Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

Indication	Methodology	Major Findings, Conclusions, and Recommendations	Date
			(Reference #)
			(found below)
ABSSSI	Double-blind, multicenter, phase 2	For the early response endpoint, JNJ-Q2 was statistically	2010
	noninferiority study treated 161	noninferior to linezolid (61.4% versus 57.7%,	(1)
	patients for 7 to 14 days, testing	respectively; $P = 0.024$).	(-)
	the efficacy of JNJ-Q2 versus		
	linezolid twice a day. Post hoc	Despite evidence of systemic disease, <5% of patients	
	analyses were based on the 2010	presented with fever, suggesting fever is not a	
	FDA guidance, which defines	compelling surrogate measure of systemic disease	
	treatment success as lack of lesion	resolution for this indication.	
	spread and afebrile status within 48		

Table 1: Exploratory Trials and Analyses of the Early Response Endpoint in the ABSSSI and CABP Indications

	to 72 h post-randomization.		
ABSSSI	Retrospective analysis to compare	By Day 3, 172/181 (95%) patients showed no increase	2011
	the outcomes of this Phase 2 study	in lesion size from baseline. There was no difference in	(2)
	using criteria defined in prior and	response by dose regimen. Patients with a baseline lesion	
	new FDA guidance. Patients were	surface area (length x width) \geq 75 cm2 had a similar	
	randomized 1:1:1 to 200 mg, 300	response at the Day 3 visit.	
	mg, or 400 mg oral tedizolid once		
	daily for 5 7 days. Response to	Cessation of lesion spread and fever respond rapidly to	
	therapy was assessed examining	therapy by Day 3.	
	cessation of spread of lesion and		
	resolution of fever (<38degC) at the		
	Day 3 visit (48 hours).		
ABSSSI	Phase 3, randomized, double-blind	At Baseline, digital planimetry tends to provide area size	2011
	study of 6-days tedizolid phosphate	measurements $\sim 1/3$ smaller than manual measurements.	(3)
	vs 10-days linezolid. Investigators	At the 48-72 hour visit the two methods yielded	

were instructed to mark and outline	comparable results in assessing cessation of spread of the
the edge of erythema from severe	lesion.
abscesses, cellulitis and infected	
wounds using a surgical	High rates of response (as measured by cessation of
marker. Measurement of the	spread) were observed at 48-72 hours, though higher for
erythema was to be in a head-to-toe	abscesses (~97%) and wound infections (~97%) than for
orientation. Lesion surface area	cellulitis (~86%).
(cm2) was automatically calculated.	
Digital photographic images	
of the lesions were captured at the	
Screening, Day 3, and End-of-	
Therapy visits. If lesions were 3-	
dimensional in nature wrapping	
around the circumference of body	
parts (arms, legs, torso), then	

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

multiple images were to be captured perpendicular to the body surface. The digital images were uploaded by site personnel into the clinical trial database. Once uploaded, the digital images were organized and processed using Photoshop® image editing software. After the images were enhanced to provide the best possible image to analyze, PictZar®-CDM digital planimetry wound measurement software was used to assess lesion size. A comparison of the results of manual measurement at the bedside by site

	personnel versus an analysis of		
	lesion size via digital planimetry is		
	presented.		
ABSSSI	Retrospective analysis of the new	Dalbavancin noninferiority relative to linezolid as	2011
	FDA endpoint in a previously	assessed by the prespecified primary analysis was	(4)
	completed registrational trial (VER-	reinforced with an early responder analysis performed at	
	009) to compare the FDA outcome	Day 3-4.	
	to the protocol prespecified primary		
	endpoint of clinical response at Day	The addition of resolution of fever to the early response	
	28.	definition did not further differentiate between	
		treatment regimens beyond lesion measurement alone.	
	The primary endpoint at Day 28 was		
	originally defined in the clinically	Most patients who were an early responder were also a	
	evaluable population which was then	clinical success at End of Therapy. However, most	
	further analyzed in subgroups of	patients who were an early nonresponder became a	

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

	patients meeting the newly defined	clinical success at End of Therapy. The early response	
	FDA inclusion criteria (surface area	endpoint had limitations, specifically a low negative	
	of lesion >75cm2; one sign of either	predictive value.	
	fever, elevated white blood cell		
	count or bandemia) as well as the	A validated measure of response at End of Therapy and	
	early response endpoint at Day 3/4	Test-of-Cure that is acceptable to FDA and other	
	(lesion size the same or smaller	regulatory agencies would be more intuitive to clinicians	
	relative to baseline and temperature	and more relevant to patients.	
	<37.6°C).		
ABSSSI	Multicenter, randomized, double-	For the 256 patients randomized, the mean area of	2012
	blind, phase 2 US trial of adults with	erythema of all infections was 292 cm2; 10% of patients	(5)
	infection size \geq 75cm2 of erythema	had fever at baseline. Standard deviation for digital	
	or induration, lymph node	measurement was one third that of manual measurement.	
	enlargement, and one or more signs		

of systemic infection. Patients were The three antibiotics were comparably efficacious. The

randomized 1:1:1 to receive	time point of maximal benefit was 72 hours after
delafloxacin, linezolid, or	initiation of therapy. Body temperature did not correlate
vancomycin for $5 - 14$ days. The	with resolution or worsening of infection.
total area of erythema, and length of	
leading edge of major and minor	
axes of erythema, was measured	
digitally using acetate tracings and	
manually with a disposable rulers. A	
comparison in the treatment arms of	
the objective measures of response	
rate of either cessation of lesion	
spread or reduction of lesion spread	
and absence or resolution of fever	
was performed on the intent to treat	
population 48-72 hours after the first	

	dose of study drug by the Cochran-		
	Mantel-Hanszel test.		
ABSSSI	Randomized, investigator-blind,	In a retrospective analysis of the ITT patients for whom	2012
	multicenter phase 2 trial in which	data were available to assess response during the first 72	(6)
	patients were randomized 1:1 to	h after starting therapy, including the cessation of an	(0)
	intravenous omadacycline or	increase in maximal lesion dimension and the absence of	
	linezolid twice daily with an option	fever (temperature < 38.0°C), 96.8% (30/31) of	
	to transition to oral therapy	omadacycline-treated patients and 94.4% (34/36) of	
		linezolid-treated patients met these two criteria.	
ABSSSI	20-center, randomized, double-	The early responder rate was lower when absence of	2012
	blind, phase 2 study in which	fever was required for "success". Most early responders	(7)
	patients were randomized to receive	became a success at Test-of-Cure; the same was true for	
	either one of two different	early non-responders. Only 4.8% of early responder	
	intravenous doses of BC-3781 or	successes became a failure at Test-of-Cure.	
	intravenous vancomycin q12 hour.		

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

Early Response success or failure was determined using erythema

length/width and temperature as

recorded daily during the first 5 days

of the study according to criteria

from the FDA or the Foundation for

the National Institutes of Health.

ABSSSI	This was a multicenter,	42 patients meeting criteria for an ABSSSI were	2012
	observational study in patients with	enrolled; 39 were evaluated for efficacy. Overall, both	(8)
	an ABSSSI enrolled sequentially.	the repeated (intra-) observer and between (inter-)	. ,
	All measurement/procedures were	observer ruler measurements showed almost perfect	
	performed at the baseline visit. At	reliability with ICC's >0.9 for area, length and width.	
	least two, and not more than three,	The percent differences in ruler measurements between	
	observers measured the erythema	different observers were slightly larger than between	
	associated with the ABSSSI by	repeated measurements by the same individual (17.4%	

	ruler; correlation with other	vs. 4.1%, respectively). Variability was higher in smaller	
	techniques such asdigital imaging,	lesions.	
	planimetric assessment of	There was almost perfect intra-observer reliability	
	transparencies and	(ICC>0.9) comparing the longest and shortest lesion	
	thermal imaging was also	measurements by ruler compared to measurements	
	performed.	derived programmatically from a computer-assisted	
		planimetry assessment of lesion taken from the	
	The primary endpoint was	transparency grid. Lesions measured by digital	
	assessment of the intra-observer and	camera and transparency were 35% and 31% smaller	
	inter-observer variability of the	than the ruler, respectively.	
	erythema as measured by ruler and		
	determined by the intraclass	Measurement of the erythema associated with an	
	correlation coefficient (ICC).	ABSSSI can be reliably performed using a ruler.	
ABSSSI	Retrospective analysis using a day 3	Day 3 integrated clinical response rates were 74.0%	2012
	clinical endpoint was conducted in	(296/400) for ceftaroline and 66.2% (263/397)	

