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SUPPLEMENTAL FIGURES 
 

 
 
Figure S1. Voxel Prediction Accuracy vs. Number of Components 
Related to Main Figure 1C 
Accuracy of the component model in predicting voxel responses measured from left-out data not used to fit 
the model, as a function of the number of components used (see Supplemental Methods). The figure plots 
the median correlation between the measured and predicted response across voxels (averaged across 
subjects). Components driven by reliable variance will improve prediction accuracy, while components 
driven by noise will degrade the performance, due to over-fitting. Best performance was achieved using a 
model with 6 components. Error bars plot one standard error of the mean across subjects. 
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Figure S2. Parametric Component Model  
Related to Main Figure 2 
(A) Model schematic: each voxel was modeled as the weighted sum of a set of response profiles (r1, r2, r3, 
…) with a Gamma-distributed prior on the voxel weights (w1, w2, w3, …). The Gamma distribution constrains 
the weights to be positive and can model distributions with variable skewness/sparsity depending on the 
shape parameter (�). Because of the positivity constraint, the weights could be interpreted as reflecting the 
proportion of different neuronal populations present in each voxel. Components were discovered by finding 
response profiles and shape parameters that maximized the likelihood of the data, integrating across all 
possible voxel weights.  
(B) Component voxel weights averaged across subjects after aligning their brains to a standardized 
anatomical template (same format as Figure 2B). 
(C) Response profiles discovered using the parametric algorithm (same format as Figure 2D). The 
correlation coefficient for the best-matching profile from the non-parametric algorithm is shown. Each 
component discovered by the parametric algorithm was similar in both its voxel weights and response profile 
to a single, unique component from the non-parametric algorithm.  
(D) Component responses averaged across sounds with the same category assignment (same format as 
Figure 2E). 
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Figure S3. Component Voxel Weights from Individual Subjects 
Related to Main Figure 2B 
(A) Tonotopic maps, measured with pure tones, from 4 individual subjects that participated in an extra scan 
session to more robustly measure tonotopy in their individual brains. Colors indicate which of six different 
frequency ranges best drove each voxel’s response. Each subject exhibited two mirror-symmetric maps, 
characteristic of primary auditory cortex. High- and low-frequency regions of primary auditory cortex are 
outlined with white and black outlines, respectively.  
(B) Component voxel weight maps from these same four subjects, with outlines of high- and low-frequency 
primary regions overlaid. Maps plot a measure of significance for each component and voxel (logarithmically 
transformed p-values, calculated via a permutation test). Color scales show the central 95% of the p-value 
distribution for each component. 
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Figure S4. Laterality of Component Voxel Weights 
Related to Main Figure 2B 
The average difference in voxel weights between the right and left hemisphere for all six components. 
Circles correspond to individual subjects. Box plots show medians and the central 50% of the distribution for 
each component.  
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Figure S5. Component Response Profile Reliability  
Related to Main Figure 2D 
(A) Components were inferred using a subset of the data (scans 1 and 2), and their response profiles were 
re-estimated using the left-out data (scan 3) (see Supplemental Methods). Each circle plots the response of 
one component to a single sound, measured in each of the two data sets. The circles are colored based on 
the category of each sound. The test-retest correlation for each component is indicated. 
(B) Components were inferred using a smaller sound set, randomly selected from the full 165-sound set. 
The components discovered from the reduced sound set were matched and correlated with those 
discovered using the full sound set. The figure plots the median and standard error of this correlation across 
all reduced sets of a given size.  
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Figure S6. Analyses of Speech-
Selectivity in Raw Voxels 
Related to Main Figure 5.  
(A) Left panel plots the average 
response profile of voxels with the 
most significant response preference 
for speech sounds. The response 
profile of Component 5, which 
responded selectively to speech 
sounds, is re-plotted for comparison 
(right panel).  
(B) The amount of response variance 
explainable by acoustic features, 
category labels, and the combination 
of both acoustic and category 
measures for speech-selective 
voxels and Component 5. Both the 
speech-selective voxels and the 
Component showed robust 
selectivity for categories that could 
not be explained by acoustic features 
(in contrast with the pattern observed 
for music-selective voxels, see 
Figure 5B). Error bars plot standard 
errors across the sound set, 
estimated via bootstrap.  
(C) The effect of audio scrambling on 
the response of the speech-selective 
voxels and Component 5. Effects of 
scrambling were stronger in the 
Component, but remained robust in 
speech-selective voxels. Error bars 
plot one standard error of the mean 
across subjects. 



