Supporting Information

Thermoreversible (Ionic-Liquid-Based) Aqueous Biphasic Systems

Helena Passos, Andreia Luís, João A. P. Coutinho, Mara G. Freire*

CICECO - Aveiro Institute of Materials, Department of Chemistry, University of

Aveiro, 3810-193 Aveiro, Portugal

*E-mail: maragfreire@ua.pt

Supplementary Figures

Supplementary Figure 1: Chemical structure of the PILs studied: (*a*) [N₁₁₂₀][C₁CO₂]; (*b*) [N₁₂₂₀][C₁SO₃]; (*c*) [N_{11[2(N11)]0}][C₁CO₂]; (*d*) [N_{11[2(N11)]0}]Cl; (*e*) [N₁₁₂₀][C₇H₇CO₂]; (*f*) [N_{11[2(N11)]0}][C₇CO₂].

Supplementary Figure 2. NMR spectra of the purified [N₁₁₂₀][C₁CO₂] in D₂O. (*a*) ¹H NMR spectrum; (*b*) ¹³C NMR spectrum. ¹H NMR (D₂O, 300 MHz, [ppm]): δ 3.22-3.15 (m, 2H, NC<u>H</u>₂CH₃), 2.86 (s, 6H, N(C<u>H</u>₃)₂), 1.99 (s, 3H, C<u>H</u>₃CO₂), 1.33-1.28 (m, 3H, NCH₂C<u>H</u>₃). ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 179.1 (CH₃<u>C</u>O₂), 52.9 (N<u>C</u>H₂CH₃), 42.0 (N(<u>C</u>H₃)₂), 21.8 (<u>C</u>H₃CO₂), 9.1 (NCH₂<u>C</u>H₃).

Supplementary Figure 3. NMR spectra of the purified [N₁₁₂₀][C₁CO₂] in D₂O, and after 12 h at 55 °C. (*a*) ¹H NMR spectrum; (*b*) ¹³C NMR spectrum. ¹H NMR (D₂O, 300 MHz, [ppm]): δ 3.10-3.02 (m, 2H, NC<u>H</u>₂CH₃), 2.73 (s, 6H, N(C<u>H</u>₃)₂), 1.88 (s, 3H, C<u>H</u>₃CO₂), 1.20-1.15 (m, 3H, NCH₂C<u>H</u>₃). ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 178.8 (CH₃CO₂), 52.9 (N<u>C</u>H₂CH₃), 41.9 (N(<u>C</u>H₃)₂), 21.6 (<u>C</u>H₃CO₂), 8.9 (NCH₂<u>C</u>H₃).

Supplementary Figure 4. NMR spectra of the purified [N₁₂₂₀][C₁SO₃] in D₂O. (*a*) ¹H NMR spectrum; (*b*) ¹³C NMR spectrum. ¹H NMR (D₂O, 300 MHz, [ppm]): δ 3.33-3.07 (m, 4H, N(C<u>H</u>₂CH₃)₂), 2.82 (s, 3H, NC<u>H</u>₃), 2.80 (s, 3H, SC<u>H</u>₃) 1.33-1.28 (m, 6H, N(CH₂C<u>H</u>₃)₂). ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 50.6 (N(<u>C</u>H₂CH₃)₂), 38.4 (N<u>C</u>H₃), 38.3 (S<u>C</u>H₃), 8.6 (N(CH₂<u>C</u>H₃)₂).

Supplementary Figure 5. NMR spectra of the purified [N₁₂₂₀][C₁SO₃] in D₂O, and after 12 h at 55 °C. (*a*) ¹H NMR spectrum; (*b*) ¹³C NMR spectrum. ¹H NMR (D₂O, 300 MHz, [ppm]): δ 3.22-2.96 (m, 4H, N(CH₂CH₃)₂), 2.71 (s, 3H, NCH₃), 2.69 (s, 3H, SCH₃) 1.22-1.17 (m, 6H, N(CH₂CH₃)₂). ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 50.6 (N(CH₂CH₃)₂), 38.4 (NCH₃), 38.3 (SCH₃), 8.6 (N(CH₂CH₃)₂).

Supplementary Figure 6. NMR spectra of the purified $[N_{11[2(N11)0}]Cl$ in D₂O. (*a*) ¹H NMR spectrum; (*b*) ¹³C NMR spectrum. ¹H NMR (D₂O, 300 MHz, [ppm]): δ 3.62 (s, 4H, N(C<u>H</u>₂)₂), 2.98 (s, 12H, 2N(C<u>H</u>₃)₂). ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 51.1 (N(<u>C</u>H₂)₂), 43.4 (N(<u>C</u>H₃)₂).

