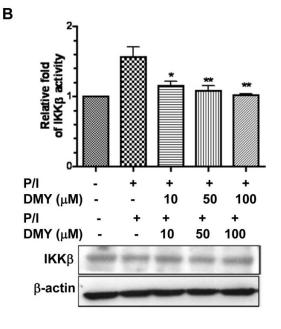
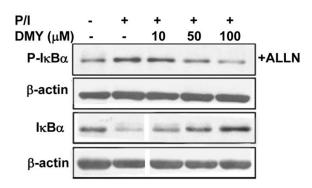
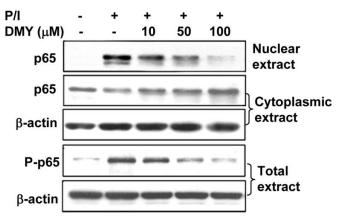
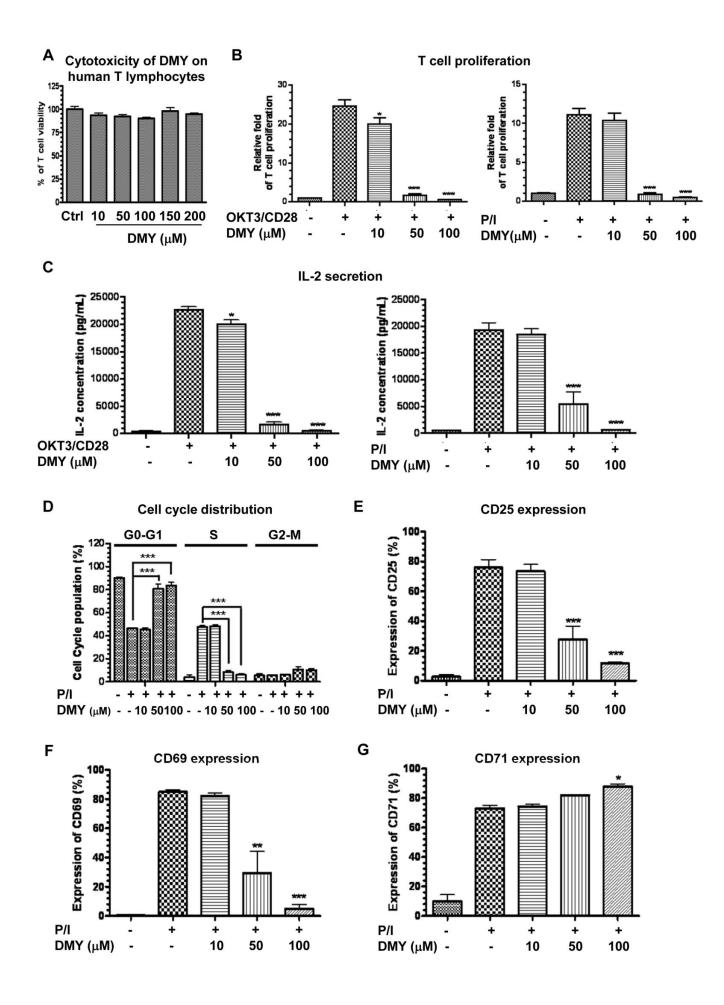

Mutation of Cysteine 46 in IKK-beta increases inflammatory responses


Supplementary Material

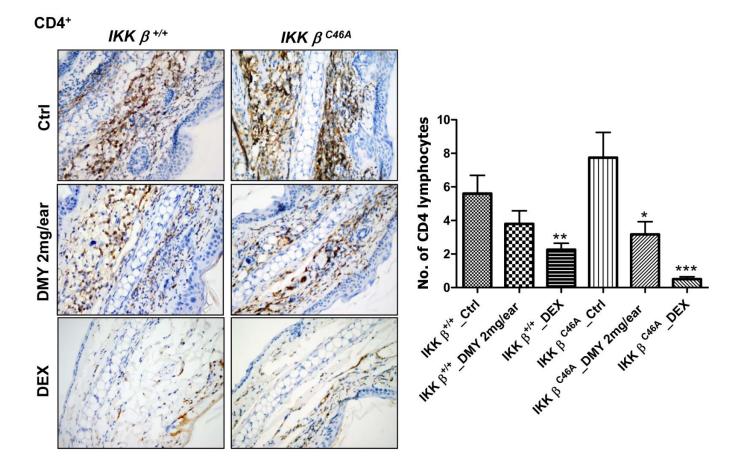




D



F


Fig. S1. Suppression of IKK-β–NF-κB signalling by DMY.

