in triplicate.

- Triglyceride sylglycerol (DAG) hatidic Acid (PA) atidylserine (PS) hanolamine (PE) tidylcholine (PC) idylglycerol (PG) Cardiolipin Phosph Phospha
- wide
 Phosphatidylinositol (PtdIns)

 OAG)
 Phosphatidylinositol (4) phosphate (PtdIns(4)P)

 I(PA)
 Phosphatidylinositol (4,5) bisphosphate, (PtdIns(4,5)P₂)

 (PS)
 Phosphatidylinositol (3,4,5) trisphosphate, (PtdIns(3,4,5)P₃)

 (PE)
 Cholesterol

 (PC)
 Osphingomyelin

 (PC)
 Solvent blank

Supplementary Figure 2. Assessment of PI(3)P binding by GBP130 proteins. (a) Immunoblot with anti-GFP antibodies shows that recombinant GBP130 protein fragments 66-83, 66-88, 84-196 and 89-196 (see Figure 1a) do not bind to PI(3)P-coated beads (+) or control beads (-) that were eluted with SDS-PAGE sample buffer. 10% of the unbound fraction volume was probed by immunoblot to visualize the proteins. The experiment was conducted at the same time as Figure 1d, where p40PX bound the PI(3)P-coated beads. Experiments were performed in triplicate. (b) Schematic of recombinant GBP130 66-196 proteins generated previously². Residues 66-196 of GBP130, containing the PEXEL motif, or the PEXEL mutation RLE>A, were fused to 3cMyc epitopes and 18His residues. Coomassie blue-stained gels showing serial elutions of GBP130 proteins following expression in E. coli and absorptive chromatography. The last four fractions of each were used in subsequent experiments. (c) Isothermal calorimetry (ITC) of GBP130 66-196 (85 µM) in solution with the head group of PI(3)P, inositol 1,3 bisphosphate (I1,3P2), show no evidence of binding. The titration was similar between I1,3P2 (1.25 mM) into dialysis buffer (150 mM NaCl, 20 mM HEPES, pH 7.4) (negative control) and the same buffer containing GBP130 66-196. After ITC, the GBP130 66-196 protein sample was shown to be present by SDS-PAGE and Coomassie blue stain (right, arrow). (d) Binding of GBP130 66-196 and GBP130 66-196 RLE>A proteins (20 µM) to PI(3)P, PI(4)P, PI(5)P (membrane B), and PI(4)P and cardiolipin (card) (membrane C) on lipid spot membranes. Binding of both proteins shows it is not PEXEL-specific. (e) Binding of GBP130 66-196 (20 µM) to lipid spot membranes is blocked by 1 µM of the E. coli chaperone DnaK, which represents 5% of the total GBP130 amount added. Membranes were developed for 10 hours. (f) The identity of the lipids in each spot on membranes A, B and C are shown.

Supplementary Figure 3. PEXEL and RxLR chimeras do not bind PI(3)P in *P. falciparum*. (a) Standard curve generated using the PI(3)P standards provided in the Echelon Biosciences PI(3)P Mass ELISA kit. Blue lines indicate the pmol of PI(3)P bound to each chimera immunoprecipitated from *P. falciparum* and the deduced concentrations are listed in the Table in descending order (right). Bound PI(3)P was determined by measuring the optical density at 450 nm in biological duplicates. Data shown is one of two repeated experiments showing similar results. Whether the PEXEL in each chimera is cleaved by plasmepsin V, and the remaining PEXEL sequence thereafter, is indicated in the table. (b). Assessment of global protein synthesis in *P. falciparum*-infected erythrocytes following treatment with DMSO, lopinavir (50 μ M), chloroquine (150 ng/ml) or artemisinin (100 ng/ml) for 7 hr prior to addition of radio-labelled amino acids to the culture medium for 15 min. DMSO had no effect compared to the untreated control; however, lopinavir treatment almost completely blocked translation. The positive control treatments chloroquine and artemisinin also had

negative effects on translation, likely because the parasites were dying from the 7 hr treatment. HSP70 levels were probed by immunoblot following radiolabelling.