Supplementary Figure 7. NMR spectra of the purified $[N_{11[2(N11)0}]Cl$ in D₂O, and after 12 h at 55 °C. (*a*) ¹H NMR spectrum; (*b*) ¹³C NMR spectrum. ¹H NMR (D₂O, 300 MHz, [ppm]): δ 3.54 (s, 4H, N(C<u>H</u>₂)₂), 2.88 (s, 12H, 2[N(C<u>H</u>₃)₂]). ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 51.0 (N(<u>CH</u>₂)₂), 43.4 (N(<u>CH</u>₃)₂).

Supplementary Figure 8. NMR spectra of the purified [N_{11[2(N11)0}][C₁CO₂] in D₂O. (*a*) ¹H NMR spectrum; (*b*) ¹³C NMR spectrum. ¹H NMR (D₂O, 300 MHz, [ppm]): δ 3.10 (s, 4H, N(C<u>H</u>₂)₂), 2.65 (s, 12H, 2[N(C<u>H</u>₃)₂]), 1.92 (s, 3H, C<u>H</u>₃CO₂) ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 181.3 (CH₃<u>C</u>O₂), 53.0 (N(<u>C</u>H₂)₂), 43.4 (N(<u>C</u>H₃)₂), 23.2 (<u>C</u>H₃CO₂).

Supplementary Figure 9. NMR spectra of the purified $[N_{11[2(N11)0}][C_1CO_2]$ in D₂O, and after 12 h at 55 °C. (*a*) ¹H NMR spectrum; (*b*) ¹³C NMR spectrum. ¹H NMR (D₂O, 300 MHz, [ppm]): δ 3.15 (s, 4H, N(C<u>H</u>₂)₂), 2.62 (s, 12H, 2[N(C<u>H</u>₃)₂]), 1.78 (s, 3H, C<u>H</u>₃CO₂) ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 181.3 (CH₃CO₂), 52.3 (N(<u>C</u>H₂)₂), 43.4 (N(<u>C</u>H₃)₂), 23.1 (<u>C</u>H₃CO₂).

Supplementary Figure 10. NMR spectra of the PIL-rich phase of the ABS composed of 6 wt % $[N_{11[2(N11)]0}][C_1CO_2] + 30$ wt % PPG + 54 wt % H₂O ABS in D₂O, and after 12 h at 55 °C. (*a*) ¹H NMR spectrum; (*b*) ¹³C NMR spectrum. ¹H NMR (D₂O, 300 MHz,

[ppm]): δ 4.02-3.34 (m, (*n*+2*n*)H, *n*[C<u>HCH</u>₂]), 3.05 (s, 4H, N(C<u>H</u>₂)₂), 2.61 (s, 12H, 2[N(C<u>H</u>₃)₂]), 1.91 (s, 3H, C<u>H</u>₃CO₂), 1.17-1.14 (m, 3*n*H, *n*[CHC<u>H</u>₃]). ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 181.1 (CH₃<u>C</u>O₂), 76.0-66.0 (PPG) 53.1 (N(<u>C</u>H₂)₂), 43.5 (N(<u>C</u>H₃)₂), 23.3 (<u>C</u>H₃CO₂), 18.2 (PPG), 15.8 (PPG).

Supplementary Figure 11. NMR spectra of the PIL-rich phase of the ABS composed of 6 wt % $[N_{1220}][C_1SO_3] + 30$ wt % PPG + 54 wt % H₂O ABS in D₂O, and after 12 h at 55

^oC. (*a*) ¹H NMR spectrum. (*b*) ¹³C NMR spectrum. ¹H NMR (D₂O, 300 MHz, [ppm]): δ 3.87-3.24 (m, (*n*+2*n*)H, *n*[C<u>HCH</u>₂]), 3.17-2.97 (m, 4H, N(C<u>H</u>₂CH₃)₂), 2.69 (s, 3H, NC<u>H</u>₃), 2.67 (s, 3H, SC<u>H</u>₃), 1.20-1.15 (m, 6H, N(CH₂C<u>H</u>₃)₂), 1.05-1.01 (m, 3*n*H, *n*[CHC<u>H</u>₃]). ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 76.1-66.1 (PPG), 50.5 (N(<u>C</u>H₂CH₃)₂), 38.4 (N<u>C</u>H₃), 38.3 (S<u>C</u>H₃), 18.2 (PPG), 15.8 (PPG) 8.7 (N(CH₂<u>C</u>H₃)₂).