!

 
 
Figure S7. Testing Assumptions of Non-Gaussianity 
Related to Main Figure 7 
The algorithm used to discover components iteratively “rotated” pairs of principal components to maximize a 
measure of non-Gaussianity (“negentropy”). This approach is ineffective if the weights for the “true” latent 
components are Gaussian-distributed, because the Gaussian distribution is rotationally symmetric. The left 
panel illustrates this fact by plotting a measure of negentropy as a function of rotation for pairs of principal 
components measured from synthetic Gaussian data. In contrast, the principal components measured from 
the voxels were not rotationally symmetric (middle panel), and we could thus increase their negentropy via 
rotation. By iterating this process, our algorithm was able to discover a clear optimum, such that no 
additional rotation could increase the negentropy of the weights (right panel).  
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 
Data Acquisition and Preprocessing 
Data were collected on a 3T Siemens Trio scanner with a 32-channel head coil (at the 
Athinoula A. Martinos Imaging Center of the McGovern Institute for Brain Research at MIT). 
The functional volumes were designed to provide good spatial resolution in auditory cortex. 
Each functional volume (i.e. a single 3D image) included 15 slices oriented parallel to the 
superior temporal plane and covering the portion of the temporal lobe superior to and 
including the superior temporal sulcus (3.4 s TR, 30 ms TE, 90 degree flip angle; 5 discarded 
initial acquisitions). Each slice was 4 mm thick and had an in-plane resolution of 2.1 x 2.1 mm 
(96 x 96 matrix, 0.4 mm slice gap). iPAT was used to minimize acquisition time (1 
sec/volume). T1-weighted anatomical images were also collected for each subject (1 mm 
isotropic voxels). 
 Functional volumes were preprocessed using FSL software and custom MATLAB 
scripts. Volumes were motion-corrected, slice-time-corrected, skull-stripped, linearly 
detrended, and aligned to the anatomical volumes (using FLIRT and BBRegister; Greve and 
Fischl, 2009; Jenkinson and Smith, 2001). Volume data were then resampled to the 
reconstructed cortical surface computed by FreeSurfer (Dale et al., 1999), and smoothed 
using a 3mm FWHM kernel to improve SNR.  
 
Measurement of Tonotopy 
We measured tonotopy using responses to pure tones from one of six frequency ranges 
(center frequencies: 200, 400, 800, 1600, 3200, and 6400 Hz; Humphries et al., 2010; 
Norman-Haignere et al., 2013). We measured the frequency range that produced the 
maximum response in voxels significantly modulated by frequency (p < 0.05 in a 1-way 
ANOVA across the 6 ranges). These best-frequency maps were averaged across subjects to 
form group maps. Voxels in which fewer than three subjects had frequency-modulated voxels 
were excluded from the group map. 
 
Additional Details of the Non-Parametric Decomposition Algorithm 
 
Assessing Convergence 
The non-parametric algorithm is guaranteed to reach a local optimum, since it continues until 
no “rotation” can further improve the objective. To ensure the optimization procedure found 
the global optimum, we applied the algorithm 1000 times with different random initializations 
(random rotations of the principal component weight matrix, VN). We then correlated the 
response profiles of the best solution (highest negentropy) with the response profiles from all 
other initializations (after matching the response profiles via the ‘Hungarian’ algorithm; Kuhn, 
1955). For the 500 solutions with highest negentropy, this correlation was very high (average 
r > 0.99), indicating that the best solution was likely a global optimum.  
 
De-Meaning 
As is standard in ICA algorithms (Hyvarinen, 1999), the rows of the data matrix were 
demeaned prior to applying the non-parametric algorithm: for each sound, the mean 
response across voxels was subtracted from the response of each voxel. This demeaning 
operation causes the rows of the inferred voxel weight matrix to also be zero mean, but does 
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not change the response profile matrix. As a result, the voxel weights needed to explain the 
original non-demeaned data matrix can be recovered by applying the pseudoinverse of the 
response matrix: 
 
   (11) 

  
where R is the inferred response profile matrix, D is the non-demeaned data matrix, and W is 
the component weight matrix. 
 In practice, we found it useful to demean voxels from each subject separately. Without 
this step, the algorithm discovered additional components that just reflected the difference or 
“offset” between the average response of voxels from a single subject and the average voxel 
response across all subjects. These “offset vectors” were generally not reliable across scan 
sessions, and were plausibly driven by correlated sources of noise across voxels (e.g. due to 
motion).   
 