	two Phase 3 trials of intravenous	for vancomycin plus aztreonam (difference, 7.8%; 95%	(9)
	ceftaroline fosamil vs. vancomycin	confidence interval 1.3% to 14.0%). For ABSSSI due to	
	plus aztreonam q12h for 5 to 14	MRSA, response rates were 81.7% and 77.4% in the	
	days. Clinical response at day 3,	ceftaroline and vancomycin plus aztreonam groups,	
	defined as cessation of infection	respectively.	
	spread and absence of fever, was		
	analyzed in patients with a lesion		
	size of >75 cm2 and either deep		
	and/or extensive cellulitis, major		
	abscess, or an infected wound.		
ABSSSI	These two Phase 3 trials were	The majority (945/1046, 90.3%) of patients who	2013
	randomized, double-blinded studies	responded favorably to treatment by 72 h	(10)
	in which patients with a skin	were ultimately cured. Most (129/182, 70.9%) patients	(10)
	infection lesion >75cm2 in area and	who were non-responders on Day 3 were also	
	either fever, WBC >12k cells/mm3	subsequently cured. 72/1046 patients (6.9%) who were	

or bands >10% were randomized to	an early responder were a clinical failure at End of
receive either dalbavancin on Day 1	Treatment while 50/182 (27.5%) early non-responders
and Day 8 or vancomycin 1 gm	were clinical failures at EOT.
every 12 h with an option to switch	
to linezolid po q12h after 3 days of	A measurement of early clinical response at 48–72 hours
therapy.	after initiation of treatment can help predict outcome and
	guide treatment of ABSSSI in addition to anchoring a
Measurements obtained at 48–72 h	non-inferiority trial design.
recorded the cessation of spread of	
the lesion and absence of fever.	All combinations of cessation of lesion spread and/or
Patients were not required to	absence of fever had >90% sensitivity and
discontinue therapy based on these	could help identify patients who would ultimately be
assessments. Clinical status	cured
was assessed programmatically	
based on the resolution of signs and	Cessation of lesion spread with an assessment of pain can

	symptoms of infection at End of	help predict those patients who might ultimately fail	
	Treatment on Day 14.	treatment	
ABSSSI	Prospective observational study of	Local response was recorded in 42% of cases at day 1. A	2013
	adult patients admitted to hospital	decrease in leukocyte count $\geq 20\%$ at day 1 was seen in	(11)
	with cellulitis in western Norway	63% of these responders compared to 37% in cases with	
		slower response (p=0.001). At day 2, 82% had local	
		response, 59% of initially febrile patients had become	
		afebrile, and 73% had \geq 20% decline in CRP level.	
		Logistic regression analysis identified symptom duration	
		≥ 2 days before admission as an independent predictor of	
		local response at day 1 (Odds-ratio 2.60, p=0.031)."	
CABP	Two global, randomised, double-	A differential clinical benefit was observed at Day 4 in	2012
	blind, multicentre trials assessed the	patients with CAP due to an atypical pathogen only,	(12)
	efficacy and safety of ceftaroline	specifically M. pneumoniae and/or C. pneumoniae, and	()
	fosamil vs ceftriaxone. The trials	who received 1 day of clarithromycin (76.6% vs 57.6%).	

were identical except for a 24-h	No difference was seen at the test-of-cure visit, perhaps	
course of clarithromycin on Day 1 in	due to the self-limited course of many atypical	
the first trial. This difference in	pneumonias. The addition of clarithromycin made no	
design offered an opportunity to	difference for typical pathogens, either at day 4 or test of	
assess the effect of a macrolide on	cure. In patients with L. pneumophila only, a difference	
the outcome of CAP caused by $>=1$	was not seen early, but a numerical difference favouring	
atypical pathogens.	the clarithromycin group occurred at TOC. Although not	
	a randomised comparison, our observations suggest that	
	outcome assessment at an early time point may better	
	identify differential effects of 2 treatments than a later	
	evaluation and that empiric atypical coverage may	
	impact early clinical response. Additional study is	
	warranted.	
Multicenter, double-blind,	Patients were enrolled from 26 centers in the United	2013
randomized phase 2 study in which	States and 4 centers in Canada. A total of 132 patients	

patients were randomized (1:1) to	received at least 1 dose of study drug. Early clinical	(13)
either 800 mg solithromycin	response rates in the ITT population, from a post hoc	
orally on day 1, followed by 400 mg	analysis at day 3 by the FNIH criteria, were comparable	
orally daily on days 2 to 5, or 750	in the solithromycin (72.3%) and levofloxacin (71.6%)	
mg levofloxacin orally daily on days	treatment groups.	
1 to 5. Early clinical response in		
the ITT population at day 3 was		
assessed programmatically. To be		
considered a success at day 3 using		
the FNIH criteria, patients had to		
report improvement in at least two		
cardinal symptoms (cough, chest		
pain, shortness of breath, and		
sputum production) without		
worsening in any of these four		

symptoms.		
A retrospective cohort study was	A total of 250 patients were included.	2014
conducted among adult patients who	In the CART analysis, adverse clinical outcomes were	(14)
received ceftriaxone and	higher among day 5 nonresponders than those who	
azithromycin for CAP of Pneumonia	responded by day 5 (22.4% versus 6.9%, P =0.001).	
Outcomes Research Team (PORT)		
risk class III and IV at an academic	The findings from this study indicate that time to clinical	
medical center.	response, as defined by the recent FDA guidance, is a	
	reasonable prognostic indictor of real-world effectiveness	
Clinical response was defined as	outcomes among hospitalized PORT risk class III and IV	
clinical stability for 24 h with	patients with CAP who received ceftriaxone and	
improvement in at least one	azithromycin.	
pneumonia symptom and with no		
symptom worsening. A		
classification and regression tree		

(CART) was used to determine the		
delay in response time, measured		
in days, associated with the greatest		
risk of a prolonged hospital length of		
stay (LOS) and adverse outcomes		
(in-hospital mortality or 30-day		
CAP-related readmission).		
The primary objective of this study	Of 666 patients who met study criteria, 277 (41.6%)	2014
was to assess health outcomes	achieved clinical response by day 4.	(15)
(length of stay [LOS] and hospital		(10)
charges) between responders and	The unadjusted mean (SD) LOS was 6.3 (2.8) days for	
nonresponders at day 4 of therapy.	responders and 7.4 (5.6) days for non-responders ($P =$	
The Premier database was used to	0.0009). Respective unadjusted total hospital charges	
identify adult patients from 4	were \$22,827 (SD, \$17,724) and \$26,403 (\$36,882) (<i>P</i> =	
participating hospitals. Chart review	0.0031). Adjusted for demographics and clinical factors,	

	extracted data for demographics,	nonresponders compared with responders had an	
	clinical efficacy variables at day 4,	increased LOS of 0.9 days (8.4 vs 7.5 days; $P = 0.0008$),	
	LOS, and total hospital charges.	resulting in associated charges of approximately \$2500	
		(\$34,139 vs \$36,629; <i>P</i> = 0.0768).	
CABP	Global, pivotal Phase 3 clinical trial	In the intent-to-treat population, solithromycin met the	2015
	of solithromycin vs moxifiloxacin,	primary objective of statistical non-inferiority (10% non-	(16)
	each administered orally for 5 days.	inferiority margin) of the early clinical response at 72 (-	
		12/+36) hours after initiation of therapy compared to	
		moxifloxacin. The point estimates for the early clinical	
		response were 78.2% for solithromycin and 77.9% for	
		moxifloxacin (95% confidence interval for the treatment	
		difference: -5.5% and 6.1%, respectively).	
		Solithromycin also met the secondary objectives of non-	
		inferiority in clinical success at the short term follow up	
		visit, 5-10 days after the end of therapy.	

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

ABSSSI: Acute bacterial skin and skin structure infections

CABP: Community-acquired bacterial pneumonia

Citations

- Covington P, Davenport JM, Andrae D, et al. Randomized, double-blind, phase II, multicenter study evaluating the safety/tolerability and efficacy of JNJ-Q2, a novel fluoroquinolone, compared with linezolid for treatment of acute bacterial skin and skin structure infection. Antimicrob Agents Chemother. 2011; 55:5790-7. Epub September 26 2011.
- DeAnda C, Das A, Fang E, Prokocimer P. Acute bacterial skin and skin structure infection (ABSSSI) dose-ranging phase 2 tedizolid phosphate (TR-701) study: Assessment of efficacy with new FDA guidance [Poster L1-1496]. In: Program and abstracts of 51st Interscience Conference on Antimicrobial Agents and Chemotherapy (Chicago). Washington, DC: American Society for Microbiology, 2011.
- 3. Bien P, DeAnda C, Fang E, Prokocimer P. Correlation between digital planimetry and a traditional manual method in the measurement of lesion size in a phase 3 acute bacterial skin and skin structure infection (ABSSSI) study [Poster L1-1494]. In: Program and abstracts of 51st Interscience Conference on Antimicrobial Agents and Chemotherapy (Chicago). Washington,

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

DC: American Society for Microbiology, 2011.

