
Expanded View Figures

Figure EV1. BCR signalling in *Cd22^{YS,6F}* B cells upon cytoskeleton disruption and ligand-dependent stimulation.

- A Wild-type and Cd22^{Y5,6F} primary B cells were treated with 5 μg/ml anti-kappa or 1 μM LatA and intracellular calcium was measured by flow cytometry.
- B, C Wild-type, Cd22^{-/-} and Cd22^{Y5,6F} primary B cells were treated with vehicle control (–) or 1 μM LatA for the indicated times. Cells were lysed and analysed by SDS–PAGE followed by immunoblotting with phospho-CD19 (p-CD19), phospho-Akt (p-Akt), phospho-ERK (p-ERK) and actin or total ERK as loading controls. The intensity of phosphorylated proteins, normalized to actin or ERK, was referred to the unstimulated sample of the wild-type cells, set as 1.

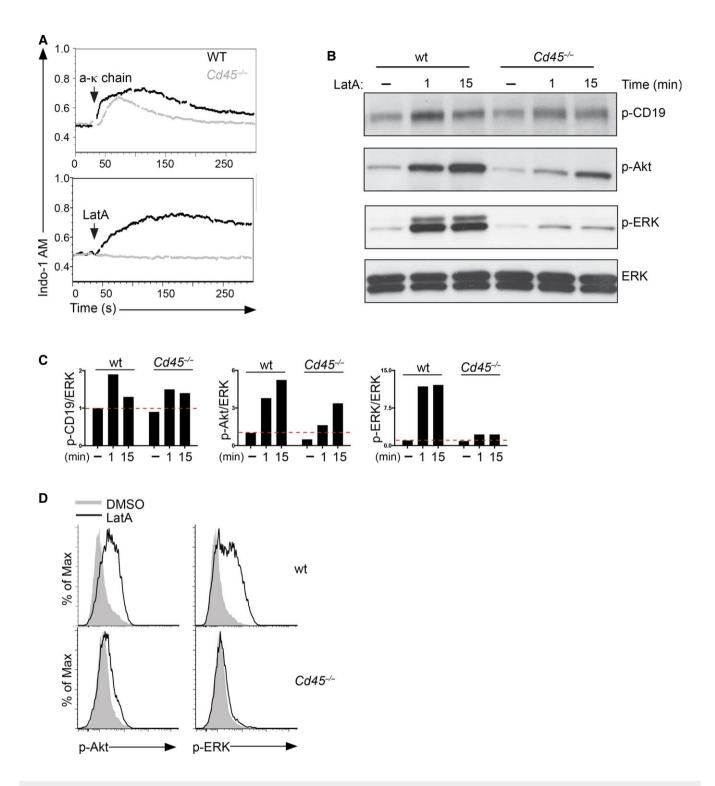

Source data are available online for this figure.

Figure EV2. CD45 is required for organizing CD22.

- A Expression levels of cell surface proteins were measured by flow cytometry. Wild-type, Cd45^{-/+} and Cd45^{-/-} primary B cells were labelled with antibodies against B220, IgM, IgD, CD19 and CD22.
- B Wild-type, Cd45^{-/+} and Cd45^{-/-} primary B cells were stained with Alexa 647-conjugated antibody against CD22 and settled onto non-stimulatory coverslips. Cells were then fixed, imaged with dSTORM and analysed. Quantification of the distribution of CD22 with H function. Thin lines denote mean ± SEM.
- C Wild-type and Cd45^{-/-} primary B cells were stained with Cy5-conjugated Fab fragment against IgM and settled onto non-stimulatory coverslips. Cells were then fixed, imaged with dSTORM and analysed. Quantification of the distribution of IgM with H function. Thin lines denote mean ± SEM.
- D CD45-deficient primary B cells were treated with vehicle control or periodate, stained with Alexa 647-conjugated antibody against CD22 and settled onto non-stimulatory coverslips. Cells were then fixed, imaged with dSTORM and analysed. Quantification of the distribution of IgM with H function. Thin lines denote mean \pm SEM.
- E–H Dual-colour SIM analysis of CD22, IgM, IgD and CD19 in CD45-deficient primary B cells. Cells were fixed, stained with Atto633- or -488-conjugated antibody against CD22, IgM or IgD and Alexa 647-conjugated antibody against CD19 and settled onto non-stimulatory coverslips. Cells were then embedded in agarose, imaged with SIM and analysed. (E) SIM images of CD22, IgM, IgD and CD19. (F) Cross-correlation function. (G) Pearson correlation coefficient. (H) Cluster size calculated from autocorrelation analysis. Bars and numbers indicate the median. Data are from two independent experiments. **P* < 0.05 (Student's *t*-test).

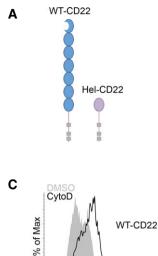
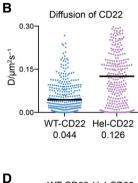
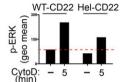


Figure EV3. CD45 is dispensable for BCR signalling after ligand stimulation but essential for receptor signalling after cytoskeleton disruption.