(A) Upper panel: DMY directly inhibited IKK-β activity. His-tagged human recombinant IKK- β (2 ng) was incubated with GST-I κ B α substrate in the presence of the indicated concentrations of DMY and 10 mM ATP. IKK- β inhibitor was the positive control provided in the screening kit. Lower panel: the expression of $I\kappa B\alpha$ in response to DMY treatment. (B) Upper panel: DMY suppressed PMA/ionomycin (P/I)-induced IKK- β activity in the isolated human T lymphocytes. Lower panel: the expression of IKK-B in response to DMY treatment. The isolated human T lymphocytes were treated with the indicated concentrations of DMY and then stimulated with 20 ng/ml PMA plus 1 µM ionomycin (P/I). Whole-cell extracts were harvested for IKK- β kinase assay or Western blotting. (C) DMY suppressed P/I- or OKT-3/CD28-mediated phosphorylation of IKK- α/β . (D) DMY prevented P/I-induced phosphorylation and degradation of I κ B α . (E & F) DMY abrogated the OKT-3/CD28- or P/I-mediated phosphorylation and nuclear translocation of NF-κB p65. Isolated human T lymphocytes were pretreated with the indicated concentrations of DMY, followed by co-stimulation by P/I, or the cells were treated with DMY with or without OKT-3/CD28 antibodies. For detection of phosphorylation of I κ B α , the cells were first incubated with DMY plus 100 μ M ALLN prior to P/I stimulation. Data represented the mean \pm SEM of three independent experiments. * P<0.05, **P<0.01, ***P<0.001, compared with P/I treatment alone.

Fig. S2. DMY inhibited IKK-β–NF-κB signalling and in turn suppressed human T cell activation and T cell surface marker expression.

(A) Cytotoxicity of DMY on T lymphocytes. (B) DMY inhibited OKT-3/CD28- or P/I-induced human T cell proliferation. (C) DMY inhibited OKT-3/CD28- or P/Iinduced IL-2 cytokine secretion. The isolated human T lymphocytes were costimulated with OKT-3/CD28 or P/I in the presence of the indicated concentrations of DMY. T cell proliferation was then measured by BrdU proliferation assay. For IL-2 cytokine measurement, the cell-free culture supernatants were harvested for IL-2 ELISA. (D) DMY arrested P/I-mediated cell cycle progression in isolated human T cells. Human T lymphocytes pretreated with the indicated concentrations of DMY and stimulated with or without P/I for 72 h. The cells were then fixed and stained with propidium iodide for cell cycle analysis. (E) DMY suppressed the P/I-mediated expression of the IL-2 receptor, CD25. (F) DMY suppressed P/I-mediated expression of the early-stage T cell activation marker CD69. (G) DMY slightly increased P/Imediated expression of the late-stage T cell activation marker CD71. The isolated human T cells pretreated with the indicated concentrations of DMY were costimulated with P/I. The cells were then stained with specific antibodies in the combination of CD3-PE with CD25-FITC or CD69-FITC or CD71-FITC for 30 min. The cell surface expression of CD25, CD69 and CD71 antigens were then analysed by flow cytometry. Data in each column represented the mean \pm SEM of three independent experiments. *P<0.05, **P<0.01, ***P<0.001.

Fig. S3. DMY treatment decreased the population of CD4⁺ T lymphocytes in the ear tissues of DTH-*IKK*- $\beta^{+/+}$ and -*IKK*- β^{C46A} mice. The CD4⁺ T cells were quantitated by immunohistochemical analysis of the ear sections from DTH mice. Bar charts represented the average number of CD4⁺ T lymphocytes found in the ear sections of both wild-type and mutant DTH animals.