- 4. Dunne MW, Talbot GH, Das AF. Dalbavancin vs linezolid for treatment of acute bacterial infections of the skin: A comparison of early and standard outcome measures in Study Ver001-9 [Abstract P1530]. In: Program and abstracts of the 21st European Congress of Clinical Microbiology and Infectious Diseases / 27th International Congress on Chemotherapy (Milan)., 2011.
- Longcor J, Lawrence L, Duffy E, Hopkins S. Objective measures of clinical efficacy in a phase 2b exploratory study of delafloxacin compared to vancomycin and linezolid in adults with acute bacterial skin and skin structure infections (ABSSSI)
 [Poster L1-1667c]. In: Program and abstracts of the 52nd Interscience Conference on Antimicrobial Agents and Chemotherapy (San Francisco), Washington, DC: American Society for Microbiology, 2012.
- Noel GJ, Draper MP, Hait H, Tanaka SK, Arbeit RD. A randomized, evaluator-blind, phase 2 study comparing the safety and efficacy of omadacycline to those of linezolid for treatment of complicated skin and skin structure infections. Antimicrob Agents Chemother. 2012; 56: 5650–5654.

- Prince W, Obermayr F, Lell C, Das A, Talbot G. Assessment of two early-response outcome measures in a phase 2 clinical trial of the pleuromutilin BC-3781 in acute bacterial skin and skin structure infections [Poster P 693]. In: Program and abstracts of the 22nd European Congress of Clinical Microbiology and Infectious Diseases (London), 2012.
- 8. Dunne MD, Mehra P, Green S, et al. A study to assess skin lesion measurement techniques related to acute bacterial skin and skin structure infections. [Poster 1624]. In: Program and abstracts of IDWeek 2012 (San Diego), 2012.
- Friedland HD, O'Neal T, Biek D, et al. CANVAS 1 and 2: Analysis of clinical response at day 3 in two phase 3 trials of ceftaroline fosamil versus vancomycin plus aztreonam in treatment of acute bacterial skin and skin structure infections. *Antimicrob Agents Chemother.* 2012; 56: 2231–2236.
- Dunne M, Puttagunta S, Wilcox M, Talbot G. Concordance of clinical response at 48-72 hours after initiation of therapy and end of treatment (EOT) in patients with acute bacterial skin and skin structure infection (abSSSI) in the DISCOVER studies.
 [Poster 1340]. In: Program and abstracts of IDWeek 2013 (San Francisco), 2013.
- 11. Bruun T, Oppegaard O, Skred S. Early treatment response in cellulitis. [Poster L-196]. In: Program and abstracts of the 53rd Interscience Conference on Antimicrobial Agents and Chemotherapy (Denver). Washington, DC: American Society for

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

Microbiology, 2013.

- 12. File T, Eckburg P, Low D, et al. Assessment of outcomes at an early time point may identify a differential effect of macrolide therapy on community-acquired pneumonia due to atypical pathogens. [Poster P721]. In: Program and abstracts of the 22nd European Congress of Clinical Microbiology and Infectious Diseases (London), 2012.
- 13. Oldach D, Clark, K, Schranz J, et al. Randomized, double-blind, multicenter phase 2 study comparing the efficacy and safety of oral solithromycin (CEM-101) to those of oral levofloxacin in the treatment of patients with community-acquired bacterial pneumonia. Antimicrob Agents Chemother. **2013**; 57:2526-34. Epub March 18, 2013.
- 14. Zasowski E, Butterfield JM, McNutt L-A, et al. Relationship between time to clinical response and outcomes among Pneumonia Outcomes Research Team (PORT) risk class III and IV hospitalized patients with community-acquired pneumonia who received ceftriaxone and azithromycin. Antimicrob Agents Chemother. **2014**; 58:3804-13. Epub 2014 Apr 21.
- 15. Robinson SB, Ernst FR, Lipkin C, Huang, X. Patient outcomes on day 4 of intravenous antibiotic therapy in non–intensive care unit hospitalized adults with community-acquired bacterial pneumonia. Infect Dis Clin Pract. 2014; 22: 320–325.

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

16. Cempra Press Release Chapel Hill, NC (January 4, 2015). Cempra announces positive topline phase 3 clinical results for oral

solithromycin in the treatment of community acquired bacterial pneumonia.

http://investor.cempra.com/releasedetail.cfm?ReleaseID=889300. Accessed 1 February 2015.

Indication	Objective	Methodology	Major Findings, Conclusions, and	Date
			Recommendations	(Reference #)
				(found below)
ABSSSI	Literature review to	A search was conducted in OVID.	Of 428 abstracts. 381 were excluded	2013
	identify clinical	MEDLINE (1946-present) and	based on pre-specified criteria. The	(1)
	measurement concepts	EMBASE (1988-2012) were	remaining 47 full-text articles were	
	for other skin	searched using terms related to	scrutinized for eligibility, resulting in	
	abnormalities that could	ClinRO, measurement tools and	30 that met the inclusion criteria. No	
	be applied to ABSSSI.	devices, diagnostic tools, and skin	ABSSSI-specific ClinROs or	
		diseases/abnormalities.	measurement tools were identified in	
			the literature.	
ABSSSI	Literature review to	A search was conducted in OVID.		2013
	investigate existing	MEDLINE (1946 to present) and		(2)
	PRO measures used in	EMBASE (1988 to 2012) were		

	studies of ABSSSI and	searched using terms for signs and		
	to explore signs and	symptoms and existing PRO		
	symptoms of ABSSSI	measures, specifically related to		
	in order to inform the	skin infections.		
	development of a			
	disease model.			
ABSSSI	Development and	We adhered to the U.S. Food and	The initial phase of instrument	2013
	qualification of a new	Drug Administration (FDA) PRO	development included a literature	(3)
	ABSSSI PRO	Guidance for instrument	review and gap analysis and	
	instrument	development (2009) and the 2010	interviews with 9 clinical experts.	
	incorporating reliable,	FDA qualification process for drug	The most commonly reported	
	well-defined and	development tools (DDTs). Once	symptoms were pain and tenderness	
	relevant endpoints for	qualified, drug developers can use	across all ABSSSI subtypes-	
	patients in terms of how	DDTs for the qualified context in	cellulitis, wound infection, and	
	they feel and function	Investigational New Drug and	abscess. A study protocol and	

in clinical trials of	New Drug Application /Biological	interview guide were developed to
antibacterial drugs for	License Application submissions	elicit concepts from ABSSSI
ABSSSI.	without FDA reconsideration of	patients. A draft PRO will be
	the DDTs' suitability.	evaluated by an expert panel and
		refined through cognitive debriefing
		interviews with patients.

ABSSSI	Explore concepts of	One-on-one telephone interviews	Thirty-four patients participated in	2013
	skin infection as	were conducted with ABSSSI	concept elicitation interviews from	(4)
	reported by patients,	patients diagnosed within the past	four sites. Thirteen patients were	
	and comprehensively	4-7 days in the United States.	diagnosed with a major abscess,	
	capture these	Patients were asked to describe	twelve with wound infection, and	
	symptoms.	their skin infection and how it may	nine with cellulitis. The main themes	
		have affected their life. The data	included signs (e.g., growth, color),	
		were continually analyzed using	symptoms (e.g., soreness), and	

		an iterative process to identify	impacts on functionality (e.g., social,	
		themes and concepts which were	physical) related to the skin infection.	
		recorded in a saturation grid.	The most commonly reported	
		Saturation was monitored	symptoms included experiencing	
		according to the FDA PRO	pain, swelling, and drainage or	
		guidance.	leakage at the site of the infection.	
ABSSSI	Develop a PRO	A comprehensive review of the	Symptoms were common across all	2015
	instrument to assess	literature and interviews with nine	ABSSSI subtypes and supported the	(5)
	ABSSSI symptoms in	US and European clinical experts	saturation of concepts. Items were	
	patients in clinical trials	informed the development of a	generated for the PRO Instrument	
	of antibacterial drugs,	concept elicitation (CE) interview	using patient terminology.	
	consistent with FDA	guide, and a hypothetical		
	PRO Guidance.	conceptual framework and disease	Subsequent cognitive debriefing with	
		model exploring patients'	patients demonstrated that the items	

experience with symptoms of	were understandable, relevant, and
ABSSSI. CE was based on	interpreted as intended.
telephone interviews with 34	
patients, after which saturation of	SKINFECT is a PRO instrument
emergent concepts was reached.	developed to evaluate ABSSSI
Items and response options were	patient symptoms and functioning in
generated based on the qualitative	clinical studies with documented
data and a draft instrument was	evidence of content validity.
prepared with input and review	SKINFECT is now ready for
from an international project team	psychometric reliability and validity
of academic and industry	testing.
antibacterial experts.	
Subsequently, cognitive debriefing	
interviews were conducted with 15	
ABSSSI patients and 3 clinical	

		experts to assess item readability,		
		relevance, comprehensiveness, and		
		content validity. Items were edited		
		based on feedback from the		
		patients.		
CABP	Literature review to	A search was conducted using	Of 2158 abstracts, 940 were excluded	2014
	identify signs,	OVID. MEDLINE (1946-present)	based on pre-specified criteria. Of the	(6)
	symptoms, and	and EMBASE (1988-2012) using	remaining 1218, 39 met the inclusion	
	measurement tools	terms related to signs and	criteria. Thirty-four articles focusing	
	associated with patient	symptoms of CABP and existing	on CABP signs and symptoms were	
	experience of CABP.	measurement and diagnostic tools.	identified. The most commonly	
			reported symptoms were cough,	
			chest pain, dyspnea, sputum	
			production, and fatigue.	