Supplementary Figure 4. Expression of p40PX in *P. falciparum* using the ACP signal sequence. Expression of p40PX-GFP in *P. falciparum* localizes the protein to the food vacuole membrane (FV) and apicoplast (Api). Middle: Fusion of p40PX-GFP to the signal peptide from acyl carrier protein (ACP) results in entry into the secretory pathway and localization at the parasitophorous vacuole in *P. falciparum*-infected erythrocytes. The PI(3)P reporter was not observed in the parasite ER, which was labelled with anti-PMV (plasmepsin V) antibodies. Mutation of the PI(3)P binding residue R58Q in p40PX (ACPss-p40PX_{R58Q}-GFP) results in localization at the parasitophorous vacuole, similar to the un-mutated form, and faint ER staining. Scale bar is 5 μ M.

Supplementary Figure 5. The RxLR motif is not cleaved by plasmepsin V in P. falciparum. (a) Immunoblot with anti-GFP antibodies of HRPIIss-PH001D5 following affinity purification from TX-100 extracted transgenic P. falciparum lysates. The major species is signal peptide cleaved (32.8 kDa; red arrow), while uncleaved (35.8 kDa; black arrow) and 'GFP only' from the food vacuole are also present. The uncleaved species may be refractory to TX-100 extraction. (b) Coomassie blue stained gel of HRPIIss-PH001D5 proteins purified from P. falciparum TX-100 lysates by affinity chromatography with anti-GFP agarose. Bands 1 and 2 (labeled on right) were excised from the gel, digested with AspN (Promega) and subjected to LC-MS/MS for peptide identification. (c) Mass spectra of peptides detected from band 2 in panel (B) (the signal peptide cleaved species) that are either N-terminal to the RxLR motif (DLISPIESTVQ) but still C-terminal of the signal sequence (upper spectrum), or which contain the RxLR motif intact (DRQLRGFYATENT) showing it was not cleaved by plasmepsin V in P. falciparum-infected erythrocytes (lower spectrum) are shown. (d) Amino acid sequence of HRPIIss-PH001D5, showing the signal sequence (yellow) and signal prediction (dash in the yellow region), the Oomycete effector sequence (grey) with RxLR sequence shown in red, the predicted AspN cleavage sites (dashes in the grey region) and GFP (green). The peptides detected by LC-MS/MS are boxed.

	150 m 50 mN pH	nM NaC 1 HEPE 1 7.5	l S	PI pH	BS 7.5		н	RPII	5	150 m 50 mN pł	nM N 1 HE 1 7.5	aCl PES	p	PBS H 7.5	5	HR	PII		150 50 n) mN nM H pH 7	1 Na HEP 7.5	aCI PES		PE pH	3S 7.5	
р40РХ	PI3P	PC/P	E PI	3P	PC/	ΈE	W	Т		PI3P	• PC	/PE	PI3F	PC	C/PE	RL	E>A		PI	3P	PC/	ΈE	PI	ЗP	PC/	/PE
inpu	t P S	PS	5 P	s	P	s		inpu	t	PS	P	s	P	Ρ	s		in	put	P	s	P	s	P	s	Ρ	s
250		~						-					· • ,				-		_							-
150								-									-					1				
100								-									-									0
75 -		•		20				۳.,									-					1		C.		
50								-									-									
37 -					-			-				-		-	-		-	-			-		-	-	-	
25 -								-									-									

KAHRP WT	150 ml 50 mM pH <u>PI3P</u>	M NaCl HEPES 7.5 PC/PE	P pH PI3P	BS 7.5 P <u>C/P</u> E	KAHRP RLQ>A	150 m 50 mN PI3P	M NaCl HEPES 7.5 PC/PE	P pH PI3P	PBS 17.5 PC/PE	GBP130 66-83	150 n 50 mM PI3P	M NaCl HEPES 7.5 PC/PE	P pH PI3P	BS 17.5 P <u>C/P</u> E
input 250 -	PS	ΡS	ΡS	PS	input	ΡS	PS	ΡS	PS	input	ΡS	ΡS	ΡS	PS
150 -					-					-				
100 -				i eur										
75 - 🖤					۳	101	15			-				
50 -				-	-					-				
37 - 🚬		-				-								
25 - 20 -										:	de s	1. 1		-

