eAppendix 1

Table 1. Comparison of Models	Predicting Fall-Related	Injuries Using AIC and BIC

Model	AIC ^a	Change in AIC	BIC ^b	Change in BIC
Base model (age, gender)	2156.4		-11088.0	
1) Base + Elixhauser comorbidity count	2133.7	-22.7 ^c	-11099.7	-11.7 ^c
2) Base + Elixhauser comorbidity count + prior FRI	2126.1	-7.6 ^d	-11101.8	-2.1 ^d
3) Base + Elixhauser comorbidity count + screening question	2115.4	-18.3 ^d	-11112.5	-12.8 ^d
4) Base + Elixhauser comorbidity count + screening question + prior FRI	2112.3	-3.1 ^e	-11110.1	+2.4 ^e

AIC indicates Akaike information criterion; BIC, Bayesian information criterion; FRI, fall-related injury. ^aAkaike Information Criterion (AIC) is a likelihood measure in which lower values indicate better fit and a penalty is paid for increasing the number of variables in the model.¹

^bBayesian Information Criterion (BIC) is a likelihood measure in which lower values indicate better fit, and a stronger penalty is paid for increasing the model parameters than with AIC.²

^cChange in AIC or BIC from the base model.

^dChange in AIC or BIC from model 1.

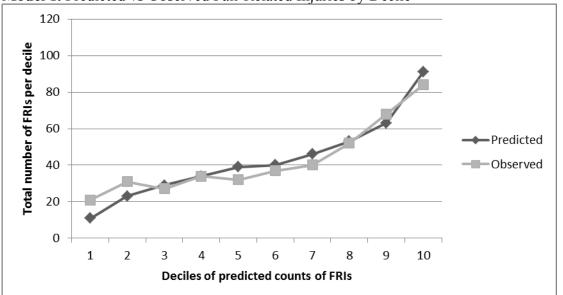
^eChange in AIC or BIC from model 3.

Table 2. Comparison of Models Predicting Fall-Related Injuries by Relative Likelihood of
Better Fit

Model	AIC ^a	Change in AIC	Relative Likelihood of Better Fit^b	
Base	2156.4			
1	2133.7	-22.7 ^c	0.00001	
			(base model compared with model 1)	
2	2126.1	-7.6^{d}	0.02	
			(model 1 compared with model 2)	
3	2115.4	-18.3^{d}	0.0001	
			(model 1 compared with model 3)	
4	2112.3	-3.1 ^e	0.21	
			(model 3 compared with model 4)	

AIC indicates Akaike information criterion; FRI, fall-related injury.

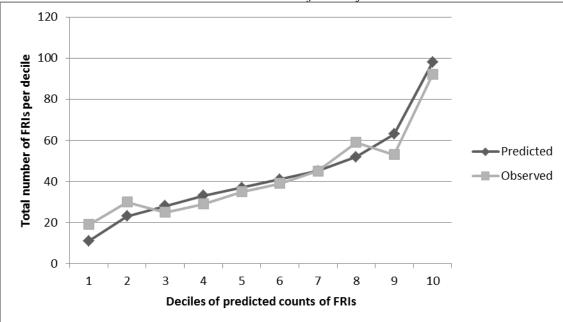
^aAkaike Information Criterion (AIC) is a likelihood measure in which lower values indicate better fit and a penalty is paid for increasing the number of variables in the model.¹


^bRelative likelihood of better fit of the model = $exp((AIC_{min}-AIC)/2)$ where AIC_{min} is the minimum AIC.³

^cChange in AIC from base model.

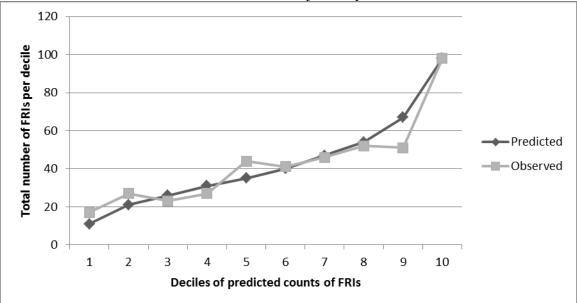
^dChange in AIC from model 1.

^eChange in AIC from model 3.


eAppendix 2

Model 1. Predicted vs Observed Fall-Related Injuries by Decile

FRI indicates fall-related injury.


Predicted and observed counts calculated using model that includes age, gender, and Elixhauser comorbidity count (Model 1 in Table 3).

Model 2. Predicted vs Observed Fall-Related Injuries by Decile

FRI indicates fall-related injury.