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

Generic PRO instruments and an interviewer-administered measure including 10 CABP symptoms have been used in CABP studies. Four CABP-specific instruments that assess patient-reported symptoms revealed notable methodological limitations; these were developed prior to the FDA PRO Guidance.

CABP	Development and	We adhered to the FDA PRO	The initial phase of instrument	2014
	qualification of a new	Guidance for instrument	development included a literature	(7)
	CABP PRO instrument	development and the 2010 FDA	review, a gap analysis, and	
	incorporating reliable,	qualification process for DDTs.	interviews with six clinical experts.	
	well-defined, and		The most commonly reported	

relevant endpoints for	symptoms identified were cough,
patients in terms of how	chest pain, dyspnea, sputum
they feel and function	production, and fatigue. These
in clinical trials of	findings informed the development
antibacterial drugs for	of a study protocol and interview
CABP	guide to elicit concepts from CABP
	patients. A draft PRO will be
	evaluated by an expert panel and
	refined through cognitive debriefing
	interviews with patients.

CABP	Explore CABP	Concept elicitation was conducted	Twenty patients participated in	2015
	symptoms as reported	by telephone interviews with	concept elicitation interviews. The	(8)
	by patients, and to	patients within 10 days of CABP	most common symptoms reported	
	develop a draft PRO	diagnosis. Data were analyzed	included a lack of energy or	

instrument designed to	using an iterative process to	tiredness, cough, and shortness of
comprehensively assess	identify themes and concepts and	breath. Nearly half the patients also
these symptoms.	was recorded in a saturation grid.	reported fever, chest pain and general
	Saturation was monitored	aches/pain as well as significant
	according to the FDA PRO	impacts on their social and physical
	guidance. Using this qualitative	functioning. Subsequent cognitive
	data, a draft PRO instrument was	debriefing in 9 patients and 3 clinical
	prepared. Cognitive debriefing	experts demonstrated that the items
	interviews were conducted to	were understandable, relevant, and
	assess item readability, relevance,	interpreted as intended.
	comprehensiveness, and content	
	validity.	These patient-reported CABP
		symptoms were shown to
		demonstrate content saturation and
		concept validity and provide unique

			information important for both	
			comprehensive evaluation of	
			individuals with CABP and	
			evaluation of new antibacterial	
			treatments.	
HABP	Literature review was	MEDLINE (1946 to 2014) and	Of 1384 abstracts, 225 were excluded	2015
	to identify signs,	EMBASE (1988 to 2014)	as duplicates or for missing content	(9)
	symptoms, and	databases were searched	and a further 1145 based on pre-	
	measurement tools	individually and in combination	specified criteria. Six articles met the	
	associated with	using terms related to Hospital-	inclusion criteria. The most	
	patients' experience of	Acquired Pneumonia (HAP),	frequently cited signs and symptoms	
	HABP.	HABP, signs and symptoms, and	of HABP were fever, cough, purulent	
		patient-reported outcomes.	sputum, dyspnea, rales, chest pain,	
			and elevated respiratory rate. No	
			PRO measures for assessing HABP	

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

signs and symptoms were identified

in the literature. Current HABP

clinical trials have not included end

points that directly measure how a

patient feels and functions.

* In collaboration with Oxford Outcomes Research of ICON Plc.

FNIH: Foundation for the National Institutes of Health

ABSSSI: Acute bacterial skin and skin structure infections

CABP: Community-acquired bacterial pneumonia

HABP: Hospital-acquired bacterial pneumonia

Citations

- Cimms TA, DeBusk K, Howard K, et al. Clinical measurement concepts in acute skin and skin structure infections and other skin abnormalities: A comprehensive literature review [Abstract PRM104]. In: Program and abstracts of the International Society for Pharmacoeconomics and Outcomes Research 18th Annual International Meeting (New Orleans), 2013.
- Cimms TA, DeBusk K, Howard K, et al. Acute bacterial skin and skin structure infections (ABSSSI) signs/ symptoms and PROs: A comprehensive literature review. [Abstract PRM110]. In: Program and abstracts of the International Society for Pharmacoeconomics and Outcomes Research 18th Annual International Meeting. (New Orleans), 2013.
- 3. Powers JH, Siuciak JA, Llorens L, et al. Development of a new patient reported outcome (PRO) measure for acute bacterial skin and skin structure infections (ABSSSI). [Abstract PRM181]. In: Program and abstracts of the International Society for Pharmacoeconomics and Outcomes Research 18th Annual International Meeting (New Orleans), 2013.
- 4. Powers JH, Portalupi S, Devine J, et al. Acute bacterial skin and skin structure infections (ABSSSI): Development of a new patient reported outcome (PRO). [Abstract PSS31]. In: Program and abstracts of the International Society for Pharmacoeconomics and Outcomes Research 18th Annual International Meeting (New Orleans), 2013.

- 5. Powers JH, Howard K, Saretsky T, et al. Development of a patient-reported outcome instrument (Skinfect-PRO) to standardize and qualify symptoms of acute bacterial skin and skin structure infection (ABSSSI) [Abstract PIN85]. In: Program and abstracts of the International Society for Pharmacoeconomics and Outcomes Research 20th Annual International Meeting (Philadelphia), 2015.
- 6. Cimms TA, Howard K, Portalupi S, et al. Signs, symptoms, and existing patient reported outcome (PRO) measures In community-acquired bacterial pneumonia (CABP): A comprehensive literature review. [Abstract PIN84]. In: Program and abstracts of the International Society for Pharmacoeconomics and Outcomes Research 19th Annual International Meeting (Montreal), 2014.
- Howard K, Portalupi S, Hoffmann S, et al. Development of a new patient-reported outcome (PRO) measure for communityacquired bacterial pneumonia (CABP). [Abstract PIN85]. In: Program and abstracts of the International Society for Pharmacoeconomics and Outcomes Research 19th Annual International Meeting (Montreal), 2014.

- 8. Howard K, Clifford S, Powers JH, et al. Community-acquired bacterial pneumonia (CABP): Development of a new patientreported outcome (PRO) measure [Abstract PIN84]. In: Program and abstracts of the International Society for Pharmacoeconomics and Outcomes Research 20th Annual International Meeting (Philadelphia), 2015.
- Saretsky T, Clifford S, Hoffmann SC, et al. Signs, symptoms, and existing patient-reported outcome (PRO) measures in hospital-acquired bacterial pneumonia (HABP): A comprehensive literature review [Abstract PIN86]. In: Program and abstracts of the International Society for Pharmacoeconomics and Outcomes Research 20th Annual International Meeting (Philadelphia), 2015.

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

FDA Definition of a Patient-Reported Outcome

"A PRO is any report of the status of a patient's health condition that comes directly from the patient, without interpretation of the patient's response by a clinician or anyone else. The outcome can be measured in absolute terms (e.g., severity of a *symptom*, *sign*, or state of a disease) or as a change from a previous measure. In clinical trials, a PRO instrument can be used to measure the effect of a medical intervention on one or more *concepts* (i.e., the *thing* being measured, such as a symptom or group of symptoms, effects on a particular function or group of functions, or a group of symptoms or functions shown to measure the severity of a health condition)."

Citation: US Food and Drug Administration, Center for Drug Evaluation. (2009, December). Guidance for Industry and FDA Staff: Patient-Reported Outcome Measures: Use in Medical Product Development to Support Labeling Claims. <u>http://www.fda.gov/downloads/Drugs/Guidances/UCM193282.pdf</u> Accessed 29 March 2015.

