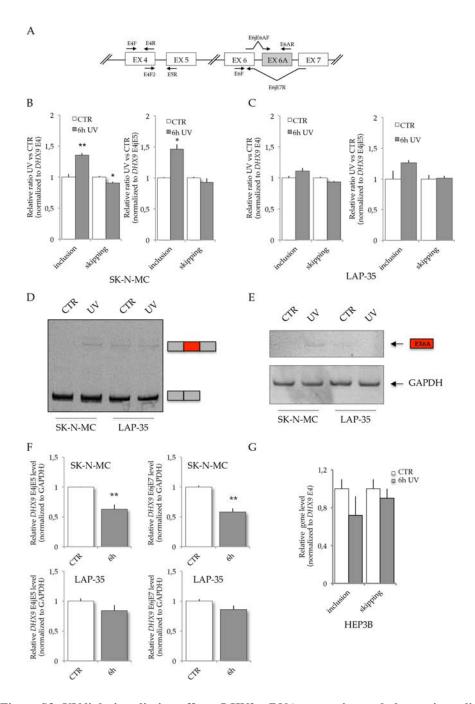
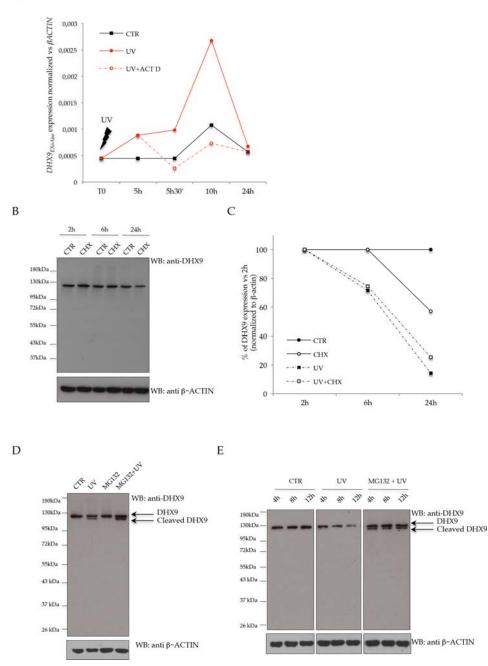

SUPPLEMENTARY FIGURES AND TABLES

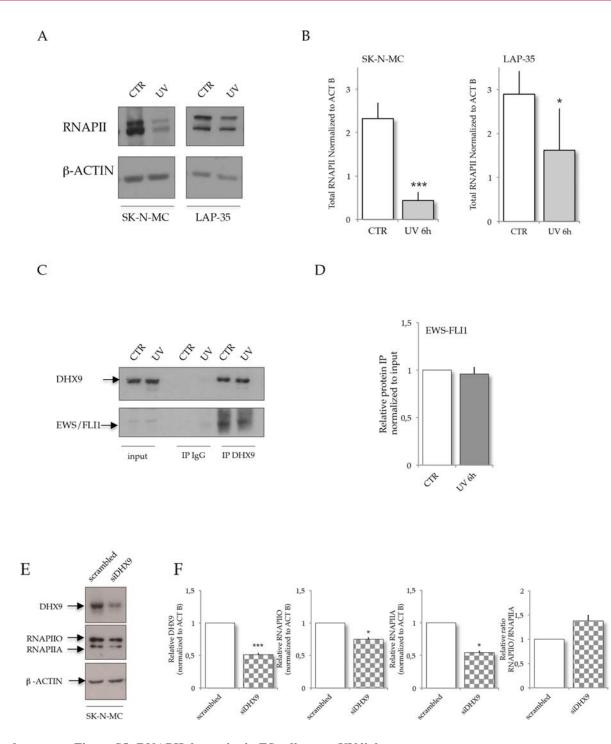


Supplementary Figure S1: Splicing sensitive arrays identified gene expression changes upon 10J/m² UV light irradiation. A. Scheme of the chromosomal translocation affecting SK-N-MC and LAP-35 ES cells. In the type 1 translocation, reported in SK-N-MC cells, *FL11* exon 5 is not included in the oncogene, while it is present in the type 2 translocation reported in LAP-35 cells. **B.** Venn diagram shows the overlap of gene expression signatures at gene level induced by 10 J/m² UV light irradiation in SK-N-MC and LAP-35 cells, as indicated, with a threshold of fold change > |2|. C. Genes down-regulated at the expression level both in the SK-N-MC and in the LAP-35 cells upon UV light irradiation. **D.** Genes up-regulated in the SK-N-MC and in the LAP-35 cells upon UV light irradiation either in SK-N-MC or in LAP-35 cells. The fraction of AS events in each of five different AS classes is indicated for all the events monitored in the array (black bars) and for those affected by UV light irradiation in SK-N-MC (gray) and in LAP-35 (hatched). Percentages of each category are shown in the table below the histogram. **F.** Venn diagram shows the overlap of gene expression signatures at AS level induced by 10 J/m² UV light irradiation in SK-N-MC and tAP-35 cells, as indicated, considering a threshold of fold change >|2|.