 A Wild-type and Cd45^{-/-} primary B cells were treated with 5 μg/ml anti-kappa or 1 μM LatA. Intracellular calcium flux was measured by flow cytometry.
 B, C Wild-type and CD45-deficient primary B cells were treated with vehicle control (–) or 1 μM LatA for the indicated times. Cells were lysed and analysed by SDS– PAGE followed by immunoblotting with phospho-CD19 (p-CD19), phospho-Akt (p-Akt), phospho-ERK (p-ERK) and total ERK as a loading control. The intensity of phosphorylated proteins, normalized to ERK, was referred to the unstimulated sample of the wild-type cells, set as 1.

D Wild-type and CD45-deficient primary B cells were treated with vehicle control (–) or 1 µM LatA for 5 min, fixed, permeabilized, stained for phospho-Akt (p-Akt) and phospho-ERK (p-ERK) and analysed by flow cytometry. Data are representative of three independent experiments.


Source data are available online for this figure.



of Max

%

p-ERK

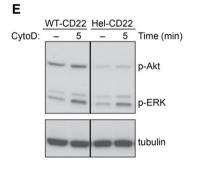
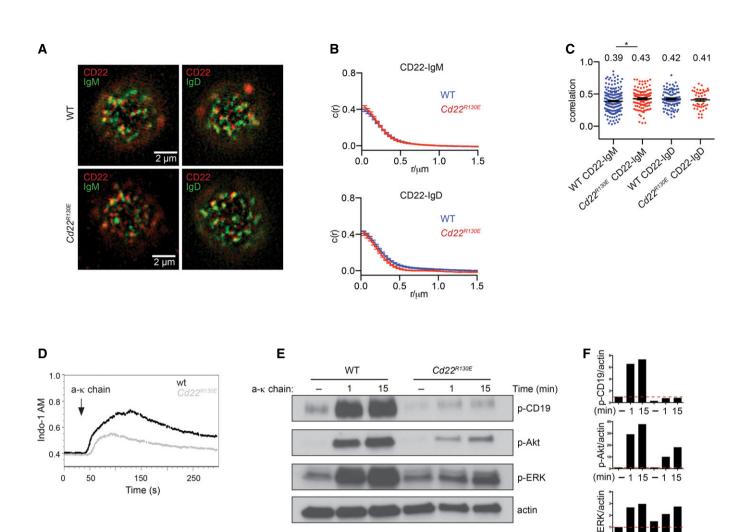


Figure EV4. Extracellular domain of CD22 regulates its diffusion.

A Schematic structure of wild-type CD22 and chimeric Hel-CD22 construct.


- B Single-particle tracking of wild-type CD22 and Hel-CD22 in A20 B cells. A20 B cells co-expressing endogenous wild-type CD22 and Hel-CD22 were simultaneously labelled with Atto 488-conjugated Fab fragments against CD22 or Atto 633-conjugated Fab fragment against Hel, settled onto non-stimulatory coverslips and imaged. Single-particle trajectories were then analysed. Bars and numbers indicate the median. Data are pooled from two experiments.
- C, D A20 B cells co-expressing wild-type CD22 and Hel-CD22 were treated with vehicle control (–) or 10 μM cytochalasin D (CytoD) for 5 min, fixed, permeabilized, stained for phospho-ERK (p-ERK) and analysed by flow cytometry.
- E, F A20 B cells co-expressing wild-type CD22 and Hel-CD22 B cells were treated with vehicle control (–) or 10 μ M CytoD for 5 min. Cells were lysed and analysed by SDS–PAGE followed by immunoblotting with phospho-Akt (p-Akt), phospho-ERK (p-ERK) and tubulin as a loading control. The intensity of phosphorylated proteins, normalized to tubulin, was referred to the unstimulated sample of the wild-type cells, set as 1. Data are representative of two independent experiments.

Source data are available online for this figure.

Hel-CD22

F		Hel-CD22
p-Akt/tubulir		
CytoD (min	; - 5	- 5
-	WT-CD22	Hel-CD22
o-ERK/tubulir		
Ц CytoD	; – 5	- 5

Figure EV5. CD22 colocalization with BCR and ligand-dependent BCR signalling in primary Cd22^{R130E} B cells.

- A-C Dual-colour SIM analysis of CD22, IgM and IgD. Cells were fixed, stained with Atto633- or -488-conjugated antibody against CD22, IgM or IgD and settled onto non-stimulatory coversilps. Cells were then embedded in agarose, imaged with SIM and analysed. (A) SIM images of CD22, IgM and IgD. (B) Cross-correlation function.
 (C) Pearson correlation coefficient. Bars and numbers indicate the mean. Data are from three independent experiments. *P < 0.05 (Student's t-test).
- Wild-type and Cd22^{R130E} primary B cells were treated with 5 µg/ml anti-kappa, and intracellular calcium flux was measured by flow cytometry.
 F Wild-type and Cd22^{R130E} primary B cells were stimulated with 5 µg/ml anti-kappa for the indicated times. Cells were lysed and analysed by SDS–PAGE followed by
- E, F Wild-type and *Cd22^{R130E}* primary B cells were stimulated with 5 μg/ml anti-kappa for the indicated times. Cells were lysed and analysed by SDS–PAGE followed by immunoblotting with phospho-CD19 (p-CD19), phospho-Akt (p-Akt), phospho-ERK (p-ERK) and actin as a loading control. The intensity of phosphorylated proteins, normalized to actin, was referred to the unstimulated sample of the wild-type cells, set as 1. Data are representative of two independent experiments.

Source data are available online for this figure.

(min) - 1 15 - 1 15