Supplementary Figure 12. Evaluation of the temperature effect in the phase diagrams behavior of ABS composed of PIL + PPG + H₂O at 25 °C (orange circle), 35 °C (green triangles), 45 °C (blue diamonds) and 55 °C (red squares). (*a*) $[N_{1220}][C_1SO_3]$. (*b*) $[N_{11[2(N11)]0}]Cl$.

Supplementary Figure 13. Evaluation of the IL effect in the phase diagrams behavior of ABS composed of PIL + PPG + H₂O: $[N_{1120}][C_1CO_2]$ (orange circles), $[N_{1220}][C_1SO_3]$ (green triangles), $[N_{11[2(N11)]0}]Cl$ (blue diamonds), $[N_{11[2(N11)]0}][C_1CO_2]$ (red squares). (*a*) 25 °C. (*b*) 35 °C. (*c*) 45 °C. (*d*) 55 °C.

Supplementary Figure 14. FTIR spectra of (*a*) PIL-rich phase of ABS composed of 6 wt % of $[N_{11[2(N11)]0}][C_1CO_2] + 30$ wt % of PPG + 64 wt % H₂O with azocasein at 45 °C and (*b*) azocasein in a buffered aqueous solution at pH 7 (PBS) at 25 °C.

Supplementary Figure 15. FTIR spectra of (*a*) PIL-rich phase of ABS composed of 6 wt % of $[N_{11[2(N11)]0}][C_1CO_2] + 30$ wt % of PPG + 64 wt % H₂O with cytochrome c at 45 °C and (*b*) cytochrome c in a buffered aqueous solution at pH 7 (PBS) at 25 °C.

Supplementary Tables

Supplementary Table 1. Experimental weight fraction data for the system composed of PPG (1) + PIL (2) + H_2O (3) at 25 °C and atmospheric pressure.

[N ₁₁₂₀][C_1CO_2]	[N ₁₂₂₀][$[C_1SO_3]$	[N _{11[2(N}	111)]0]Cl	[N _{11[2(N11)]}	$_{0}][C_{1}CO_{2}]$
100 w ₁	100 w2	100 w ₁	100 w2	100 w ₁	100 w ₂	100 w1	100 w ₂
82.53	3.55	51.93	5.39	43.56	6.47	42.25	7.39
50.09	6.61	39.95	7.31	39.21	7.21	31.08	9.00
42.00	7.45	33.50	9.67	33.71	8.17	29.19	9.57
32.75	9.07	27.37	11.28	30.97	8.83	25.25	10.67
30.44	9.85	25.68	12.14	27.05	9.96	22.25	12.45
29.86	10.37	23.40	13.39	23.09	11.25	18.32	14.57
26.45	11.24	19.73	14.74	18.66	13.02	14.51	16.34
25.28	11.72	18.19	16.60	16.98	13.96	12.47	17.23
23.22	12.08	15.61	19.62	16.10	15.04	10.72	18.64
21.08	13.30	14.13	21.31	15.21	15.55	9.58	20.10
20.95	13.63	12.66	22.21	13.86	16.19	8.11	21.42
19.48	14.36	11.39	23.62	12.95	17.49	7.37	21.61
17.54	15.29	9.39	27.10	12.83	16.78	6.56	22.89
16.70	15.89			11.88	18.02	5.92	23.52
15.40	17.03			11.27	18.29		
12.16	18.93			10.83	18.47		
10.37	20.88			9.73	19.49		
8.83	23.09			9.18	19.95		
7.67	24.46			8.44	20.57		
6.64	26.64			7.35	21.86		

Supplementary Table 2. Experimental weight fraction data for the system composed of PPG (1) + PIL (2) + H_2O (3) at 35 °C and atmospheric pressure.

