PRMT1 promotes mitosis of cancer cells through arginine methylation of INCENP

Supplementary Material

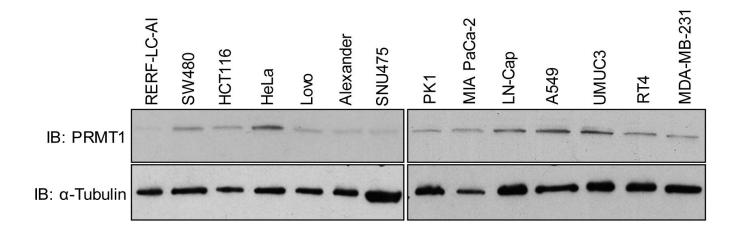
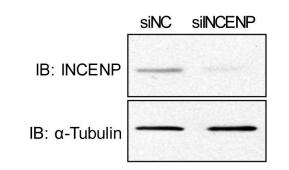



Figure S1: Protein expression levels of PRMT1 in various types of cancer cell lines. Fourteen cancer cell lines were lysed with CelLytic M reagent and samples were immunoblotted with an anti-PRMT1 antibody. α -Tubulin protein expression was used as an internal control.

В

Α

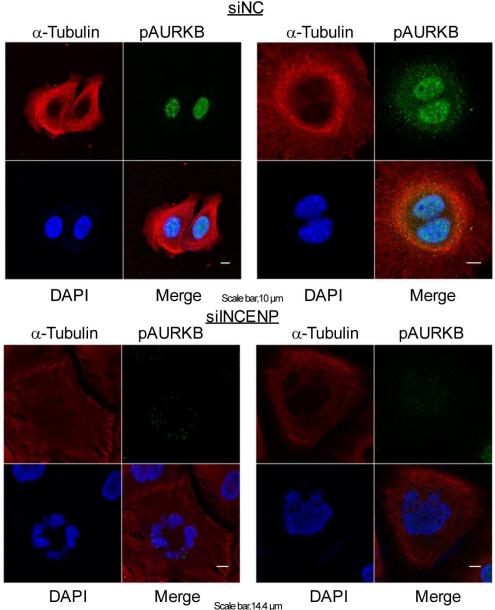


Figure S2: Knockdown of INCENP results in abnormal chromosome alignment and segregation. (A) HeLa cells were transfected with siNC and siINCENP for 72 h. Samples were immunoblotted with anti-INCENP and anti- α -Tubulin antibodies. (B) HeLa cells were transfected with siNC and siINCENP for 72 h. Cells were fixed with 4% paraformaldehyde, and stained with anti- α -Tubulin (Alexa Fluor[®] 594 [red]), anti-phospho AURKB antibodies, and 4',6'-diamidine-2'-phenylindole dihydrochloride (DAPI [blue]).

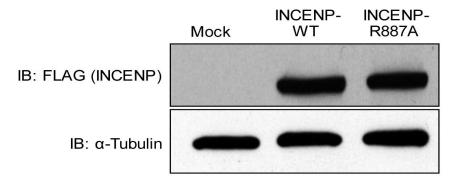


Figure S3: Expression check of FLAG-INCENP-WT and FLAG- INCENP-R887A in HeLa cells in Figure 5B. Samples were immunoblotted with anti-FLAG and anti- α -Tubulin antibodies.

								887		
Homo sapiens	LDLE	DI	FΚ	ΚS	ΚΡ	RΥ	нк	R	T S	S
Mus musculus	LDLE	DI	F K	ΚR	КΤ	RΥ	нк	R	T S	S
Gallus gallus	PKLE	DI	F N	ΥS	ΚΡ	RΥ	FΚ	R	T S	S
Xenopus laevis	PKLE	ΕL	F N	ΚS	ΚΡ	RΥ	FΚ	R	T S	S
Drosophila melanogaster	PDLK	QI	F P	ΝΙ	DΡ	S Q	L K	R	N S	S
Caenorhabditis elegans	FNLK	KI	F S	D	A V	ΚV	κĸ	R	G S	S
								Т	SS m	otif

Figure S4: Amino acid sequence alignment of the IN-domain of INCENP. R887 is conserved among various species. Green color highlights the amino acid that is conserved from *Caenorhabditis elegans* to *Homo sapiens*.

Table S1:	Information of	certificate	ed cell lines
Name	Certification institution	Tested method	DNA profile
293T	ATCC	STR	Amelogenin: X CSF1PO: 11, 12 D13S317: 12, 14 D16S539: 9, 13 D5S818: 8, 9 D7S820: 11 THO1: 7, 9.3 TPOX: 11 vWA: 16, 18, 19
HeLa	ATCC	STR	Amelogenin: X,Y CSF1PO: 11,12 D13S317: 11,14 D16S539: 9,11 D5S818: 11,12 D7S820: 10,11 THO1: 8 TPOX: 8 vWA: 15
A549	ATCC	STR	Amelogenin: X,YCSF1PO: 10,12D13S317: 11D16S539: 11,12D5S818: 11D7S820: 8,11THO1: 8,9.3TPOX: 8,11vWA: 14

ATCC; American Type Culture Collection

Table S2: siRNA sequences

siRNA name		Sequence	
siEGFP		Sense	GCAGCACGACUUCUUCAAG
		Antisense	CUUGAAGAAGUCGUGCUGC
siNegative control (cocktail)	Target #1	Sense	AUCCGCGCGAUAGUACGUA
		Antisense	UACGUACUAUCGCGCGGAU
	Target #2	Sense	UUACGCGUAGCGUAAUACG
		Antisense	CGUAUUACGCUACGCGUAA
	Target #3	Sense	UAUUCGCGCGUAUAGCGGU
		Antisense	ACCGCUAUACGCGCGAAUA
siPRMT1#1		Sense	GAGUUCACACGCUGCCACA
		Antisense	UGUGGCAGCGUGUGAACUC
siPRMT1#2		Sense	GCCACAAGAGGACCGGCUU
		Antisense	AAGCCGGUCCUCUUGUGGC
siINCENP		Sense	CUCAGAAGAACCGACGGAA
		Antisense	UUCCGUCGGUUCUUCUGAG