
Toward Repurposing Metformin as a Precision Anti-Cancer Therapy Using Structural 

Systems Pharmacology 
 

Thomas Hart
1,2

, Shihab Dider
2
, Weiwei Han

3
, Hua Xu

4
, Zhongming Zhao

5,6,7
, and Lei Xie

8,9,
* 

 

Author Affiliations 

 
1
Thomas Hart 

The Rockefeller University, New York, New York, United States of America 

 
2
Thomas Hart and Shihab Dider 

Department of Biological Sciences, Hunter College, The City University of New York, New 

York, New York, United States of America 

 
3
Weiwei Han 

The Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education 

Jilin University, Changchun, P. R. China  

 
4
Hua Xu 

School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 

Houston, Texas, United States of America 

 
5
Zhongming Zhao 

Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, 

Tennessee, United States of America  

 
6
Zhongming Zhao 

Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee, 

United States of America 

 
7
Zhongming Zhao 

Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, 

United States of America 

 
8
Lei Xie 

Ph.D. Program in Computer Science, Biology, and Biochemistry, The Graduate Center, The City 

University of New York, New York, New York, United States of America 

 
9
Lei Xie 

Department of Computer Science, Hunter College, The City University of New York, New 

York, New York, United States of America 

 

 

 

 

 



Supplemental methods 
 
 
Materials and methods 

 

1. Overview: a structural systems pharmacology approach to predictive modeling of drug 

actions under diverse genetic background.  

 

Our methodology begins at the level of molecular structure. We start by ranking the proteins 

annotated within the PDB by the similarity of their binding sites to that of AMPK 
1
 and 

dipeptidyl peptidase-IV activity (DPP4), a protein which has been observed to interact directly 

with metformin
 2

. We considered the top hits from these comparisons to be our “putative 

molecular targets”, and simulated the binding between metformin and each putative molecular 

target to assess the binding pose and interactions between ligand and target. Next, we moved to 

the larger and more abstract scale of the protein-protein interaction network. We obtained a 

dataset which represents genes whose expression is perturbed by metformin treatment
 3

. Then, 

for each putative molecular target, we computationally predicted a tree-shaped path (TSP) which 

functionally linked that putative molecular target to all genes whose expression is perturbed by 

metformin. We then analyzed the intermediate nodes of each TSP in terms of their association 

with biological pathways linked to cancer or AMPK signaling, and identified the most critical 

nodes of each network. Subsequently, we experimentally validated the binding between 

metformin and several putative molecular targets. Finally, we mapped the observed cancer 

mutations to the binding pockets of experimentally validated targets, and provided clues to the 

individualized response of metformin.  

 



2. Prediction of molecular targets 

 

Previously, we have constructed 3-dimensional complex models of metformin and AMPK and 

used it to search for the targets of metformin. In addition, DPP4 was retrieved as a molecular 

target directly binding to metformin by querying the MySql database of ChEMBL release 16.  

SQL and its output is shown in Figure S1. Recent studies support that metformin inhibits the 

activity of DPP4 
4 5

. Thus, we used the DPP4 (PDB ID 3O95) as another template for the binding 

site analysis
 6

.
 
The SMAP software developed by Xie et al obtains protein structures from the 

PDB and characterizes that protein‟s ligand-binding potential from the geometric, 

physiochemical, and evolutionary characteristics of its binding pocket. The software compares 

protein structures and accurately predicts the binding site similarity between the template and all 

other available structures 
7
. Using the crystal structure for AMPK bound to metformin and 

DPP4 bound to TAK-100 as the templates and 7277 available non-redundant PDB structures for 

human proteins as the test sample, we identified all structures with similar binding sites at a 

confidence of 95% which were not homologs of DPP4. The p-value of ligand binding site 

similarity was corrected using the ROC curve of a benchmark set.  

 

We obtained structures for these proteins co-crystallized with their ligand from the PDB, as well 

as a 3D structure for metformin. Autodock Vina
 8

 was used to predict the binding pose and 

energy of binding between each protein and metformin. These reverse-docking experiments were 

performed at a simulated pH of 7. The size of the binding region was determined by re-docking 

each protein‟s original ligand to the pocket and choosing the size which minimized the RMSD 



between the location of the original ligand and the re-docked ligand. Binding interactions were 

analyzed using DS Visualizer
 9

 and visualized using PyMOL
 10

. 

 

 3. Experimental validation of metformin’s interaction with kinases 

  

To test the accuracy of our binding site analysis, we employed a competition binding assay to 

detect the binding of metformin to a set of kinases chosen from our putative targets. We 

examined binding between metformin and six top-ranked kinases, namely AKT1, SGK, CDK7, 

and MAPK14, MAP2K2, and EGFR. The proprietary KINOMEscan assay was performed by 

DiscoverX (CA). The assay tested the capacity for metformin to disrupt the binding of each 

DNA-tagged kinase to a support which was in turn bound to the kinase‟s known ligand. If 

binding between the kinase and its known ligand was disrupted in the presence of metformin, 

this indicated that metformin either competed directly with the known ligand or allosterically 

altered the kinase‟s ability to bind to that ligand. DMSO was used as a positive control and a 

pico-molar kinase inhibitor was used as a negative control. Binding levels were quantified by 

performing qPCR on the DNA tag of the ligand-bound kinases. The tests were performed at 

1x10
6
 nM concentration of metformin, and results were reported as %Control, calculated as 

follows:  

 
                                              

                                                 
       

 

A lower %Control score indicates a stronger interaction. The KINOMEScan experiment and data 

analysis were performed by DiscoveRx (Fremont, CA). 