[N ₁₁₂₀][C_1CO_2]	[N ₁₂₂₀][C_1SO_3]	$[N_{11[2(N11)]0}]Cl$		[N _{11[2(N11)]}	0][C1CO2]
100 w1	100 w ₂	100 w ₁	100 w ₂	100 w ₁	100 w ₂	100 w1	100 w2
56.54	3.63	53.49	4.12	43.83	2.79	47.01	4.03
48.58	4.64	46.54	5.14	38.72	3.44	40.43	4.69
44.56	5.20	42.07	5.77	31.21	4.09	38.34	5.01
40.63	5.75	36.38	6.41	27.46	4.57	35.78	5.36
34.38	6.60	33.03	7.04	26.10	5.20	29.75	6.37
30.84	7.41	31.24	7.76	24.211	5.97	28.23	6.77
26.44	8.51	28.66	8.57	19.80	6.56	27.19	6.99
22.00	10.70	25.12	9.37	17.65	8.21	25.69	7.33
17.28	12.31	24.25	10.22	15.97	9.01	23.94	8.04
15.10	13.49	22.50	11.31	15.65	9.71	22.89	8.49
13.77	15.26	20.57	12.18	13.48	10.83	20.82	9.35
12.09	18.07	18.67	13.08	11.27	11.48	18.83	9.85
10.79	19.19	18.07	14.06	10.06	12.69	18.55	10.48
10.44	20.29	16.81	14.68	9.39	14.43	17.86	10.60
9.89	25.71	15.67	16.48	6.63	16.26	17.13	11.26
		15.03	20.85	6.08	19.50	16.14	11.94
		10.25	26.92	3.97	21.13	15.35	12.36
				3.43	29.51		

Supplementary Table 3. Experimental weight fraction data for the system composed of PPG (1) + PIL (2) + H₂O (3) at 45 °C and atmospheric pressure.

[N ₁₁₂₀][C_1CO_2]	[N ₁₂₂₀][C_1SO_3]	[N _{11[2(N}	111)]0]Cl	[N _{11[2(N11)]}	$0][C_1CO_2]$
100 w ₁	100 w ₂	100 w ₁	100 w ₂	100 w ₁	100 w ₂	100 w ₁	100 w ₂
26.52	5.42	32.47	5.06	30.58	2.50	28.93	4.40
25.41	5.79	31.28	5.30	26.53	2.82	27.07	4.61
23.37	6.29	30.12	5.55	23.06	4.05	26.04	4.89
23.12	7.02	27.00	6.04	18.46	4.60	25.24	5.21
20.57	7.78	25.88	6.69	14.43	6.16	23.65	5.60
19.96	8.53	23.73	7.33	12.45	6.53	21.66	5.96
19.03	9.35	22.76	7.82	11.05	7.86	21.04	6.40
18.27	10.59	21.64	8.26	10.46	8.76	19.16	6.81
16.32	11.86	20.91	8.86	8.71	9.82	19.36	8.14
14.63	13.92	19.38	9.68	6.20	11.66	17.70	9.05
13.16	16.70	18.21	11.96	4.94	13.94		
		15.45	15.04	4.32	18.46		
		13.17	18.17	3.34	30.05		
		10.89	25.15				

Supplementary Table 4. Experimental weight fraction data for the system composed of PPG (1) + PIL (2) + H₂O (3) at 55 °C and atmospheric pressure.

[N ₁₁₂₀][C_1CO_2]	[N ₁₂₂₀][C_1SO_3]	[N _{11[2(N}	(11)]0]Cl	[N _{11[2(N11)]}	$0][C_1CO_2]$
100 w ₁	100 w ₂	100 w ₁	100 w ₂	100 w ₁	100 w ₂	100 w ₁	100 w ₂
30.92	3.78	25.11	4.14	43.62	1.79	23.12	3.84
28.90	4.20	20.29	7.21	37.12	2.50	18.91	4.40
16.15	7.33	16.06	9.15	17.30	3.96	17.28	5.14
11.38	11.67	14.19	11.30	13.84	7.22	14.50	5.86
10.21	13.99	12.21	14.40	7.75	8.77	13.80	7.20
		9.17	21.48			13.21	9.17
						10.86	11.64

DII	Weight fraction composition / wt %								тіі	
PIL	[PIL]PIL	[<i>PPG</i>]11.	pH _{PIL}	[<i>PIL</i>]м	[<i>РРG</i>]м	[<i>PIL</i>]ppg	[<i>PPG</i>]ppg	рНррд	ILL	
	22.98	8.10	6.00	11.13	49.94	4.00	75.10	5.87	69.63	
$[N_{1120}][C_1CO_2]$	26.13	6.02	5.98	9.96	59.65	3.63	80.62	5.87	77.91	
	22.82	11.63	2.88	14.94	40.22	1.77	88.03	3.43	79.25	
$[N_{1220}][C_1SO_3]$	32.98	5.36	2.32	20.10	40.07	1.68	89.72	2.21	89.97	
	16.97	12.67	3.96	7.92	54.61	3.18	76.55	3.78	65.35	
[IN _{11[2(N11)]} 0]CI	23.66	6.62	3.97	10.75	54.62	2.73	84.43	3.90	80.57	
	18.86	10.54	7.93	10.15	50.27	3.31	81.48	7.95	72.62	
$[N_{11[2(N11)]0}][C_1CO_2]$	27.16	4.32	7.92	12.97	50.14	3.32	81.32	7.96	80.61	