(page 2)

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

Table 3: FNIH Project Milestones and Deliverables

Acute Bacterial Skin and Skin Structure Infections (ABSSSI)	
Working Group Endpoint Initiation Meeting	May 5, 2010
Recommendations to the FDA for Interim Endpoints for Clinical Trials: Submission to Docket #FDA-2013-N-0556 ¹	August 26, 2011
ABSSSI Endpoint and Patient-reported Outcome (PRO) Development Project Launch	July 27, 2012
DDT Qualification Letter of Intent: PRO Measure for Symptoms of ABSSSI	October, 4, 2012
Initial DDT Qualification Submission: ABSSSI PRO Interim Briefing Package (DDT COA 000018)	June 18, 2013
[Final Guidance for Industry Acute Bacterial Skin and Skin Structure Infections: Developing Drugs for Treatment] ²	October 2013
Draft ABSSSI PRO (Skinfect-PRO) Completed	November 11, 2015

Final DDT Qualification Submission: ABSSSI PRO Interim Briefing	January 23, 2015
Package (DDT COA 000018)	•
Community-acquired Bacterial Pneumonia (CABP)	
Working Group Endpoint Initiation Meeting (with ABSSSI)	May 5, 2010
Recommendations to the FDA for Interim Endpoints for Clinical Trials:	August 26, 2011
Submission to Docket #FDA-2009-D-0136 ¹	114gust 20, 2011
CABP Endpoint and PRO Development Project Launch	January 29, 2013
DDT Qualification Letter of Intent: PRO Measure for Symptoms of	April 2, 2013
CABP	· · · · · · · · · · · · · · · · · · ·
Initial DDT Qualification Submission: CABP PRO Interim Briefing	July 26 2013
Package (DDT COA 000019)	5 ary, 20, 2013
[Draft Guidance for Industry Community-Acquired Bacterial Pneumonia:	January 2014
Developing Drugs for Treatment] ²	January 2014
Draft CABP PRO (CAPBAC-PRO) Completed	January 19, 2014
Final DDT Qualification Submission: CABP PRO Interim Briefing	April 1, 2014

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

Package (DDT COA 000019) Hospital-acquired Bacterial Pneumonia (HABP) and Ventilator-associated Bacterial Pneumonia (VABP) Working Group Endpoint Initiation Meeting November 1, 2012 Interim Considerations for Clinical Trial Design: Submission to Docket July 15, 2013 #FDA-2013-N-05562 HABP PRO White Paper (FDABAA-13-00119): Development of a Patient Reported Outcome Instrument in Hospital-Acquired Bacterial August, 9 2013 Pneumonia [Draft Guidance for Industry Hospital-Acquired Bacterial Pneumonia and Ventilator-Associated Bacterial Pneumonia: Developing Drugs for May 2014 Treatment]² DDT Qualification Letter of Intent: PRO Measure for Symptoms of December 4, 2014 HABP

HABP/VABP Endpoint Development Project LaunchDecember 16, 2014

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

HABP PRO Development Project Launch	October 22, 2014
ABSSSI: Acute bacterial skin and skin structure infections	
CABP: Community-acquired bacterial pneumonia	
HABP: Hospital-acquired bacterial pneumonia	
VABP: Ventilator-associated bacterial pneumonia	

¹Talbot et al., Clin Infect Dis. **2012** Oct;55(8):1114-21 and Toerner et al., Clin Infect Dis. **2012** Oct;55(8):1122-3.

²FDA-Issued Guidance Document

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

Interim Considerations for Clinical Trial Design for the Study of

Hospital-Acquired Bacterial Pneumonia and

Ventilator-Associated Bacterial Pneumonia

Foundation for the National Institutes of Health

Biomarkers Consortium HABP/VABP Working Group

July 15, 2013

For submission to Docket #FDA-2013-N-0556

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

Executive Summary

- At FDA's request, this Working Group has been constituted to provide recommendations to support FDA's goal of
 articulating scientifically rigorous and clinically relevant hospital-acquired bacterial pneumonia (HABP)/ventilatorassociated bacterial pneumonia (VABP) drug development based on a non-inferiority (NI) design.
- Despite the potential clinical trial implementation feasibility issues that have been raised with current FDA HABP/VABP Guidance, including an all-cause mortality (ACM) endpoint, most Working Group participants are comfortable with ACM as an endpoint, especially for VABP, if trial feasibility could be addressed by changing other parameters of study design.
- The outstanding questions for use of ACM relate to timing of its assessment, as well as to whether there are suitable intermediate clinical endpoints. One concern with ACM is its lower incidence in registrational trials versus "real life." It is hypothesized that making exclusion criteria less restrictive, and thereby increasing the severity of illness in the enrolled population, has the potential to facilitate enrollment. The past practice of excluding those more ill patients who could have a poor outcome exacts a cost to a study of limited enrollment, lower ACM, and decreased

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

generalizability. The practical consequence of this challenge is that when the mortality rate for enrolled subjects falls much below 15% to 20%, trial sizes rapidly enlarge based on a change to the odds ratio metric. It is anticipated that enrolling a population with increased severity of illness would make trials more broadly generalizable while decreasing sample size of trials based on a risk-difference metric.

- All-Cause Mortality in VABP could be evaluated at day 14, or at day 28, or sometime in between (e.g., day 21); rates of ACM would be expected to be 10% to 15% (e.g., for day 14 ACM) and 20% to 25% (e.g., for day 28 ACM).
- For VABP sample size estimation and analyses, when mortality is at least 15% on the active control regimen, a riskdifference metric with an NI margin of 10% could be used.
- For HABP, a clinically meaningful endpoint of symptom improvement plus survival for non-ventilated patients could be based on the historical data for community-acquired bacterial pneumonia, for which there is a large treatment effect to day 7 of antibacterial drug therapy.
- There was some concern in the Working Group that mortality and other differences between HABP and VABP suggest these are different diseases, meaning that combining both in a single trial could raise methodological issues.
- A number of candidate changes to other aspects of trial design (e.g., primary analysis set) were identified as promising potential approaches to improving feasibility, while maintaining scientific validity.

- The Working Group remains very interested in evaluating the potential application of alternative endpoints (e.g., improved oxygenation) for VABP and considering how they could be evaluated and qualified as endpoints.
- The next step for the Working Group is to examine the data from a single HABP/VABP trial, contributed in kind, to understand the data that are available (e.g., prevalence of respiratory symptoms at trial enrollment and their severity, mortality rate over time).
- Subsequently, a formal statistical analysis plan will be drafted; data from a number of HABP/VABP trials contributed in kind will be analyzed, with the results used to inform the Working Group's final recommendations to FDA.

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

Background

At FDA's request, this Working Group has been constituted to provide recommendations to support FDA's goal of articulating scientifically rigorous and clinically relevant HABP/VABP drug development guidance that is also feasible for sponsors to implement in terms of both financial cost and time. The HABP/VABP Working Group is building upon the work of the FNIH Biomarkers Consortium Community-Acquired Bacterial Pneumonia (CABP)/Acute Bacterial Skin and Skin Structure Infections (ABSSSI) Project Team. Forthcoming recommendations will be based on an evidenced-based, hypothesis-testing endeavor through analysis of HABP/VABP clinical trial data contributed in kind. In addition to FDA, other likely beneficiaries include clinicians, investigators, and patients.

Working Group Goal and Processes

The goal of the HABP/VABP Working Group's efforts is to identify potential changes to study design and analysis that could improve the feasibility—while retaining reliability, scientific validity, and meaningfulness for patients, caregivers, and clinicians—of HABP/VABP registrational clinical trials based on an NI design. HABP/VABP registrational trials based on a superiority design, as for narrow-spectrum antimicrobials intended to treat uncommon, multidrug-resistant pathogens, are not a focus of this group's initial deliberations.

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

This goal will be achieved via the following process:

- Evaluating the medical literature to determine those HABP/VABP signs, symptoms, and measures of function that are clinically relevant to treatment outcome, including mortality;
- Identifying feasibility constraints imposed by clinical trial requirements other than the choice of the primary endpoint (e.g., definition of statistical analysis populations);
- Determining whether it is possible to identify non-mortality endpoints, with specific regard to their potential use as the primary endpoint or as part of a composite primary endpoint. Using hypotheses generated based on the medical literature followed by examination of data from modern-day clinical trials, work on this question will focus specifically on defining the variables in such endpoints and quantifying a treatment effect on how patients feel and/or function; and
- Performing sensitivity analyses to understand how certain assumptions (e.g., day of endpoint assessment) impact these parameters.