Determining the Sign of the Components 
The “sign” of the response profiles and weights is not uniquely determined by the algorithm, 
since they can be flipped without changing the solution: 
 
   (12) 

 
In practice, each inferred component could be oriented such that its average response and 
voxel weight were both positive. We used this convention in all of the Figures.  
 
Determining the Number of Components 
Voxel decomposition can in principle recover as many components as generated the data, 
but in practice is limited by the SNR of fMRI measurements. To determine the number of 
components to analyze, we measured (1) the amount of replicable variance accounted for by 
the components (Figure 1C) and (2) the accuracy of the components in predicting voxel 
responses from a left-out subject, not used to identify components (Figure S1). The first 
measure estimates the fraction of voxel response variation the components would explain if 
fMRI responses were perfectly reliable. The second measure, by contrast, is sensitive to the 
relative contribution of replicable vs. non-replicable sources in driving each component, since 
only components driven by replicable variance should improve prediction accuracy. We 
sought to find a set of N components that explained a large fraction of the explainable 
variance (measure 1) while maintaining good prediction accuracy (measure 2).  
 In the absence of noise, the amount of replicable variance (measure 1) can be 
computed by correlating the response of each voxel with its response projected onto the 
components. In the presence of noise, this correlation needs to be corrected by the reliability 
of the voxel and component-projected responses measured in independent scans. We did 
this as follows. First, we projected the response of each voxel, measured in two different 
scans (vscan1 and vscan2), onto component response profiles inferred using data from all other 
subjects (R): 
 
   (13) 

 

W = (RTR)�1RTD

RW = (�R)(�W)

vscan1�proj = R(RTR)�1RTvscan1
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   (14) 
 
We then correlated voxel responses from one scan with the component-projected responses 
from the other scan, and Z-averaged the two correlation values:  
 
   (15) 

 
   (16) 

 
   (17) 

 
Z-averaging reduces a small bias caused by directly averaging correlation coefficients (Silver 
and Dunlap, 1987). We noise-corrected this correlation measure by the reliability of the 
variables used to compute it (measure 1): 
 
   (18) 

 
   (19) 

 
   (20) 

 
Figure 1C plots the median of this correlation measure (equation 18) across voxels, squared 
to provide an estimate of explained variance.  
 Measure 2 is given by equation 17: the correlation between voxel responses and 
component-projected responses measured in different scans, not corrected for noise (Figure 
S1). Because the measure is not corrected, adding components does not monotonically 
increase prediction accuracy because higher-order components are eventually driven more 
by noise than replicable signal. 
 
Additional Details of Parametric Decomposition Model 
  
Model Specification 
The model assigned a probability to each voxel’s response, given a set of component 
response profiles and a Gamma-distributed prior on component voxel weights. In the 
equations below: 

• Lower-case, bolded symbols denote vectors 
• Upper-case bolded symbols denote matrices 
• Unbolded symbols denote scalars 
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The Gamma prior on weights took the following form:  
  
    

(21) 

 
where N is the number of components, wc,i is the weight for component c in voxel i, and �c is 
the shape parameter of the Gamma distribution for component c.  
 Given a set of response profiles and weights, we modeled the likelihood of observing 
each voxel’s response as a diagonal Gaussian, with mean centered on the weighted sum of 
the response profiles: 
 
   (22) 

 
where vi,j denotes the response vector of voxel i measured in scan j and R is the response 
profile matrix [165 x N].  
 The variance (�i

 2) for each voxel was set to its empirical variance across scans: 
 
   (23) 

 
where Mi indicates the number of measurements/scans for voxel i (2 or 3 depending on the 
subject), and S the total number of stimuli (165).  
 The log-likelihood of the data integrating across all possible weights is then given by: 
 
    

(24) 

 
where {vi,j} indicates the set of all voxel responses across all subjects and scans, and V is the 
total number of voxels. The response matrix (R) and shape parameters (�) were chosen to 
maximize this log-likelihood via the optimization procedure described below.  
 