 



4. Identification of drug-modulated interaction sub-networks 

 

We obtained human protein-protein interaction data from STRING-DB 
11

, and converted the 

Ensembl-protein IDs 
12

 to Unigene IDs 
13

, and then to official gene symbols
 14 15

. We removed 

entries for two ubiquitin genes, UBC and UBA52, from the network to prevent their high degree 

of connectivity from introducing bias into our predicted sub-networks.  

 

The terminal nodes for our network were chosen from a set of genes which were differentially-

translated in MCF7 breast cancer cells under metformin treatment, as published by Larsson et al
 

3
. By microarray quantification of mRNAs from cytoplasmic and polysomal samples, the group 

found that the primary effect of metformin on gene expression is the inhibition of translation. 

Their Analysis of Translational Activity methodology identified transcripts with the absolute 

value of fold change > 1.5 and Benjamini-Hochberg false-discovery rate < 0.15 as differentially 

translated. Supplementary Document 2 of their publication contains the set of differentially-

translated transcripts mapped to specific genes, 213 of which were differentially-translated by 

metformin at its absolute IC50 concentration of 10mM. Of these, 196 mapped to nodes within 

our protein-protein interaction network and were considered the leaf (terminal) nodes. For cases 

where a predicted molecular target was found amongst the down-regulated genes, the gene was 

removed from the list of down-regulated genes for that analysis. The differentially-expressed 

genes from this set used in our analysis are re-produced in Supplemental Data 1 with their log2 

fold change and FDR value as originally published by Larsson et al. 

 



Using the MSGSTEINER software, we generated a protein-protein interaction sub-network for 

each metformin-interacting protein
 16

. The parameters used in this study are shown in Table S2. 

 

Each sub-network represents the most parsimonious series of interactions found within the 

STRING-DB that connects each root node to all differentially-translated genes. Edges were 

weighted as the strength of the protein-protein interaction as documented in the STRING-DB, 

normalized to a score between zero and one. As our comparison of binding site experiment  

initially yielded 16 putative targets, as a control we also generated interaction networks using the 

same terminal nodes for 16 randomly-selected genes (R-control) whose protein products were 

annotated within the STRING-DB
 17

. A second control set was produced using 20 genes selected 

at random from the set of leaf nodes (L-control). A third control set was generated using a 

random selection of 19 human genes (K-control) which were annotated with the „kinase activity‟ 

Gene Ontology term (GO:0016301).  

 

A previous study tested the possibility that metformin‟s effects are elicited through direct 

interaction with AMPK. The PDB structure for the AMPK subunit PRKAB1 (PDB ID 1Z0M) 

was used as a template for binding site comparison, and the structures for MAP2K2 (PDB ID 

1S9I), EGFR (PDB ID 3B2V), TIAM1 (PDB ID 3A8N), and PDK2 (PDB ID 2BU7) were 

identified
 1

. Additional sub-networks were generated using these five putative targets as roots. 

 

 

5. Analysis of interaction sub-networks 

 



With the goal of differentiating between the predicted content of each sub-network, we removed 

the terminal nodes from the gene set for our interaction networks. We used the online tool 

GeneTrail to perform over- or under-representation analysis of these gene sets to identify 

biological pathways relevant to metformin‟s putative mechanism of action or other cancer-

related pathways
 18

. The significance threshold was set to 0.05 and the false discovery rate was 

controlled by the Benjamini-Hochberg method, and the minimum number of genes that must be 

part of a pathway for it to be considered significant was set to 2.  

 

The following KEGG pathways were defined as „cancer-related‟ from among the pathways 

identified as enriched by GeneTrail in at least one sub-network: „Prostate cancer‟, „Glioma‟, 

„Chronic myeloid leukemia‟, „Pancreatic cancer‟, „Non-small cell lung cancer‟, „Bladder cancer‟, 

„Small cell lung cancer‟, „Acute myeloid leukemia‟, „Colorectal cancer‟, „Endometrial cancer‟, 

„Melanoma‟, „Renal cell carcinoma‟, „Thyroid cancer‟, „Nucleotide excision repair‟, „ErbB 

signaling pathway‟, „MAPK signaling pathway‟, „DNA replication‟, „Apoptosis‟, „Cell cycle‟,     

„Pathways in cancer‟, „p53 signaling pathway‟, „VEGF signaling pathway‟, „mTOR signaling 

pathway‟, „Homologous recombination‟, „Mismatch repair‟, „TGF-beta signaling pathway‟, 

„Chemokine signaling pathway‟, „Jak-STAT signaling pathway‟, „Wnt signaling pathway‟, „Base 

excision repair‟, and „Cytokine-cytokine receptor interaction‟.  