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

Primary Endpoint: All-Cause Mortality vs. Non-Mortality vs. Composite (ACM Plus Non-Mortality)

- In a review of the literature for non-mortality clinical endpoints in HABP/VABP, FDA found 16 papers providing historical evidence for sensitivity to drug effects on the ACM endpoint. Only two papers described non-mortality outcome measures: Luna et al. [1] showed that serial Clinical Pulmonary Infection Score (CPIS) values did not improve among non-survivors and that PaO2/FiO2 did not improve or worsened among non-survivors, and Dennesen et al. [2] showed that PaO2/FiO2 correlated with clinical resolution. A discussion of non-mortality measures at the 2009 FDA co-sponsored workshop included PaO2/FiO2, time-on-ventilator (for VABP), and time-in-hospital. Subsequently, Esperatti et al. [3] found that an increase in the Sequential Organ Failure Assessment score from day 1 to day 5 of treatment and lack of improvement in PaO2/FiO2 were independently associated with increased 28-day mortality.
- In November 2011, the Anti-Infective Drugs Advisory Committee reviewed the HABP/VABP mortality endpoint based on four studies with mortality data at days 14, 21, and 28 [4]. In this set of data, a higher Acute Physiology and Chronic Health Evaluation II (APACHE II) score at baseline correlated with a higher mortality rate. The day 14 mortality rate is no more than 10% lower than 28-day mortality in a combined population. In HABP, mortality in treated patients ranged between 14% and 17% at day 14, and as expected, the VABP 14-day rate in treated patients was somewhat higher at 10% to 20%.

- However, data from trials recently conducted by one sponsor suggest a lower mortality rate can be observed (Rebecca Redman, written communication, June 2013). Evaluation of the data sets contributed in kind to the FNIH as part of this Working Group initiative should elucidate the mortality rate that has been observed in a broad range of modern-day trials using current enrollment criteria.
- The principal strengths of ACM are its simplicity of measurement (decreasing missing data) and unequivocal clinical relevance. ACM is, and will always remain, an acceptable choice as the primary endpoint in any nosocomial pneumonia trial. In addition, other endpoints cannot be evaluated independent of mortality since patients must be alive in order for measurements to be obtained (i.e., patients are not excluded from analysis due to death). Also, there is a clear and large treatment effect of antibiotics on ACM that justifies the NI trial design with an ACM endpoint.
- Concerns raised with ACM as an endpoint may include both competing risks (causes) of death and the timing of
 assessment. Potential concerns of some participants are that in some patients death may be caused a) by comorbidities
 that cannot be resolved by antimicrobial therapy and/or b) by withdrawal of care (especially for VABP). Some participants
 suggested that a day 28 assessment might enhance these potential concerns. Other participants countered that while these
 concerns would be relevant for superiority trials against active control antibiotics, they are not influential in the NI setting

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

because the historical evidence, despite its modest size, establishes that the treatment effects of antibiotics are very large even in the presence of competing risks.

- Concerns were also raised that a smaller clinical trial sample size could result in meaningful imbalances between treatment groups for variables that impact mortality such as chronic health conditions, acute comorbid diseases, and pharmacological interventions. Other participants countered that such concerns would apply to all endpoints, not only to ACM.
- Some participants noted that while it is always important to measure mortality—and certainly a drug should not increase mortality—alternative endpoints can also provide important indirect or direct insights about benefits for patients. Data from recent HABP/VABP registrational trials provide evidence of a non-mortality endpoint that is sensitive to treatment effect and is correlated with ACM [5] [6] [7], although substantive evidence currently is not available to determine whether an estimated treatment effect on that non-mortality endpoint would provide reliable insights about the true effect of treatment on direct measures of how a patient feels, functions, or survives [8].
- A composite endpoint that includes mortality could be clinically relevant; reflect how a patient feels, functions, or survives; and allow for more feasible clinical trials, although some noted that such an approach could have the undesirable effect of increasing clinical trial sample sizes and would still require justification of an NI margin.

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

• Global harmonization has suffered since, in general, the European Medicines Agency remains focused on non-mortality endpoints.

Statistical Considerations and Feasibility

- The decision to use either an odds-ratio or a risk-difference approach will have an impact on sample size requirements. If a fixed risk-difference margin is used, it will be important to indicate the lowest mortality rate at which the fixed risk difference would still be able to reliably demonstrate NI.
- The ACM endpoint is well defined, reliable, and clinically meaningful. Its strong level of clinical relevance justifies requiring only a single trial for registration, which in itself increases the feasibility of clinical trial conduct for this indication. Furthermore, when using absolute differences for an ACM endpoint, there is evidence-based justification for a 10% margin when mortality is at least 15% on the active control. Data reviewed by FDA from prior VABP trials confirm mortality should be in the range of 15% to 24% in the interval between day 14 to day 28. With the 10% margin and an active control survival of 15%, the total sample size would be approximately 544 patients in an intent-to-treat (ITT) analysis. Positive results would be obtained if the estimated ACM on the experimental regimen did not exceed that on the active control by at

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

least 3.5%. ACM also allows cost savings due to the simplicity of measuring that endpoint and enhances trial integrity by reducing the risk of missing data.

- However, if a microbiologically confirmed ITT (micro-ITT) primary analysis population is required, the required number of enrolled patients becomes much larger.
- The question of feasibility of various endpoints and trial design characteristics remains the subject of active debate in the Working Group. For example, whether a 500-patient sample size is achievable depends on the type of patient and other factors such as enrollment criteria and choice of analysis population; e.g., 500 PORT V CABP patients would be difficult to enroll. Other important impacts on feasibility include the ability to capture information and subsequent missing data. For example, it is likely not feasible to collect information on a biomarker every hour in an intensive care unit setting. One benefit of the ACM endpoint is that it is an easy endpoint to capture, so discussion of a composite endpoint should include consideration of the feasibility of assessing the chosen endpoint and risk of missing data for that endpoint. It is expected that analysis of actual clinical trial data will facilitate consensus-building on these important considerations.
- Other elements of NI trial design beyond choice of endpoint impact feasibility: the NI margin, the primary analysis population to determine treatment effect, and the inclusion/exclusion criteria.

- While the traditional outcome measure of clinical response is perceived by some experts as a subjective endpoint that is an indirect measure of patient benefit and currently cannot be used to set an NI margin, stakeholders agree that ACM is evaluated in any trial. ACM is a direct measure of patient benefit for which evidence exists to justify an NI margin. Further, ACM is a valid endpoint in that it is well defined and reliable and characterized by minimal ascertainment and measurement bias.
- Concerns about a lack of clinical trial feasibility based on the sample size required for an ACM endpoint may be minimized if this endpoint is analyzed using the ITT as the primary analysis set.
- Other endpoints may be considered, such as 14-day (or 21-day) ACM or a composite index, with the requisite requirements for validation and determination of the relationship between indirect and direct measures as well as justification of an NI margin. With regard to the NI margin, the 10% margin proposed by FDA is based on ACM in the ITT, not the micro-ITT, analysis population.
- Either a 14-day or a 28-day evaluation is likely an informative time point for ACM. At 14 days, the proportion of deaths from "other causes" (e.g., comorbid conditions) may be lower. However, the mortality rate will be lower at 14 days than at 28 days, and this may lead to the need for a larger study if the odds-ratio metric is used.
 Furthermore, for a marginally effective antibacterial drug, the time to death from inadequate treatment of infection

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

could be delayed beyond 14 days. If a 14-day ACM mortality assessment is chosen as the primary endpoint for efficacy, evaluation of 28-day ACM would still be a key secondary efficacy endpoint and an important safety assessment.

Selection of the primary analysis set may well represent the greatest opportunity for decreasing sample size while 0 maintaining scientific validity. The primary analysis set is defined as the population with the disease of interest in which a treatment effect will be evaluated; however, there are no "gold standard" criteria for the diagnosis of VABP. Diagnosis by lung histopathology and respiratory tract culture may lack sensitivity and specificity and, accordingly, may not add value to the diagnosis of VABP. Issues with microbiological confirmation include a large number of different sampling techniques, a high rate of false-positives, inability to distinguish between colonizing and pathogenic bacteria, and the lack of quantitative biotechnology sophistication at certain sites involved in a global trial. Thus, microbiological documentation is viewed by some as an imperfect clinical tool that justifies choice of an antibiotic against the possible causative pathogen isolated from the respiratory tract but not as a diagnostic tool for the disease of nosocomial pneumonia in a registrational trial. However, others expressed concern with this approach, citing a recent analysis showing that patients with microbiologically documented HABP/VABP have different baseline characteristics and different mortality rates than those without such documentation [9].

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

Specifically, following adjustment for potential confounders, patients with positive microbiology at baseline had higher hospital mortality and lower 90-day survival but, notably, a non-significantly lower 28-day survival. A proposed approach, balancing these varied concerns, suggests that with the present state of the art regarding microbiological diagnosis (e.g., availability of results with some meaningful delay), it makes sense to assess ACM primarily in the ITT analysis set but to place a substantial emphasis on results in the micro-ITT population. One option suggested is to require that a minimum percentage of the ITT population be microbiologically documented (e.g., 50% of ITT be micro-ITT), the results of which would be expected to be consistent with those in the primary ITT analysis.

