SUPPLEMENTARY FIGURES AND TABLES

Supplementary Figure S1: Metastatic characteristics of BrC cell sublines. A. Overview of the establishment of invasive and non-invasive sublines derived from the mouse 4T1-luc2 BrC cell line. **B**, **C**. *In vitro* migration and invasion activities of the BrC cell sublines. The activities were measured *in vitro* using transwell chambers, as described in the Materials and Methods. (B) Representative fields of invasive cells on the membrane. (C) Data represent the mean \pm SD of three replicates. **P < 0.01. Scale bar = 10 µm. **D**. Metastatic potentials of the BrC cell sublines *in vivo* (n = 10). The formation and incidences of lung metastasis in mice that received intravenous tail injections of the cell sublines (4T1-luc2-NM and 4T1-luc2-M). Representative images of mouse lungs are shown.

Supplementary Figure S2: MiR-101 expression in 4T1-luc2-M and 4T1-luc2-NM cell lines subjected to different treatments. Quantitative RT-PCR assays of 4T1-luc2-M cells transfected with miR-101 mimics or a negative control mimic (miR-NC), and 4T1-luc2-NM cells transfected with as-miR-101 or as-miR-NC. The expression level of miR-101 was normalized to that of U6 RNA. Data represent the mean \pm SD of three replicates. **P < 0.01.

Supplementary Figure S3: The knockdown efficiency of siCXCR7. A, B. Quantitative RT-PCR (A) and western blot (B) analyses of CXCR7 expression in 4T1-luc2-M cells transfected with 100 nM siCXCR7 or the corresponding siNC control. The *CXCR7* mRNA expression level was normalized to that of *GAPDH*, and the expression level of β -actin was used as a control for western blotting. (A) Data are represented as the mean ± SD of three replicates. **P < 0.01. (B) A representative western blot is shown.

Supplementary Figure S4: Exogenous CXCR7 protein expression in 4T1-luc2-M cells transfected with a CXCR7 plasmid. A. Western blot analyses of CXCR7 expression in 4T1-luc2-M cells transfected with pUNOI or pUNOI-mCXCR7 plasmid. B. The relative CXCR7 protein expression in the above groups. Exogenous CXCR7 protein expression was indicated. The CXCR7 protein expression level was normalized to that of β -actin. (A) A representative western blot is shown. (B) Data are represented as the mean \pm SD of three replicates. **P < 0.01.

Supplementary Figure S5: Overexpression of miR-101 and knockdown of CXCR7 in xenograft tumors. Female BALB/c mice (5–7 weeks old) were injected subcutaneously with 4T1-luc2-M cells that were infected with a control lentivirus (Lenti-pGCsi or Lenti-pLKO.1) or a recombinant lentivirus expressing a miR-101 precursor (Lenti-pGCsi-miR-101) or shCXCR7 (Lenti-shCXCR7) (n = 5 mice/group). The tumors were removed 6 weeks after subcutaneous xenografting. A. A qRT-PCR analysis of miR-101 expression in xenograft tumors derived from 4T1-luc2-M cells that were infected with Lenti-pGCsi or Lenti-pGCsi-miR-101. The expression level of miR-101 was normalized to that of U6 RNA. B. Western blot and qRT-PCR analyses of CXCR7 protein and mRNA levels in xenograft tumors derived from 4T1-luc2-M cells that were infected with Lenti-pGCsi-miR-101. C. Western blot and qRT-PCR analyses of CXCR7, and p-STAT3 protein and mRNA levels in xenograft tumors derived from 4T1-luc2-M cells that were infected with Lenti-pGCsi or Lenti-pGCsi-miR-101. C. Uestern blot and qRT-PCR analyses of CXCR7, and p-STAT3 protein and mRNA levels in xenograft tumors derived from 4T1-luc2-M cells that were infected with Lenti-pGCsi or Lenti-pGCsi-miR-101. C. Western blot and qRT-PCR analyses of CXCR7, and p-STAT3 protein and mRNA levels in xenograft tumors derived from 4T1-luc2-M cells that were infected with Lenti-pLKO.1 or Lenti-shCXCR7. (A–C) Data represent the mean ± SD of three replicates. *P < 0.05. (B, C) The *CXCR7* mRNA expression level was normalized to that of *GAPDH*, and the expression level of β -actin was used as a control for western blotting. Representative western blots are shown.

Supplementary Table S1. Correlations between CXCR7 protein levels and the clinicopathological characteristics of BrC patients

Clinical pathology		CXCR7 levels (IHC)			<i>P</i> -value
	- or +	++	+++or ++++		
Age (years):					
≤63	27	37	70	134	0.0894
>63	32	29	53	114	
Carcinoma:					
Primary	61	63	124	248	<0.0001*
Adjacent	127	118	3	248	
Clinical stage:					
Ι	16	12	14	42	0.0003*
II	13	15	50	78	
III	32	37	59	128	
Lymph node status:					
Metastasis	23	41	83	147	<0.0001*
No metastasis	38	26	37	101	

The *P*-values were calculated using chi-square tests of CXCR7 levels in the different subgroups. *P < 0.05.

Gene Primer sequences		s (5' to 3')
CXCR7 3'-UTR(WT)	Forward	GAATTCGACGGGTTTACTTGTTTT
	Reverse	CTGCAGGGAAACAAAAATCTTTAT
CXCR7 3'-UTR (MUT)	Forward	CACCAATAGTGAGAAATATTTCACTTAAAATTTAC
	Reverse	GTATTTAAATTTTAAGTGAAATATTTCTCACTATTG

Supplementary Table S2. The primers used to generate the WT and MUT CXCR7 3'-UTRs

Supplementary Table S3. The siRNAs and miRNA mimics/inhibitor used in the study

Gene	Sequences (5' to 3')		
siRNA CXCR7	Sense	GGAGAGCGUGUAGAGCAGGTT	
	Antisense	CCUGCUCUACACGCUCUCCTT	
Negative control siRNA	Sense	UUCUCCGAACGUGUCACGUTT	
	Antisense	ACGUGACACGUUCGGAGAATT	
miR-101 mimic	Syn-mmu-miR-101 miScript miRNA M	imic	
miR-NC	AllStars Neg. Control siRNA		
as-miR-101	Anti-mmu-miR-101 miScript miRNA Inhibitor		
as-miR-NC	miScript Inhibitor Neg. Control		

Supplementary Table S4. The primers used for qRT-PCR analyses

Gene	Primer sequences (5' to 3')		
miR-101	Forward	CTACAGTACTGTGATAACTGAA	
	Reverse	Universal Primer (QIAGEN)	
U6	Forward	RNU6B_2 miScript Primer (QIAGEN)	
	Reverse	Universal Primer (QIAGEN)	
CXCR7	Forward	AGCCTGGCAACTACTCTGACA	
	Reverse	GAAGCACGTTCTTGTTAGGCA	
GAPDH	Forward	AGGTCGGTGTGAACGGATTTG	
	Reverse	TGTAGACCATGTAGTTGAGGTCA	