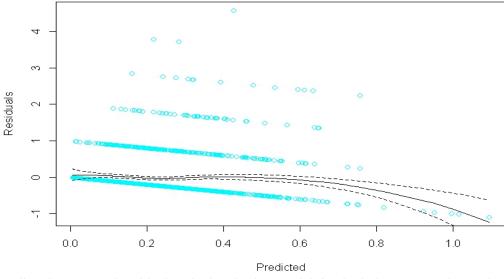
Predicted and observed counts calculated using model that includes age, gender, Elixhauser comorbidity count, and prior claim for FRI (Model 2 in Table 3).

Model 3. Predicted vs Observed Fall-Related Injuries by Decile

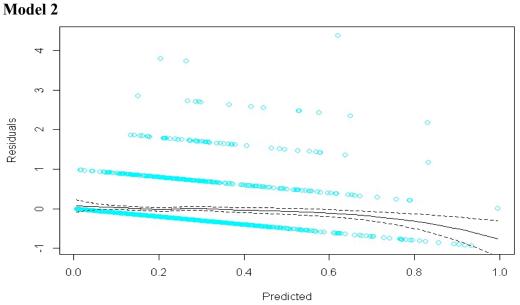
FRI indicates fall-related injury.

Predicted and observed counts calculated using model that includes age, gender, Elixhauser comorbidity count, and screening question (≥ 2 falls in the past year) (Model 3 in Table 3).

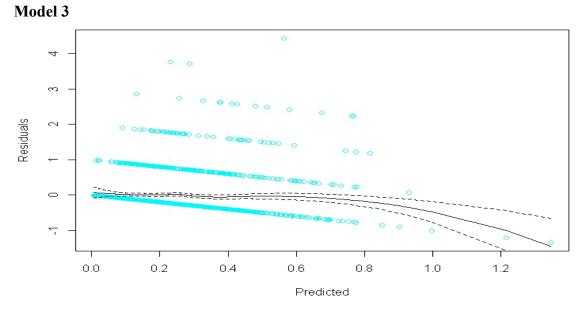
Table 3. Comparison of Observed vs Predicted Fall-Related Injuries by Mo	odel
--	------

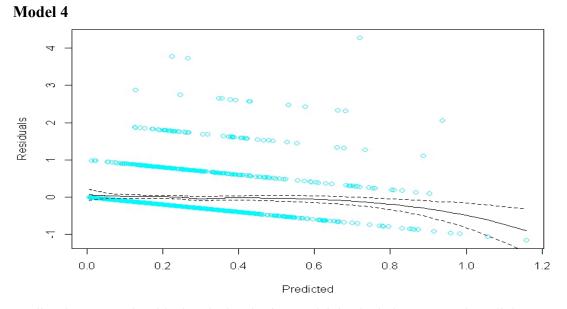

Model		Hosmer-Lemeshow χ ² Test Statistics	P
1	Base (age, gender) + comorbidity count	15.25	.05
2	Base + comorbidity count + prior FRI	12.41	.13
3	Base + comorbidity count + screening question	12.43	.13
4	Base + comorbidity count + screening question + prior FRI	18.74	.02

Graphically, observed and predicted fall-related injuries are similar in all models. Significant or near-significant Hosmer-Lemeshow test statistics for Models 1 and 4 may be in part related to large sample size.⁴


eAppendix 3

The eAppendix Figures show scatter plots of residual values versus predicted fall-related injuries for individual patients (blue circles) as well as locally weighted polynomial regression (LOESS) smoothing curves (solid black lines) with 95% CIs (dashed lines) for each model.⁵ For all models, the LOESS curves show residuals centered around 0 except for the few subjects with high predicted values.




Predicted counts and residuals calculated using model that includes age, gender, and Elixhauser comorbidity count (Model 1 in Table 3).

Predicted counts and residuals calculated using model that includes age, gender, Elixhauser comorbidity count, and prior claim for fall-related injury (Model 2 in Table 3).

Predicted counts and residuals calculated using model that includes age, gender, Elixhauser comorbidity count, and screening question (≥ 2 falls in the past year) (Model 3 in Table 3).

Predicted counts and residuals calculated using model that includes age, gender, Elixhauser comorbidity count, screening question (≥ 2 falls in the past year), and prior claim for fall-related injury (Model 4 in Table 3).

eAPPENDIX REFERENCES

1. Akaike H. A new look at the statistical model identification. *IEEE Trans Automat Contr.* 1974;19(6):716-723.

2. Raftery AE. Approximate Bayes factors and accounting for model uncertainty in generalized linear models. *Biometrika*. 1996;83(2):251-266.

<u>3</u>. Burnham KP, Anderson DR. *Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach.* 2nd ed. New York, NY: Springer-Verlag; 2003.

4. Hosmer DW, Lemeshow S. *Applied Logistic Regression*. 2nd ed. New York, NY: Wiley-Interscience Publication; 2000.

5. Cleveland WS. Robust locally weighted regression and smoothing scatterplots. *JASA*. 1979;74(368):829-836.