GBP130 66-88	150 mM 50 mM pH <u>PI3P</u>	M NaCl HEPES 7.5 PC/PE	PI pH PI3P	BS 7.5 PC/PE	GBP130 84-196	150 mM NaCl 50 mM HEPES pH 7.5 PI3P PC/PE	PI pH PI3P	BS 7.5 PC/PE	GBP130 89-196	150 mM NaCl 50 mM HEPES pH 7.5 PI3P PC/PE	PBS pH 7.5 PI3P PC/PE
input	PS	ΡS	PS	ΡS	input	PSPS	PS	ΡS	input	PSPS	PSPS
150						The second			-		
100 - 🕳			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-				-		
75 - 🗢					•		1		-		
50 - 🔹							-			· • •	
37 - •		=		i i i i i i i i i i i i i i i i i i i	-				•		
25 - • 20 - •				3.4	:				11		

Supplementary Figure 6. Binding of proteins to PI(3)P liposomes or control PC/PE liposomes, determined by ultracentrifugation. Full-length gels from Fig. 1d. Pellet and

supernatant fractions were resolved by SDS-PAGE and Coomassie blue stain. Proteins were ultracentrifuged in buffer to remove potential aggregates prior to incubation with liposomes, explaining why input and sum of pellet and supernatant sometimes differ. Experiments were performed in triplicate.

е Bound Unbound (10%) PI3P on beads + - + -250 -p40PX 150 --α -GST 100 ---75 ---50 ---37 -- " 25 --
 Bound
 Unbound (10%)

 PI3P on beads
 +
 +
 +
 +

 WT
 M
 WT
 M
 WT
 M
 WT
 M

 250 150 - ---100 - ---75 - ___ 50 - ___ 37 - 🛶 25 - ----20 ----15 ----250 ---150 ----100 ----75 ---KAHRP 50 ---37 ---25 --20 --15 ---250 - • 150 - -100 - -75 - 🛥 GBP130 50 - 👻 37 - 🗣 25 - 🛶 20 - 🗣 15 --250 --150 -100 -75 -PfEMP1 50 -37 -25 -- -20 -15 -

 α -GFP

Supplementary Figure 7. Binding of p40PX and *P. falciparum* proteins with native PEXEL (WT) or mutant PEXEL (M) to PI(3)P-coated beads (+) or control beads lacking lipid (-). Full-length blots from Fig. 1e. Bound protein was eluted in SDS-PAGE sample buffer and detected by immunoblot with anti-GST (p40PX) or anti-GFP (*P. falciparum* proteins). 10% of unbound fraction volume was loaded to visualize protein inputs. No binding was detected for *P. falciparum* exported proteins. Experiments were performed in triplicate.

Supplementary Figure 8. Immunoblot with anti-GFP antibodies of each chimera from the tetanolysin pellet (P) and supernatant (S) shows that KAHRP₁₋₉₆ is exported but RxLR chimeras are not. Full-length blots from Fig. 3c. Tetanolysin inserts pores in the erythrocyte membrane allowing sampling of the host cell cytosol. Aldolase was included as a control, as described previously.

Supplementary Figure 9. Immunoblot with anti-GFP antibodies of chimeras from the tetanolysin pellet (P) and supernatant (S) shows that HRPII 4A and PfEMP3₁₋₈₂ are cleaved at the PEXEL (blue arrow) and exported. Full-length blots from Fig. 4d. Signal peptide-cleaved HRPII 4A was also visible (red spot). HRPII 4A RLE>A, HRPII 4A RLE>A Down, and PfEMP3₁₋₈₂ RLQ>A were not exported and bands corresponding to signal peptide-cleaved (various possibly due to insertion of four alanines; red spots/arrow) and uncleaved protein (black spots/arrow) are present.

Supplementary Figure 10. Immunoblot with anti-GFP antibodies of chimeras from the tetanolysin and saponin pellet (P) and supernatant (S). Full-length blots from Fig. 5c. This shows KAHRP₁₋₉₆ at a size corresponding to cleavage at the PEXEL and it was exported (32 kDa; blue arrows), KAHRP Δ 38-53 and KAHRP Δ 38-53 RLQ>E were cleaved to a size corresponding to cleavage by signal peptidase (32.5 kDa; red spots) and were not exported, but were present in the saponin supernatant confirming they were secreted to the PV, and that KAHRP16Ala was of a size corresponding to cleavage at the PEXEL and it was exported (32 kDa; blue arrow) but cleavage was inefficient as bands consistent with signal sequence cleaved (red arrow) and uncleaved (black) species were present in the pellet fraction. HSP70 was used as a control.