 

Based on the results of the pathway analysis, we chose several key KEGG pathways to examine. 

These pathways included cancer-related pathways as well as pathways linked to metformin‟s 

demonstrated regulation of metabolism and AMPK signaling: „AMPK signaling‟, „MAPK 

signaling‟, „ErbB signaling‟, „mTOR signaling‟, „B cell receptor signaling‟, „Adipocytokine 



signaling‟, „Neurotrophin signaling‟, „Insulin signaling‟, „VEGF signaling‟, „DNA replication‟, 

„Apoptosis‟, „Cell cycle‟, „Pathways in cancer‟, and „Nucleotide excision repair‟
 19

. We 

evaluated the number of genes from each interaction network that participated in each of these 

pathways. Both terminal and constituent nodes were included in this analysis.  

 

We used the Markov Cluster algorithm to rank the nodes of these sub-networks by their 

betweenness-centrality in an attempt to determine which genes are most critical to the 

functionality of the interaction network
 20 21

. We defined a node as critical if its betweenness-

centrality value was ranked in the 95
th

 percentile for the sub-network in question. We identified 

those nodes that are critical across all predicted sub-networks, as well as those that were grouped 

within highly-participatory sub-networks. We characterized individual genes using the 

GeneCards database (http://www.genecards.org/). 

 

6. Mutation analysis 

For experimentally validated kinase targets of metformin, the binding pose of metformin was 

predicted using protein-ligand docking software Autodock Vina
 8

. The amino acid residues that 

interact with metformin were determined using DS Visualizer. The mutations observed in 

COSMIC
 22

 were mapped to the binding site residues, and visualized using DS Visualizer. The 

mutations that might lead to the rewiring of protein-protein interaction network were extracted 

from  AlQuraishi et al 
23

. 

 

 
 
 
 
 

http://www.genecards.org/


Supplemental Figures 

 
 
 
 
 
 
 
SELECT td.accession Uniprot, ac.standard_value Value, ac.standard_units Unit, td.pref_name Protein 
FROM molecule_dictionary md  
INNER JOIN activities ac ON md.molregno=ac.molregno  
INNER JOIN assays at ON ac.assay_id=at.assay_id  
INNER JOIN single_protein_target_view td ON at.tid=td.tid  
WHERE md.molecule_type='small molecule' AND td.accession is not null AND  

at.confidence_score>=8 AND ac.standard_value is not null AND  
ac.standard_type=’IC50’ AND md.chembl_id='CHEMBL1431'; 

 

 
Uniprot Value  Unit Protein 
P27487        29000.0     nM       Dipeptidyl peptidase IV 
O15245       2010000.0   nM       Solute carrier family 22 member 1 
O15244       1700000.0   nM       Solute carrier family 22 member 2 
 

Figure S1. SQL query and its output to retrieval direct molecular targets of metformin 

from ChEMBL release 16. Solute carrier protein is mainly involved in pharmacokinetics of 

metformin, and may not play roles in its mode of actions. Thus, DPP4 remains as a target. 

 

 

 

 

 

 

 

 

 



 

 

 

Figure S2: Distribution of edges by confidence in sub-networks and human PPI. Edges were 

grouped by confidence with an increment of 0.1 on a scale from 0.0 to 1.0. “STRING-DB PPI” 

includes all interactions documented in humans. The majority of the edges incorporated into sub-

networks by the PCST algorithm are of consistently high-confidence, in contrast to the mainly 

low-confidence edges present in the STRING-DB PPI. 

 

 

 



Supplemental Tables 

 

Table S1: Mutations from the COSMIC database which likely affect metformin binding.  

Italicized mutations are those that affect residues identified as the binding site on PDB. * 

indicates mutations which involve charged residues.    

 

MAP2K2 (1S9I) CDK7 (1UA2) MAPK14 (2ONL) SGK1 (3HDN) EGFR (3B2V) 

p.M150L p.K41N* p.R186K* p.T239N p.V323I 

p.D151D (silent) p.A159D*  p.F241F (silent) p.R324H* 

p.Q157H (site 

AC3)* 

p.S161Y   p.R324L* 

    p.C326R* 

    p.C326Y 

    p.C326S 

    p.C329C 

    p.I351V 

    p.T354M 

    p.T354T (silent) 

 

Table S2: Parameters for MSGSTEINER software 

Parameter Value 
Terminal node weight 1x10

5 
Intermediate node weight 0 
Edge weight 0-1 
Reinforcement parameter 1x10

-4 
Convergence tolerance 1x10

-5 
Random factor 1x10

-5 
Maximum depth 5 

 

Supplemental Dataset 1: Set of leaf nodes (differentially-expressed genes). Lines follow 
the format ‘[GeneSymbol] [log2 Fold Change] [BH-adjusted FDR]’ and are separated by 
commas. Obtained from Larsson et al. 
 
Supplemental Dataset 2-22: Sub-networks generated with putative targets as root nodes. 

Lines follow the format „[GeneSymbol 1] [GeneSymbol 2] [interaction confidence]‟ and are 

separated by commas. The networks may be visualized using the free CytoScape software 
24

. 
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