- Accordingly, various values of the microbiological evaluability rate (the 50% rate noted above as well as alternative values) will be considered during the Working Group's data analysis, based upon previously observed data, and performance characteristics related to the expected sample size in a microbiologically confirmed population (i.e., uncertainty in the estimates received) will be used to provide a recommendation.
- Regardless, if employing ITT as the primary analysis population, it will be essential to ensure that the patients enrolled do not have an etiology other than HABP/VABP (e.g., pulmonary edema or venous thromboembolism).

- Overall, considering the ITT population as the primary efficacy set found broad support within the Working Group,
 with the micro-ITT population as a key secondary subset for sensitivity analyses.
- Using ITT as the primary efficacy set is most logical when the test agent is reasonably likely to have utility in the bulk of the enrolled population. For agents with a reasonably broad spectrum (e.g., an agent active against most gram-negative pathogens), this is a good assumption. For a narrow-spectrum agent (e.g., an agent active only against *Acinetobacter spp.*), population enrichment via enrollment based on rapid and sufficiently predictive microbiologic tools would seem necessary.
- The impact of prior antibiotic use has been an area of much discussion in HABP/VABP and other indications (especially CABP). Although allowing up to 24 to 48 hours of prior antibiotic treatment before study enrollment may substantially enhance trial feasibility in this indication, effective antibacterial drugs given promptly for the treatment of HABP/VABP may result in interpretability and integrity issues for an NI trial design. Some participants suggested that interpretability and integrity issues due to 24 hours of prior antibacterial drug therapy may be of less concern with a 28-day ACM endpoint. As a potential solution, trial sites should be encouraged to employ prompt or even "anticipatory" enrollment procedures so that for some patients the antibacterial drug therapy for

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

HABP/VABP can be initiated promptly within the context of the trial. Regardless, the Working Group expects that available data sets could be used to further evaluate this issue.

Finally, beyond ACM, all other potential alternative outcome measures will have to be "well defined and reliable," define concepts of direct relevance to patients or have evidence that indirect benefits reflect direct benefits, allow justification of an NI margin, and prove useful for increasing trial feasibility. Study feasibility is defined not only based on the trial size but also the ability to be conducted globally, to obtain valid measurements with minimal missing data, and to reach completion within a reasonable timeframe while maintaining scientific validity. Furthermore, study costs should not preclude small companies from embarking on such trials. In short, the feasibility of the study will depend on considering all drivers of study design: outcome measure, enrollment criteria, NI margin, inclusion and exclusion criteria, primary analysis set, and meaningfulness of the design and results in providing benefits to patients. Lastly, as an extension to addressing issues related to the individual clinical trial, the Working Group will address feasibility and scientific validity considerations of conducting separate or combined trials for HABP and VABP as well as of conducting separate development programs in these two indications.

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

Endpoints for HABP vs. VABP Other Than ACM

The endpoint for HABP vs. VABP trials could well be different given the differences in patient populations, diagnostic modalities, and mortality. While the 2010 FDA Guidance advised separating the indications, comments posted to the docket discouraged this approach, and now the FDA in fact would consider proposed approaches to study both indications in a single trial, at least as a starting point. Nonetheless, there was concern among some members in the Working Group that mortality rate and other differences between the two infections may suggest these are different diseases, which means that for a single trial enrolling both populations, a sponsor may have to prespecify the hypotheses based on the proportion of patients who have VABP or HABP. Even within the VABP subset there may be a bimodal distribution of patients based on drug clearance, for example. Most notably, a small subset of VABP patients could alter conclusions from what is primarily a HABP study, or NI on HABP could mask differences in VABP patients.

Potential HABP Endpoints

An FDA review of historical papers for a CABP clinical endpoint included a cross-study comparison of patient recovery before the availability of antibiotic drugs versus after. These data demonstrate a large difference in clinical resolution of symptoms between treated and untreated patients that begins as soon as day 1 and extends to day 7. In this approach, historical "crossstudy" comparisons represent the most appropriate data to justify a clinical recovery endpoint on symptoms for the NI trial

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

design in HABP/VABP, specifically a clinical recovery endpoint up to day 7. Collection of carefully defined patient symptoms would fulfill the requirement to assess how a patient feels, functions, and survives. Since HABP is more severe than CABP, the treatment effect should be large. Recent evidence from older hospitalized patients with CABP with comorbidities (patients similar to those with HABP) shows substantial symptom burden in these patients [10].

Potential VABP Endpoints

For VABP, a different approach may be necessary given the inability of most intubated patients to reliably report symptoms.

- *A priori*, various parameters were seen as biologically plausible elements of an early endpoint, but the possible choices vary in their strengths and weaknesses. It was agreed that the CPIS criteria are not adequate in terms of following patients over time given existing evidence on the lack of reliability of this measure. (See Schurink et al. [11] and Zilberberg et al. [12]; CPIS and other severity scores were discussed at the 2009 FDA co-sponsored workshop [13].)
- Improvement in oxygenation was another focal point of discussion. While the literature to date suggests that oxygenation status is prognostic of outcome, no data are available to show that it is sensitive to antibiotic treatment effect or that it has been rigorously evaluated as a surrogate endpoint for mortality. Specifically, while there are valid clinical uses for markers such as oxygenation and temperature and although data on some of these measures show a relationship to death,

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

correlation is not sufficient evidence for surrogacy. Comparator data are critical to establish the validity of a surrogate endpoint. On the other hand, this measure has significant face validity—it is not possible to survive if oxygenation does not ultimately improve. However, it is possible that patients could die despite improvements in oxygenation or that factors other than antibiotics might affect oxygenation. (See Guérin et al. [14]; improvement in oxygenation was discussed at the 2009 FDA co-sponsored workshop [13].)

- Similarly, although time-to-extubation or ventilator-free days could be endpoints of direct relevance to the VABP patient, the consensus was that variability in decisions to intubate and extubate could be problematic in developing these measurements into an endpoint, especially in a global trial with a multitude of investigator sites across which standards of critical care practice may vary. An additional requirement would be obtaining data on treatment effects for these measures to justify an NI hypothesis.
- For VABP, robust evidence defines a large treatment effect on the ACM endpoint, which thereby provides flexibility on the margin. Using an ITT analysis population, specifically for a broad-spectrum antibiotic trial, adds to the feasibility. On this basis, a single trial in VABP with a mortality endpoint at 21 to 28 days for a 10% margin on 20% mortality would require approximately 674 patients (337 per arm) at 90% power. A population with 15% mortality would require a sample size of approximately 544 patients. A sensitivity analysis in the micro-ITT population or any other relevant subgroups would not

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

require formal demonstration of NI; it should also include an analysis of prior antibiotic use as another sensitivity analysis. Whether this sample size reflects a feasible study was a matter of some debate.

Formulation of a Statistical Analysis Plan

Steps to guide initial development of a statistical analysis plan (SAP) include the following:

- Examining the definitions of various outcome measures in current trials;
- Examining the sensitivity to treatment effect of an earlier (e.g., 14-day or 21-day) ACM endpoint and its relationship to later time points like 28-day mortality;
- Exploring other potential alternative clinical endpoints such as symptoms (for which treatment effects are already known) for HABP and VABP by determining the frequency of the proposed parameter(s) at baseline and then over time during treatment;
- Evaluating potential indirect measures of treatment effects, including their definitions, timing, relationship to direct benefits, and effect sizes;

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

- Determining the impact on sample size of a potential new endpoint, including ACM at 14 days (or 21 days), an ITT primary analysis population, and altered inclusion/criteria such as prior antibiotic use (e.g., allowing 24 hours of prior therapy specifically for non-28-day ACM), increased severity of illness at baseline, and subgroups with and without receipt of prior therapy;
- Examining differing NI margin requirements;
- Examining performance characteristics related to the expected sample size in a microbiologically confirmed population;
- Standardizing the definition of pneumonia across the various databases for easier comparability (e.g., American Thoracic Society/Infectious Diseases Society of America criteria); and
- Identifying a set of prognostic factors (e.g., APACHE-II) based on the literature to estimate the association with mortality.

Significant discussion centered on how best to analyze the data to assess mortality, particularly in terms of understanding whether assessment can reasonably occur at an earlier time point, to avoid some of the possible attenuation of treatment effects due to non-infection-related deaths at day 28. Options included seeking evidence that allows a comparison of the

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

survival curves between active agents and either a non-specific therapy control or a control that has inferior effect on mortality. For these comparisons, from randomization to day 28, the goal would be to seek to identify where they diverge as well as examine instantaneous risk of mortality between groups at slices of time.