Model Optimization 
The data log-likelihood (equation 24) cannot be computed in closed form because the prior 
(equation 21) and likelihood distributions (equation 22) are not conjugate (Murphy, 2012). We 
therefore optimized the model using a stochastic variant of the standard expectation-
maximization (EM) algorithm (Dempster et al., 1977; Wei and Tanner, 1990). The EM 
algorithm takes advantage of the fact that the logarithm of the joint distribution over the data 
and latent parameters (equation 25 below) - in our case the voxel weights - is often easier to 
compute than the data log-likelihood (equation 24), which requires integrating across the 
latent parameters. 
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EM computes an expectation of the log-joint probability with respect to the posterior 
distribution over the latent parameters (voxel weights), and this expectation is iteratively 
maximized with respect to the hyper-parameters - in this case, the response profiles (R) and 
shape parameters (�):  
 
 (26) 

 
The posterior distribution over the voxel weights is computed with respect to a fixed set of 
hyper-parameters (Rfixed, � fixed), and the expectation is then maximized with respect to the 
hyper-parameters of the joint distribution (R, �). The posterior over voxel weights is then re-
computed using the new hyper-parameters (Rfixed = Rnew, � fixed = �new), and the process is 
repeated.  
 The expectation in equation 26 can be expanded using equations 21 and 22. It 
includes many terms, but only three quantities depend on the posterior weight distribution 
over which the expectation is computed: the first two moments of the voxel weights (E[wc,i] 
and E[wl,i wm,i]) and the expectation of the log-transformed voxel weights (E[log wc,i]): 
 

   (27) 

 
These three statistics also cannot be computed in closed form (because like the data log-
likelihood, they require an intractable integral over voxel weights). We estimated them using 
“importance-weighted” samples from an approximating Gaussian distribution (Bishop and 
others, 2006). This was accomplished in five steps. First we log-transformed the voxel 
weights, so that the distribution being sampled from had support everywhere (unlike the un-
transformed weights which were non-negative due to the Gamma prior):  
 
   (28) 

 
   (29) 

 
Second, we approximated the posterior distribution over log-weights with a Gaussian 
centered at the maximum of the distribution (zi

max, computed using Newton’s method) and 
covariance matrix set to:  
 

R
new

,�
new

=

argmax

R,�
E
⇥
log p({v

i,j

}{w
i

}|R,�)
��� p({w

i

}|{v
i,j

},R
fixed

,�
fixed

)

⇤

E
⇥
log p({v

i,j

}{w
i

}|R,�) | p({w
i

}|{v
i,j

},R
fixed

,�
fixed

)

⇤
=

VX

i=1

NX

c=1

�
c

log �
c

� log�(�
c

) + (�
c

� 1)E[logw
c,i

]� �
c

E[w
c,i

]

�
VX

i=1

MX

j=1

1

2�2
i

⇣
vT

i,j

v
i,j

� 2vT

i,j

RE[w
i

] +

CX

l,m=1

E[w
l,i

w
m,i

]

SX

k=1

R
k,l

R
k,m

⌘

�
VX

i=1

MX

j=1

⇣S
2

log 2⇡ +

S

2

log �2
i

⌘

zi = logwi

p(zi) = ezip(wi = ezi)



!

   (30) 
 
   (31) 

 
where Hi is the Hessian of the log-posterior over log-weights at the maximum (i.e. the 
“Laplace approximation”) (Murphy, 2012). Third, we sampled a set of N values from the 
approximating Gaussian (zi

(n) ~ Gi) and exponentiated the samples (wi
(n) = ezi(n)) to undo the 

effect of the log-transformation. Fourth, for each sample, we computed an “importance 
weight” (q(zi

(n))), proportional to the ratio of the true posterior and approximating Gaussian: 
 
   (32) 

 
Fifth and finally, we used the sampled voxel weights (wi

(n)) and the importance weights 
(q(zi

(n))) to approximate the 3 required statistics:  
 
   (33) 

 
   (34) 

 
   (35) 

 
As the number of samples (N) increases, these sums converge to the true statistics of the 
posterior (Wei and Tanner, 1990). 
 Using our estimates of these 3 statistics, we maximized the objective in equation 26 
with respect to the response matrix (R) and shape parameters (�). The maximum-likelihood 
solution for the response matrix was computed in closed form using weighted least squares: 
 
   (36) 

 
   (37) 
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The optimization with respect to the shape parameters was performed using MATLAB’s 
implementation of BFGS (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970), a 
quasi-Newton method.  
 
Subject Offsets 
As in the non-parametric method, we found it was useful to subtract a subject-specific “offset” 
vector from the response of each voxel (see “De-Meaning” section above). We used our 
model to infer an optimal offset vector (os), one per subject, that maximized the likelihood of 
the data (using weighted least-squares). The voxel responses (vi,j) in all other equations were 
then replaced with “offset” voxel responses:  
 
   (39) 

 
where s(i) denotes the subject for voxel i.  
 