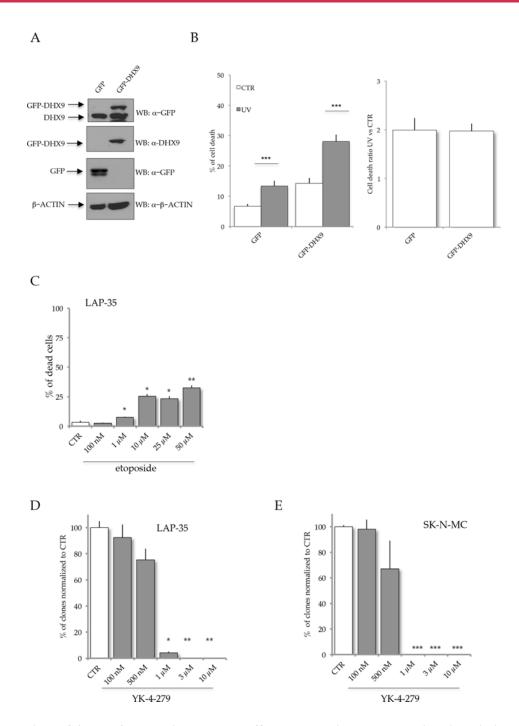
Oncotarget, Supplementary Materials 2015



Supplementary Figure S2: RT-qPCR validation of microarray-predicted AS changes in the indicated genes. A. to H. AS patterns are schematized in the upper part of each panel. Exon and exon-junction probes used to monitor AS events and to validate the microarray results are indicated. Histograms represent the ratio between qPCR amplification signals characteristic of each isoform, obtained from RNAs isolated from SK-N-MC (white) or LAP-35 (gray bars) cells treated with 10 J/m² UV light versus untreated. Ratios of AS amplificons were then normalized to the ratios corresponding to a constitutive exon (GE). Average and standard deviation from three independent biological replicas are shown. *p* values for gene/isoform expression changes are indicated (*p < 0.05, **p < 0.01, ***p < 0.001, statistical analysis was performed by Student's *t*-test).


Supplementary Figure S3: UV light irradiation affects *DHX9* mRNA expression and alternative splicing in SK-N-MC cells, but not in LAP-35. A. Scheme of *DHX9* alternative splicing event with the primers used to monitor the event. B. and C. RT-qPCR analysis of microarray-predicted AS changes in *DHX9* mRNA, normalized to a constitutive exon (exon 4, left panel) or to two consecutive constitutive exons (exon 4 and 5; right panel). Inclusion and skipping of exon 6A are reported both for SK-N-MC (B) and LAP-35 (C) cells. D. Standard PCR using primers spanning *DHX9* AS event. Bands corresponding to either inclusion or skipping of exon 6A are indicated both in SK-N-MC and in LAP-35 cells. E. Standard PCR using primer pairs to amplify exon 6A (upper panel) and GAPDH (lower panel) both in SK-N-MC and in LAP-35 cells, as indicated. F. RT-qPCR analysis of microarray-predicted AS changes in *DHX9* mRNA, using exon junction primers spanning the consecutive exons 4–5 and 6–7. The values are normalized to *GAPDH* gene expression levels for SK-N-MC (upper panels) and LAP-35 cells (lower panels), as indicated. For all the panels, average and standard deviation from three independent biological replicas are shown. *p* values for gene/isoform expression changes are indicated (**p* < 0.05, ***p* < 0.01, ****p* < 0.001, statistical analysis was performed by Student's *t*-test). G. RT-qPCR analysis of inclusion and skipping of *DHX9* exon 6A upon UV light irradiation in HEP3B cells. The values are normalized to a constitutive exon (exon 4).