С

Supplementary Figure 11. The PEXEL is cleaved co-translationally. Full-length blots for Fig. 6b-g. (b) ³⁵S-Methionine/Cysteine-labelling (³⁵S-Met/Cys) of HRPII 4A and HRPII 4A RLE>A in *P. falciparum* for the indicated times shows bands corresponding to uncleaved (black arrow), signal peptide-cleaved (red arrow) and PEXEL-cleaved (blue arrow) species. Two signal peptide-cleaved species are present for RLE>A (red arrows), possibly due to insertion of four alanines following the signal sequence. (c) Immunoblot with anti-GFP

antibodies of the same membrane shows the bands are GFP-specific. The uncleaved HRPII 4A protein likely represents small quantities not detected by immunoblot as this reveals protein produced over hours. **(d)** ³⁵S-Met/Cys-labelling of KAHRP₁₋₇₀ and KAHRP₁₋₇₀-RLQ>A in *P. falciparum*. Bands corresponding to uncleaved (black arrow), signal peptide-cleaved (red arrow) and PEXEL-cleaved (blue arrow) species are indicated. **(e)** Immunoblot with anti-GFP antibodies of the same membrane. Note the absence of a signal peptidase cleaved product for KAHRP1-70 RLQ>A in the autoradiography. **(f)** Left: ³⁵S-Met/Cys-labelling of PfEMP3₁₋₈₂ in *P. falciparum*. Bands corresponding to cleavage of the indented signal peptide (red arrow) and PEXEL (blue arrow) are indicated. **(g)** Immunoblot with anti-GFP antibodies of the same membrane. A PEXEL mutant (PfEMP3₁₋₈₂ L>A) was included as a size control. Most protein detected with anti-GFP was present prior to radiolabelling so quantity is not comparable to ³⁵S-Met/Cys. Incorporation of ³⁵S-Met/Cys into HRPII and KAHRP constructs did not increase appreciably over time, in contrast to PfEMP3. This reason for this is unknown but may be due to saturation of anti-GFP agarose in the former experiments, which was used to enrich the GFP proteins.

Supplementary Tables

Previous construct	Previous result	Our construct	Our result	Same amino acid sequences ?
Avr3aGFP*	Exported	HRPIIss-AVR3a	Not exported	Yes
PH001D5GFP*	Exported	HRPIIss- PH001D5	Not exported	Yes
p40-phox-PX	Binds PI(3)P	P40PX	Binds PI(3)P	Yes
HRPII HT	Binds PI(3)P	HRPII WT	Low/no PI(3)P binding	Ours used 3D7 RLLHE PEXEL, previous used FCB RLLYE [#]
HRPII ALAYA	Low/no PI(3)P binding	HRPII RLE>A	Low/no PI(3)P binding	Ours used 3D7 ALAHA PEXEL, previous used FCB ALAYA [#]
PfEMP1 (PFL1960w) KELLD- GFP	Binds PI(3)P	PfEMP1 WT	Low/no PI(3)P binding	Yes
PfEMP1 (PFL1960w) AELLD-GFP	Low/no PI(3)P binding	PfEMP1 K>A	Low/no PI(3)P binding	Yes
SS-Nuk10WT-GFP	Exported	HRPIIss- PH001D5	Not exported	Similar but Nuk10 has 4Ala just after signal sequence
SS-AAAA-HT-GFP	Exported	HRPII 4A	Exported	Ours used 3D7 RLLHE PEXEL, previous used RLLYE [#]
SS-AAAA-ALAYA- GFP	Exported	HRPII 4A RLE>A	Not exported	Ours used 3D7 ALAHA PEXEL, previous used ALAYA [#]
SS-AAAA-ALAYA- down-GFP	Not exported	HRPII 4A RLE>A Down	Not exported	Ours used 3D7 ALAHA PEXEL, previous used ALAYA [#]
PfEMP3-RSLAQ- GFP	Exported	PfEMP3 ₁₋₈₂	Exported	Yes
PfEMP3-A4- ASAAA-GFP	Exported	PfEMP3 4A RLQ>A	Not exported	Yes
SS-p40phox ^{wT} - mCherry	Retained in ER reportedly via	STEVORss- p40PX-GFP and	Both secreted to PV, not	Same p40 domain sequence, different signal