Assessing and Improving Global Convergence 
The EM algorithm is guaranteed to converge to a local, but not a global optimum. In practice, 
we found that applying the EM algorithm in an iterative manner improved global convergence. 
First, we initialized the component response profiles with the response of randomly selected 
voxels projected onto the first N principal components (ensuring that the response profiles 
started near regions of high response variance). The initial values of the shape parameters 
had little effect on the optimization and were fixed (βc = 1). Subject offset vectors were 
initialized to the average response difference (or ‘offset’) between the voxels of a single 
subject and the voxels of all ten subjects. Second, the algorithm was run for 10 EM iterations, 
using 100 samples to approximate the posterior statistics (equations 33-35). Third, two of the 
response profiles were randomly re-initialized (using two more randomly selected voxels), 
and another 10 iterations were run. Fourth, we compared likelihood estimates (described 
below) for the solutions found before and after re-initialization, and kept the solution with 
highest likelihood. We repeated steps 3-4, randomly re-initializing response profiles for all 
pairs of components ten times. The resulting solution was then further refined using 200 EM 
iterations with 1000 samples per iteration. 
 To evaluate convergence, this entire process was repeated 200 times. We then 
correlated the response profiles for the solution with highest estimated likelihood with the 
response profiles for all other solutions (after matching them using the Hungarian algorithm). 
Of the top 100 solutions with the highest likelihood, the average correlation was 0.98, 
indicating that the algorithm converged to a stable solution across different initializations. 
 
Likelihood Estimates 
We estimated the likelihood of the data given parameters in two steps. First, we 
approximated the posterior distribution over log-transformed weights with a Gaussian (as 
described above). Second, we used importance-weighted samples from the Gaussian to 
directly approximate the log-likelihood of the data:  

v

offset

i,j

= v

i,j

� o

s(i)



!

  
(40) 

 
where Gi is the approximating Gaussian for voxel i, and wi

(n) is a sample from that Gaussian. 
We used 1000 samples per voxel to approximate the integral. Although stochastic, the log-
likelihood estimates were highly stable across independent sets of samples. 
 
Additional Analyses of Component Response Properties and Anatomy 
 
Statistical Significance of Weight Maps 
We computed significance for the component voxel weights via a permutation test (Figures 
2B, S2, & S3). Specifically, we computed a null distribution for each component by 
permuting/shuffling its response profile 10,000 times and re-computing the component 
weights for all voxels. To avoid changing the correlation between response profiles of 
different components, we permuted response variation unique to that component (i.e. the 
residual after removing shared variance). Results were similar permuting the raw profile. We 
fit the null distribution for each component and voxel with a Gaussian, and calculated the 
likelihood of obtaining the observed component weight (based on the un-permuted profile), 
given a sample from this Gaussian.   
 
Variance Explained by Acoustic Features and Category Labels 
We estimated the variance explained by different sets of acoustic features by regressing 
them against the response profile of each component (Figures 3D&E). Each set of features 
(audio frequency, temporal modulation, and spectrotemporal modulation) was defined by a 
165 x N matrix, with one vector per feature: six for audio frequency, nine for temporal 
modulation and 49 for spectrotemporal modulation (7 scales x 9 rates). Because the 
spectrotemporal matrix was relatively high dimensional, and its features highly correlated, we 
reduced its dimensionality by selecting the top 15 principal components (accounting for 95% 
of the total variation). For the temporal and spectrotemporal feature matrices we included the 
mean energy vector across frequency as an additional predictor, because variation in mean 
energy was driven by modulation (due to RMS normalization of stimuli in conjunction with 
power compression).  
 We regressed category judgments against the response profile of each component to 
measure the variance they explained. Category judgments were represented by a matrix (165 
x 11) containing the proportion of subjects that assigned each category to each sound (this 
matrix was reliable across participants; split-half correlation of 0.98). To measure the variance 
explained by acoustic features and categories, we concatenated the acoustic and category 
feature matrices. 
 To avoid over-fitting, we predicted the response to each sound using regression 
weights estimated using all other sounds. We correlated the resulting prediction vector with 
the response profile of each component, normalized by the reliability of the measures (see 
below), and squared it to estimate variance explained. Error bars on these estimates were 
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computed via bootstrapping: sampling with replacement across the sound set (10,000 
samples), and re-computing the correlation between the acoustic feature predictions and the 
component response profile. Statistical significance was determined using a null distribution 
obtained by permuting the rows of the feature matrices and re-computing the correlation with 
the component profile (10,000 permutations). 
 