Α



Supplementary Figure S4: DHX9 protein stability and degradation. A. RT-qPCR analysis of SK-N-MC cells irradiated with UV light (10J/m²) and treated with actinomycin D (10 µg/ml) 5 hours after UV treatment. Cells were harvested at different time points (5 h, 5 h+30', 10 h, and 24 h) after treatment. Plots represent exon 6A-containing *DHX9* transcript normalized to *β*-*ACTIN*. **B.** Western blot analysis of total extracts from SK-N-MC harvested at 2, 6 and 24 h of treatment with 10 µg/ml cycloheximide, using antibodies against DHX9 (Santa Cruz Biotechnology) and β-ACTIN (Merk Millipore). 15 µg of total extracts were loaded in each lane. **C.** Quantification of western blot signals from SK-N-MC harvested at 2, 6 and 24 h of treatment with 10 µg/ml cycloheximide, with or without UV light irradiation. The values are calculated as a percentage of DHX9 expression versus the time point at 2 hours. **D.** Western blot analysis of total extracts from SK-N-MC harvested at 4 hours after treatment with 10 µM MG132, with or without UV light irradiation. The PVDF membranes were loaded in each lane. **E.** Western blot analysis of total extracts from SK-N-MC harvested at 4 hours after treatment severe hybridized with antibodies against DHX9 (Santa Cruz Biotechnology) and β-ACTIN (Merk Millipore). 15 µg of total extracts from SK-N-MC harvested at 4 hours after treatment with 10 µM MG132, with or without UV light irradiation. The PVDF membranes were loaded in each lane. **E.** Western blot analysis of total extracts from SK-N-MC harvested at 4, 8 and 12 hr of treatment with 10 µM MG132, with or without UV light irradiation. The PVDF membranes were hybridized with antibodies. **E.** Western blot analysis of total extracts were loaded in each lane. **E.** Western blot analysis of total extracts from SK-N-MC harvested at 4, 8 and 12 hr of treatment with 10 µM MG132, with or without UV light irradiation. The PVDF membranes were hybridized with antibodies against DHX9 (Santa Cruz Biotechnology) and β-ACTIN (Merk Millipore). 15 µg of to

Oncotarget, Supplementary Materials 2015

Supplementary Figure S5: RNAPII dynamics in ES cells upon UV light treatment. A. Western blot analysis of total extracts from SK-N-MC and LAP-35 cells irradiated with 10 J/m² and harvested 6 hr after treatment, using antibodies against RNAPII (N20, Santa Cruz Biotechnology) and β -ACTIN (Merk Millipore). 20 µg of total ES extracts were loaded in each lane. **B.** Quantification of western blot signals; error bars represent standard deviation of the quantification of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001. **C.** DHX9 interaction with EWS-FLI1 was monitored by immunoprecipitation experiments in LAP-35 cells, in normal condition and upon UV light treatment. **D.** Quantification of protein retained on DHX9 containing beads after extensive washes. Relative Protein immunoprecipitated was normalized to input content. **E.** Western blot analysis of DHX9, RNAPII and β —ACTIN expression in extracts (10 µg) from SK-N-MC cells transfected with either scrambled or *siDHX9* oligonucleotides, prepared 72 hr after transfection. **F.** Histograms represent quantification of western blot signals shown in (F) from three independent experiments (mean ± s.d.). In all panels statistical analysis was performed by Student's *t*-test: *p < 0.05, **p < 0.01, ***p < 0.001.

Supplementary Figure S6: DHX9 expression does not affect HeLa resistance to UV light irradiation. Hela cells were transfected with either GFP or GFP-DHX9 cDNAs. 48 hours after transfections cells were treated with 10 J/m² UV light and harvested 24 hours after treatment for FACS analysis. **A.** Western blot analysis of GFP, GFP-DHX9 and β —ACTIN expression in HeLa cells at 48 hours after transfection. 10 µg of extracts were loaded in each lane of a 6 or 10% SDS PAGE. **B.** Cell death was detected at 24 hours after the UV treatment by PI staining and flow cytometry analysis; histograms represent the percentage of cell death in GFP-positive CTR (white bars) and UV treated (grey bars) cells. (n = 3; mean \pm s.d.; p < 0.05, *p < 0.01, **p < 0.001 for CTR vs UV). On the right, cell death ratio of CTR and UV in GFP and GFP-DHX9 is shown. **C.** Propidium Iodide (PI) viability assay of LAP-35 cells treated with different concentrations of etoposide for 16 hours. The decrease in viability was expressed as relative percentage of dead LAP-35 cells treated with etoposide (grey bars) versus control (white bars, DMSO). In all panels statistical analysis was performed by Student's *t*-test: *p < 0.05, **p < 0.01, **p < 0.01, **p < 0.001. **D.** and **E.** Histograms represent the percentage of colony numbers (n = 3; mean \pm s.d.) of SK-N-MC (D) and LAP-35 (E) cells treated with different concentration of the inhibitor of EWS-FLI1-DHX9 interaction YK-4–279 (grey bars) versus DMSO treatment (white bars). Statistical analysis was performed by Student's *t*-test: *p < 0.05, **p < 0.01, **p < 0.01, **p < 0.01.