Supplementary Table 1: Summary of constructs tested in previous studies and this study

	PI(3)P binding	ACPss-p40PX - GFP	retained in ER	sequence and fluorescent tag
SS-p40phox ^{R58Q} - mCherry	Secreted to PV, no longer ER	ACPss- p40PX _{R58Q} -GFP	Secreted to PV, not in ER	Same p40 domain sequence, different signal sequence and fluorescent tag

*These constructs are from Bhattacharjee *et al* PloS Pathogens 2006 and the remainder are from Bhattacharjee *et al* Cell 2012.

[#]The unusual PEXEL sequence RLLYE was used in Bhattacharjee *et al* Cell 2012 instead of the 3D7 PEXEL sequence RLLHE from *P. falciparum* 3D7 HRPII. All studies used *P. falciparum* strain 3D7 for transfection and export analyses.

Name	Oligonucleotide sequence (underlined bases are
ID170	
JB170	
JB1/1	
10450	
JB172	
JB173	TGAACCCCT <u>CCGCGG</u> CAGGT
JB174	ATA <u>CCGCGG</u> CAGGTCTTCTTCAGAGATCAGTTTCTGTTCT
	TCAGCCAGGATACGAGATT
JB175	GAG <u>CATATG</u> GGTGAAGACACCTGCGCTCG
JB176	AGA <u>CCGCGG</u> AGTAAAGGAGAAGAACTTTTCA
JB177	AGA <u>GGATCC</u> ATGATGATGATGGTGGTGATGATGTTTGTA
	TAGTTCATCCATGCCA
P40_A_F	GG <u>CCTAGG</u> ATGGCTGTGGCCCAGCAG
p40_K_R	CC <u>GGTACC</u> GCGGAGTGCCTGGGGCAC
GFP_K_F	GTAC <u>GGTACC</u> ATGAGTAAAGGAGAAGAAC
GFP_SDEL_X_R	GG <u>CCCGGG</u> TTAAAGTTCATCACTTTTGTATAGTTCATCCA
	TGCCA
5'ACPsp-PX40p	ТАТАТАТААТGAAGATCTTATTACTTTGTATAATTTTTCT
	ATATTATGTTAACGCTTTTAAAAAATACAATGGCTGTGGCC
	CAGCAGCTG
3'KpnI-PX40-rev	CCC <u>GGTACC</u> TGAGTCATAGGGCGACTGG
HRS_FYVE_AvrII_F	GG <u>CCTAGG</u> ATGGAAAGTGATGCCATGTTCG
HRS_FYVE_KpnI_R	CC <u>GGTACC</u> TGCCTTCTTGTTCAGCTGCTC
Rex3(1-43)-	CAGTCCTAGGATCTGTTACTGAAAATGTTCTTTCACCAGC
Avr1b(22-71)KpnI-	ATCATCTTCTTCATGAGCTCTTAAAAATCTACCACCAGCT
rev	ATATCACCATTTCTTAATGATCTTCTTACTAAATCTGGTG
	ATTCTACCATAGCTATATTTGTTTCATCTGAATATTCTGT
	GCTCCCTTCGTATGAGGTGGTATATTTATAG
Rex3Avh5(20-63)-	CAGTCCTAGGTTTACCTGGATTATGTACTTTTGGTTCATA
avrII-rev	ТАСТАТАТСТGTATCAGCTGTTCTTAAAAATCTTCTTGAT
	CTTGTTACTGTTTGTACTGGAGCATTTACTGATTGTAAAT
	TAGCATCATCTGGTACTCTTGTGCTCCCTTCGTATGAGGT
	GGTATATTTATAG

Supplementary Table 2: Oligonucelotide sequences used for making transfection constructs

Supplementary References

- 1. Bhattacharjee S, Stahelin RV, Speicher KD, Speicher DW, Haldar K. Endoplasmic reticulum PI(3)P lipid binding targets malaria proteins to the host cell. *Cell* **148**, 201-212 (2012).
- 2. Boddey JA, *et al.* An aspartyl protease directs malaria effector proteins to the host cell. *Nature* **463**, 627-631 (2010).