Correlation Normalization to Correct for Measurement Noise 
For the acoustic correlation values plotted in Figures 3B and 3C, we noise-corrected the 
correlation between acoustic feature vectors and component response profiles by the test-
retest reliability of the profiles across scans:  
 
   (41) 

 
   (42) 

 
where r1 and r2 indicate estimates of each component’s response vector measured in two 
different scans, and s is a vector of stimulus features. Z-averaging was again used to reduce 
a small bias caused by directly averaging correlation coefficients (Silver and Dunlap, 1987). r1 
and r2 were computed by projecting the voxel responses from the first scan, D1, onto the 
component response profile matrix, R, and then using the resulting voxel weights, W1, to re-
estimate the response profiles from voxel responses measured in scans 2 and 3 (D2 and D3):  

   (43) 
 

   (44) 
 

   (45) 
 
Note that these estimates are not fully independent, since the response profile matrix R was 
computed from all of the data. However, the effect of any non-independence will be to make 
the normalized correlations smaller (because the test-retest correlation will be higher), and 
our measures thus provide a conservative estimate of the correlation between stimulus 
predictors and component response profiles. We adopted this method because the 
component analysis is more reliable with three scans worth of data compared with a single 
scan, producing a more robust R matrix. 
 For the regression analyses used to estimate explained variance (Figures 3D&E, 5B 
and S6B), we corrected for the reliability of both the component response profiles and the 
prediction vectors (necessary because the predictions depend on the response profiles, and 
thus are subject to effects of fMRI noise):  
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   (46) 

 
In these equations, p1 and p2 indicate prediction vectors estimated by regressing feature 
matrices against the two response profiles, r1 and r2. We used the square of this normalized 
correlation as a measure of explained variance. 
 
Component Response Profile Reliability Across Scans 
We tested the reliability of each response profile by inferring components using data from the 
first two scans of each subject, and then re-estimating their response profiles using data from 
a third scan (Figure S5A). The response profiles were re-estimated by multiplying the voxel 
responses measured in scan 3 (D3) by the pseudoinverse of the component weights from 
scans 1 and 2 (W12): 
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Sensitivity of Component Response Profiles to the Sounds Tested 
We investigated the sensitivity of the discovered response profiles to the specific sounds 
tested by re-running the analysis on subsets of sounds (Figure S5B). Each subset contained 
M unique, randomly chosen sounds (M varied from 10 to 160 sounds, in steps of 10). For 
each subset, we used the non-parametric algorithm to infer six components that best 
modeled the reduced data matrix (formed from the reduced sound set). We then compared 
the response profiles inferred from the reduced sound set to those discovered using all 165 
sounds, by matching (via the Hungarian algorithm) and correlating their response profiles 
(using just the sounds from the reduced set). This process was repeated 200 times per set 
size (with different subsampled sound sets). Figure S5B plots the median correlation value for 
each component across the 200 samples, as a function of the set size.  
 
Testing Assumptions of Non-Gaussianity   
We tested whether the inferred voxel weights were more skewed (sc) and kurtotic (kc) than 
would be expected from a Gaussian distribution (Figure 7A):  
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wi,c indicates the weight for component c in voxel i, and N is the total number of voxels. Voxel 
weights were also fit with two parametric distributions: a Gaussian distribution and non-
Gaussian ‘Johnson’ distribution (Figure 7B), obtained by transforming a Gaussian-distributed 
random variable (g) via the hyperbolic sine function (Johnson, 1949):  
 
   (52) 

 
 We also directly compared the non-Gaussianity (via negentropy) of principled 
components with the non-Gaussianity of components inferred by our non-parametric 
algorithm, which rotated principle components to maximize non-Gaussianity (Figure S7). If 
the underlying components are Gaussian, then the voxel weights for each principal 
component would also be Gaussian, and would remain so following any rotation (because 
whitened Gaussians are rotationally symmetric) (Murphy, 2012).  
 For all of the analyses of non-Gaussianity, we used independent data to infer 
components (scans 1 and 2) and measure their statistical properties (scan 3). Bootstrapping 
across subjects was used to assess significance. 
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