Supplementary Table S1: List of gene expression and alternative splicing changes upon 10 J/m² UV light irradiation in SK-N-MC and LAP-35 ES cells, and in HEP3B cells.

Supplementary Table S2: List of oligonucleotides used for RT-qPCR microarray validations, ChIP and knockdown experiments

Experiment		Primer name	Sequence
ChIP Experiment		CCND1_ChIP_RT F	AGGTGTGTTTCTCCCGGTTA
		CCND1_ChIP_RT R	CTGCCTTCCTACCTTGACCA
		TGFBR2_ChIP_RT F	CAGCGCTGAGTTGAAGTTGA
		TGFBR2_ChIP_RT R	AGGGAAGCTGCACAGGAGT
		ACTB_ChIP_RT F	TCTGCAGGAGCGTACAGAAC
		ACTB_ChIP_RT R	GTGGACATCTCTTGGGCACT
		Id2_ChIP_RT F	TGATAGACGTGCCACCTTCC
		Id2_ChIP_RT R	GGCTCGGCTCAGAATGAA
		c-myc_ChIP_RT2 F	GCAGAGAAAGGGAGAGGGTT
		c-myc_ChIP_RT2 R	AACAGAGTAAGAGAGCCGCA
	DHX9	DHX9_E6AF	GGAGGAGAATGAGATTGAGTGC
		DHX9_E6AR	GCTTTCAGGGGAACAACATC
		DHX9_E6jE6AF	GTCCTGATCACAACAGGTGG
			with DHX9_E6AR
		DHX9_E6F	TTTCAGAAAGAAAAGATCCAAGG
		DHX9_E6FjE7R	CATTTCTGCAATAAAGCTCCTG
		DHX9_E4F	ATCTCCGCCCCACTTACT
		DHX9_E4R	GAGAGCCAGATGTGGAGGAA
	UPF1	UPF1_E4F	AAGAGGTGACCCTGCACAAG
		UPF1_E4R	CACCACTGAGTCAGCTTTGG
	EWS-FLI1	EWS_EX7F	ATCCTACAGCCAAGCTCCAA
qPCR		FLI1_EX7R	GGCCGTTGCTCTGTATTCTT
	c-MYC	c-MYC F	CTCCACCTCCAGCTTGTACC
		c-MYC R	GCTGTCGTTGAGAGGGTAGG
	CCND1	CCND1 F	GTGCAAGGCCTGAACCTG
		CCND1 R	CGGGTCACACTTGATCACTC
	TGFBR2	TGFBR2 F	GAAGATGCTGCTTCTCCAAAG
		TGFBR2 R	TGCACTCATCAGAGCTACAGG
	ID2	Id2 F	CCCAGAACAAGAAGGTGAGC
		Id2 R	ATAGTGGGATGCGAGTCCAG
	GAPDH	GAPDH F	ATCACTGCCACCCAGAAGAC
		GAPDH R	GGATGCAGGGATGATGTTCT
	CIQBP	C1QBP_e2A_F	GAGAGCAGTGGCGTGATCT
		C1QBP_e2A_R	AGGCAGGAGAATTGCTTGAA
		C1QBP_e2A_e3_F	CTGAGTAGCTGGGATTACAGAATC

(Continued)