+ PPG ABS at 25 °C, and pH of the coexisting phases.

phases of the systems composed of $PPG + PIL + H_2O$ (1:1000 (v:v) dilution). $10^{-3} \kappa / (\mu S \cdot cm^{-1})$ PIL $[PIL]_{M}$ [*PPG*]_M **Top phase Bottom phase** 25 °C 11.13 49.94 118.1 23.5 $[N_{1120}][C_1CO_2]$ 9.96 59.65 134.8 21.4 14.94 40.22 69.0 105.1 $[N_{1220}][C_1SO_3]$ 20.10 40.07 64.2 156.8 7.92 54.61 6.44 308.0 $[N_{11[2(N11)0}]Cl$ 10.75 54.62 3.73 421.0 10.15 50.27 89.2 9.76 $[N_{11[2(N11)]0}][C_1CO_2]$ 12.97 50.14 110.8 9.36

45 °C

9.09

64.2

30.00

6.00

 $[N_{11[2(N11)]0}][C_1CO_2]$

Supplementary Table 6. Electrical conductivity (κ) data for the PIL-rich and PPG-rich phases of the systems composed of PPG + PIL + H₂O (1:1000 (v:v) dilution)

Supplementary Table 7. Extraction efficiencies of cytochrome c (EE_{Cyt} %) and azocasein (EE_{Azo} %) for the PIL-rich phase, obtained in ternary mixture composed of 6 wt % of [$N_{11[2(N11)]0}$][C_1CO_2] + 30 wt % of PPG + 64 wt % of an aqueous solution containing the proteins at 1, 2 and 3 g·L⁻¹, and equilibrated at 45 °C.

	$EE_{\rm Azo}\% \pm 0.9$	$EE_{Cyt}\% \pm 0.3$
$1 \text{ g} \cdot \text{L}^{-1}$	95.36	99.85
$2 g \cdot L^{-1}$	95.56	100.00
$3 \text{ g} \cdot \text{L}^{-1}$	95.30	100.00

Supplementary Table 8. pH data for the PIL-rich and PPG-rich phases of the systems composed of PPG + PIL + H₂O at 25, 35, 45 and 55 °C for the following mixtures points: 9.96 wt % $[N_{1120}][C_1CO_2] + 59.65$ wt % PPG + 30.39 wt % H₂O; 20.10 wt % $[N_{1220}][C_1SO_3] + 40.07$ wt % PPG + 39.83 wt % H₂O; 10.75 wt % $[N_{11[2(N11)]0}]Cl + 54.62$ wt % PPG + 34.63 wt % H₂O; and 15.28 wt % $[N_{11[2(N11)]0}][C_1CO_2] + 59.65$ wt % PPG + 25.07 wt % H₂O.

DII	25 °C		35 °C		45 °C		55 °C	
FIL	pH _{PIL}	рН _{РРG}						
$[N_{1120}][C_1CO_2]$	5.98	5.87	6.30	6.26	5.98	5.85	6.03	6.19
$[N_{1220}][C_1SO_3]$	2.32	2.21	2.64	2.93	2.42	2.31	2.14	2.77
$[N_{11[2(N11)]0}]Cl$	3.97	3.90	3.73	3.65	3.92	3.85	3.52	3.61
$[N_{11[2(N11)]0}][C_1CO_2]$	7.74	7.83	8.07	7.96	7.84	7.77	8.02	8.00

IL $10^5C \pm \sigma$ R^2 $B \pm \sigma$ $A \pm \sigma$ $[N_{1120}][C_1CO_2]$ $\textbf{-0.754} \pm 0.014$ 1.00 ± 0.59 0.9976 339.3 ± 11.8 $[N_{1220}][C_1SO_3]$ 0.9944 183.5 ± 14.6 $\textbf{-0.553} \pm 0.030$ 1.00 ± 0.68 $[N_{11[2(N11)]0}]Cl$ 290.0 ± 17.9 $\textbf{-0.747} \pm 0.023$ 0.9985

 -0.765 ± 0.067

 327.5 ± 63.0

 $[N_{11[2(N11)]0}][C_1CO_2]$

 1.12 ± 0.65

 1.71 ± 1.49

0.9928

Supplementary Table 9. Correlation parameters used to describe the experimental binodal data at 25 °C by equation (1).