Determining attributable mortality was discussed, but it was generally agreed that attribution in a clinical trial setting is so challenging that it cannot be done in this context. Most participants considered that attribution is not necessary given the large treatment effects of antibiotics (M1) relative to the surrogate estimate of placebo effect via inadequate or delayed treatment [15]. However, others were concerned that rates of non-attributable mortality could be so high as to reduce assay sensitivity of ACM [16]; it was also noted that the historical evidence of treatment effect derives from a relatively small data set [15].

As noted above, one hypothesis can be based on the approach in ABSSSI and CABP. Given the biological and clinical similarities of HABP and CABP, assessing the quality of the data sets to support a CABP-like 4-point symptom measure for HABP seemed a reasonable starting point to most participants as an interim outcome measure. What is needed for HABP/VABP is to understand when deaths occurred and also, using information on baseline prevalence of symptoms, when these symptoms changed over time, and the distribution of outcomes/rates. The effect of changing the number of symptoms, the amount of improvement required over baseline, and/or the timing of assessment will be examined. With regard to VABP, it was noted

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

that the work done in ABSSSI relied on a historical data set to establish the marker of erythema. Similarly, the oxygenation ratio as a marker tracks with the mortality outcome and was argued by some to be on the causal pathway of disease. However, others cautioned against extrapolating the strategy of ABSSSI to establish oxygenation as a surrogate endpoint for VABP given that lesion size is a clinician-reported outcome with a demonstrated relationship to patient pain while oxygenation is a biomarker whose relationship to direct measures of benefit remains to be defined.

Next Steps

- The first step will be a high-level descriptive statistical analysis of the available data to inform development of the formal SAP.
- The group accepted that a preliminary hypothesis for HABP is that a symptom plus mortality-based endpoint built on the model of CABP could perform well. To that end, the first pass through the data can assess whether these symptom data exist and, if so, what was their severity and distribution at baseline and the frequency of measurement and rates over time.
- For VABP, a working hypothesis is that the ACM endpoint could be assessed at an earlier time point; thus, the first review of the data sets will be with an eye toward determining if the data can support that hypothesis. In addition, other clinical markers of interest in VABP will be explored (e.g., improvement in oxygenation).

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

- These exploratory descriptive analyses will be performed on a single HABP/VABP trial available to the Working Group.
- Thereafter, a formal SAP will be articulated, approved by the Working Group, and implemented using all the in-kind

clinical trial data sets. The focus will be on understanding the impact of differing outcome definitions, outcome timing, analysis population assumptions, and enrollment criteria on the feasibility of HABP/VABP trial conduct.

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

Working Group Members

The conclusions described within this document represent the work of the FNIH Biomarkers Consortium HABP/VABP

Working Group:

- Jeff Alder, Ph.D. (Bayer)
- Partha Bagchi, Ph.D. (Johnson and Johnson)
- Steve Barriere, Pharm.D. (Theravance)
- Helen W. Boucher, M.D., FACP (Tufts University, IDSA)
- Laurie Burke, R.Ph., M.P.H. (FDA)
- Becky Coleman, Pharm.D. (Theravance)
- Lynn Connolly, M.D. (Achaogen)
- Edward Cox, M.D. (FDA)
- Aaron Dane, M.Sc. (AstraZeneca)
- Anita Das, Ph.D. (InClin)
- Dennis M. Dixon, Ph.D. (NIH/NIAID)

- Michael Dudley, Pharm.D. (Rempex)
- Barry Eisenstein, M.D., FACP, FIDSA (Cubist)
- Thomas File, M.D. (Summa Health System)
- Tom Fleming, Ph.D. (University of Washington)
- Dean Follmann, Ph.D. (NIH/NIAID)
- David Friedland, M.D. (Cerexa)
- Ian Friedland, M.D. (Cubist)
- Kenneth Hillan, Ph.D. (Achaogen)
- Alan Hopkins, Ph.D. (Theravance)
- Nicholas Kartsonis, M.D. (Merck)
- Charles Knirsch, M.D., M.P.H. (Pfizer)
- Mark Kunkel, M.D. (Pfizer)
- Chin-Yu Lin, Ph.D. (Achaogen)
- Lily Llorens, Ph.D. (Cerexa)
- Daniel Meyer, Ph.D. (Pfizer)

- Roger Novak, Ph.D. (Sanofi)
- Elektra Papadopoulos, M.D. (FDA)
- John Powers, M.D. (NIH)
- Philippe Prokocimer, M.D. (Trius)
- Rebecca Redman, M.D. (Johnson and Johnson)
- John Rex, M.D., FACP (AstraZeneca)
- Dan Rubin, Ph.D. (FDA)
- Ashley Slagle, Ph.D. (FDA/CDER, CTR)
- Judy Siuciak, Ph.D. (FNIH)
- Will Stubbings, Ph.D. (now Achim Kaufhold, M.D.) (Basilea Pharmaceutica, Ltd.)
- Anthony Suffredini, M.D. (NIH/CC/CCMD)
- George H. Talbot, M.D., Co-Chair (Talbot Advisors, IDSA)
- Joe Toerner, M.D., Co-Chair (FDA)
- John Tomayko, M.D. (GSK)
- Antoni Torres, M.D. (Catedràtic de Medicina Hospital Clínic, Barcelona, Spain)

Talbot GH, Powers JH, Hoffmann SC. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update from the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016.

References

- ¹ Luna CM, Blanzaco D, Niederman MS, et al. Resolution of ventilator-associated pneumonia: prospective evaluation of the clinical pulmonary infection score as an early clinical predictor of outcome. Crit Care Med. **2003**;31(3):676–82.
- ² Dennesen PJ, van der Ven AJ, Kessels AG, Ramsay G, Bonten MJ. Resolution of infectious parameters after antimicrobial therapy in patients with ventilator-associated pneumonia. Am J Respir Crit Care Med. **2001**;163(6):1371–75.
- ³ Esperatti M, Ferrer M, Giunta V, et al. Validation of predictors of adverse outcomes in hospital-acquired pneumonia in the ICU. Crit Care Med. **2013** Jun 11 [Epub ahead of print].
- ⁴ Meeting materials, November 4, 2011, Meeting of the Anti-Infective Drugs Advisory Committee. Available at: <u>http://www.fda.gov/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/Anti-InfectiveDrugsAdvisoryCommittee/ucm242307.htm</u>
- ⁵ Kollef MH, Chastre J, Clavel M, et al. A randomized trial of 7-day doripenem versus 10-day imipenem-cilastatin for ventilatorassociated pneumonia. Crit Care. 2012;16(6):R218.
- ⁶ Ramirez J, Dartois N, Gandjini H, et al. A randomized phase 2 trial to evaluate the clinical efficacy of two high tigecycline dosage regimens versus imipenem/cilastatin in hospital-acquired pneumonia. Antimicrob Agents Chemother. **2013**;57(4):1756–62.
- ⁷ Wunderink RG, Niederman MS, Kollef MH, et al. Linezolid in methicillin-resistant *Staphylococcus aureus* nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis. **2012**;54(5):621–29.

⁸ Fleming TR, Powers JH. Biomarkers and surrogate endpoints in clinical trials. Stat Med. **2012**;31(25):2973–84.

- ⁹ Giunta V, Ferrer M, Esperatti M, et al. Intensive care unit acquired pneumonia with or without etiologic diagnosis: a comparison of outcomes. Crit Care Med. In press.
- ¹⁰ Wyrwich KW, Yu H, Sato R, Strutton D, Powers JH. Community-acquired pneumonia: symptoms and burden of illness at diagnosis among US adults aged 50 years and older. Patient. 2013;6(2):125–34.
- ¹¹ Schurink CA, Van Nieuwenhoven CA, Jacobs JA, et al. Clinical pulmonary infection score for ventilator-associated pneumonia: accuracy and inter-observer variability. Intensive Care Med. **2004**;30(2):217–24.
- ¹² Zilberberg MD, Shorr, AF. Ventilator-associated pneumonia: the clinical pulmonary infection score as a surrogate for diagnostics and outcome. Clin Infect Dis. 2010;51 Suppl 1:S131–35.
- ¹³ Meeting materials, "Clinical Trial Design for Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia," a public workshop co-sponsored by the FDA and professional societies. Available at: http://www.fda.gov/Drugs/NewsEvents/ucm169877.htm
- ¹⁴ Guérin C, Reignier J, Richard J-C, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.
- ¹⁵ Sorbello A, Komo S, Valappil T, Nambiar S. Registration trials of antibacterial drugs for the treatment of nosocomial pneumonia. Clin Infect Dis. **2010**;51 Suppl 1:S36–41.
- ¹⁶ Muscedere JG, Day A, Heyland DK. Mortality, attributable mortality, and clinical events as end points for clinical trials of ventilator-associated pneumonia and hospital-acquired pneumonia. Clin Infect Dis. 2010;51 Suppl 1:S120–25.