Experiment		Primer name	Sequence
		C1QBP_e3_R	TTGGTGGGATGCTGTTGTTA
		C1QBP_e2c_F	CAGAAGCATAAAACCCTCCCTA
		C1QBP_e2_e3_R	GAAAGTGACCGTGATTTTTTCC
		C1QBP_e2c_F	CAGAAGCATAAAACCCTCCCTA
		C1QBP_e2c_R	ATTTCGCTTCTGTCCCATTC
	CCNA2	CCNA2_e5_B_F	CCCCCAGAAGTAGCAGAGTTT
		CCNA2_e5_B_R	AGGCTGCTGATGCAGAAAGT
		CCNA2_e4_e5_C_F	TGCTATGCTGTTAGCCTCAAA
		CCNA2_e5_B_R	AGGCTGCTGATGCAGAAAGT
		CCNA2_e5_e6_D_F	AAGTTGAAAGTTTAGCAATGTTTTTG
		CCNA2_e6_R	CCCGTGACTGTGTAGAGTGC
		CCNA2_e4_e6_F	TGCTATGCTGTTAGCCTCTTTTT
		CCNA2_e6_R	CCCGTGACTGTGTAGAGTGC
		CCNA2_e4c_F	GAATGAGACCCTGCATTTGG
		CCNA2_e4c_R	CCTCTCAGCACTGACATGGA
	SIP1	SIP_e8_F	ATTCACTGATTCGGCAGCTT
		SIP_e8_e9_R	TCTCATCATCTTTGCTATCCACT
		SIP1_e9_e10_F	TTAATCTGCTTGGTTAGCAGGTA
		SIP1_e10C_R	TTGGCATTGTTTTCCTCAGA
		SIP1_e8_e10_F	TGAAGTGAGGCTCTTAGTGGTATTT
		SIP1_e10C_R	TTGGCATTGTTTTCCTCAGA
		SIP1_e10C_F	TTTAGCTGATGAGCCATCTTGA
		SIP1_e10C_R	TTGGCATTGTTTTCCTCAGA
	U2AF35	140–2A F	CGTAATCCCCAAAACAGTGC
		140–3 R	cgtcagcagactgggaaga
		140. exon1 Fge	ATCTTCGGCACCGAGAAAG
		140 E1.1/C4.1/E4.2 R	gcaatggtctggctaaacgtc
		140. exon1 Fge	ATCTTCGGCACCGAGAAAG
		140. exon2 Rge	tggctaaacgtcggtttattg
	CROP	CROP_e2B_F	AGAAAAGAGGATTCTTCTCTAGAGAAAG
		CROP_e2B_R	CTGCAGAGATCACTTCTCAGG
		CROP_e2_e2B_F	CACAAATACACGTTCTGATCTTGA
		CROP_e2B_R	CTGCAGAGATCACTTCTCAGG
		CROP_e2B_F	AGAAAAGAGGATTCTTCTCTAGAGAAAG
		CROP_e2B_e3_R	TTTTTCACACGGACCTGC
		CROP_e2_F	TTTTGTCCTGCGGAATTGTT
		CROP_e2_e3_R	TTTTTCACACGGACCAAGA

Experiment		Primer name	Sequence
		CROP_ex10C_f	TCTTGGACTTTGAAAACAGGA
		CROP_ex10C_b	TCCAAAGGCTAAGTAGAGCAGA
	AURKB	AURKB_e8_e8A'_F	CATGCACAATGAGAAGGTGG
		AURKB_e8A'_R	GGCGATAGGTCTCGTTGTGT
		AURKB_e8_e9_F	CATGCACAATGAGAAGGTGG
		AURKB_e9_R	GACAGATTGAAGGGCAGAGG
		AURKB_e8_F	GAGGAAGACAATGTGTGGCA
		AURKB_e8_R	ATGCGCCCCTCAATCAT
	TNFRSF10B	TNFRSF10B_e1_e2_ for	CGGTCCTGCTGTTGGTCT
		TNFRSF10B_e2_rev	AGGTGGACACAATCCCTCTG
		TNFRSF10B_e2_e3c_ for	TCCACCTGGACACCATATCTC
		TNFRSF10B_e3c_rev	GCAAGCAGAAAAGGAGGTCA
		TNFRSF10B_e1_e3c_ for	CGGTCCTGCTGTTGGACA
		TNFRSF10B_e3c_rev	GCAAGCAGAAAAGGAGGTCA
		TNFRSF10B_e2_for	CTGCTCTGATCACCCAACAA
		TNFRSF10B_e2_rev	AGGTGGACACAATCCCTCTG
	BATI	BAT1_EX1BF	tttggagtgccttccaagtg
		BAT1_EX1B_EX2R	CATCGTTCTCTGCCATAAcaag
		BAT1_EX5F	GAAGGATGAAGAGGTGCTGAA
		BAT1_EX5R	TGTGTTTGAGGTTGAGGCTCT
	siRNA	Scrambled	5' GGC AGC AGA GUU CAC UGC U-dCdG
		siDHX9	5'-AAG AAG UGC AAG CGA CUC UAG-dCdG