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Fluorescence binding assay methodology 

 

Fluorescence binding assays were analyzed by assuming the observed spectra are a linear 

combination of bound and unbound species as shown in Eqn. S1. The first observed spectrum, in the 

absence of titrant, is considered to be unbound, where the last observed spectrum is considered to 

represent the bound spectrum. This method, which has been fully described elsewhere (1), allows for the 

use of the entire spectrum in the analysis of spectroscopic binding data rather than the more narrow 

approach of selecting a single wavelength for analysis. In Eqn. S1, Sobs(λ)i and αi represent the observed 

spectrum, as a function of wavelength (λ), and fraction of the ligand bound state at the i
th
 titration point, 

respectively. Si=n(λ) and Si=0(λ) represent the final and initial observed spectrum at the n
th
 and  zeroth 

titration point, respectively. 
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The solution to Eqn. S1. is a linear least squares solution and is shown in Eqn. S2. The angled 

brackets denote difference, spectral vectors in λ, and are multiplied by taking their dot product. 
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Therefore, the above analysis provides a linear least squares fit to each spectrum at the i
th
 titration 

point, and a binding curve as a function of titrant (Fig. 2). The solved vector, α, is an estimation of the 

fractional occupancy of a ligand to a certain enzyme state, and thus can be incorporated into the global 

model fitting to account for the binding of a specific ligand to a specific state in a direct manner. Notably, 

the final observed spectrum in the titration does not exactly represent a 100 % bound spectrum, but is 

rather a close approximation. To account for this, a factor is placed in front of the fitted fractional 

occupancy expression, which allows a more accurate estimation of the equilibrium dissociation constant 

to be determined. This practice was also implemented in the original description of this method (1). 
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E3 FAD spectroscopic analysis 

 

Pig heart E3 FAD absorption data (Fig. 4) were obtained using graph digitizing software (ScanIt 

1.06 (amsterCHEM)) from Fig. 3 in (2) and Fig. 4 and 1 in (3), respectively. To obtain consistent integer 

wavelength values from the extracted literature spectra, the spectra were interpolated generally between 

300 and 650 nm. This step was necessary to have consistent wavelengths within a spectral data set when 

applying a singular value decomposition or other mathematical operations that require wavelength 

consistency in the spectral vectors. For instance, a singular value decomposition was applied to the NAD
+
 

titration of 2e
-
 reduced pig heart E3 in Fig. 4A using MATLAB 2014b software. 

Spectroscopic absorbance data are assumed to be a linear independent combination of species, as 

is assumed in the Beer-Lambert law (4). For instance, the spectral data shown in Fig. 4D can be grouped 

into a m x n matrix A, where m is the number of titrations and n is the number of wavelengths at which the 

data was collected. In this case, m = 7 and n = 321. The three major redox species, with known spectra, 

are shown in Fig. 4E and can be grouped into a m x n matrix B, with 3 species and 321 wavelengths. The 

7 x 3 matrix X (Eqn. S3) contains three column vectors containing the concentrations of each of the three 

species at each titration point.  

 

  

 A X B   (S3) 

The solution to this problem can be found by taking the pseudoinverse ((A
T
A)

-1
A

T
) of matrix A and 

multiplying by matrix B, shown in Eqn. S4.  
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Each row of matrix X contains some amount of each major species and was normalized to give 

the fraction of redox species per titration point based on the total enzyme concentration. To avoid 

negative solutions, when concentrations are very small, we chose to use a non-negative linear least 

squares solver (lsqnonneg) using MATLAB 2014b software for the final result of this analysis. Overall, 

this solution, which was obtained using model free analysis (4), allows one to directly fit the extracted 

enzyme fractional states to a model.  

To fit this result to a model, the dihydrolipoamide titration of E3 was simulated by numerically 

integrating (using ode15s in MATLAB 2014b) the model shown in Fig. 1A, which includes 

dihydrolipoamide, lipoamide, and the major enzyme redox states as state variables. Each amount of 

dihydrolipoamide added was allowed 10 min of simulation time; simulating each addition for longer 

times did not have an effect on the result. Optimization of the model parameters with this simulation were 

included with the rest of the data sets during the global fitting process. 

 

Model fitting 

 

Data were fitted using MATLAB 2014b software (The MathWorks, Natick, MA) using customized code 

of a simulated annealing algorithm and then further optimized using the local non-linear optimization 

function FMINCON. Importantly, data sets were fitted simultaneously, or globally, as compared to 

individual dataset fitting which is traditional in enzyme kinetic analysis (5).  

Time-dependent experiments were simulated by numerically integrating the rate equations for A, B, 

P, and Q derived from the steady state solution (Solution to Eqn. S5). Numerical integration was carried 

out with ode45 (Runge-Kutta algorithm) in MATLAB and fitted simultaneously with initial rate data.  
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In order to simulate/fit the dihydrolipoamide titration (Fig. 4F), the model was numerically integrated 

using the full equations (ie. Right hand side of Eqn. S5 not equaled to zero) with ode15s in MATLAB 

2014b. The state variables for this simulation included all substrates, products, and enzyme states. The 

data was fitted either allowing all equilibrium dissociation constants to be independent or dependent of 

the redox state of the enzyme; this approach was discussed previously (6). This added sophistication in 

the model was implemented to better simulate redox associated changes in enzyme ligand affinity.  

In an effort to obtain the “best-fit”, hundreds of fitting trials were conducted using the algorithms 

mentioned above with random initial starting points. However, attempts to fit all of the data together from 

random initial parameter values seemed to produce poor results. Therefore, we used a divide and conquer 

approach of fitting smaller subsets of the data‒ progressively building towards the complete data set. 

When fitting progress curve or time dependent data, we found that these data sets produce a 

significant bottle neck in fitting trials due to the task of numerical integration. To speed up integration of 

the model, C-code matlab executable files were generated and ran on a HP Z820 workstation (linux OS) 

equipped with 8 cores (intel E5-2609 @2.40 GHz) and 32 GB RAM. 

 

Best-fit parameter perturbation 

 To investigate the sensitivity of model simulations shown in Fig. 8 to the best-fit parameters, we 

randomly perturbed all of the best-fit parameters by randomly selecting parameter values within a 10% 

boundary of the original parameters in Table 1. We repeated this process 1000 times to obtain a large 

collection of randomly perturbed parameters from the best-fit. We then simulated all 1000 parameter sets 

for all collected data sets and have displayed the maximum and minimum simulations in Fig. S8 with the 

data. We used these 1000 parameter sets to then simulate (Fig. S9) the E3 mammalian flux surface and 

cross sections. In Fig. S9A and C, we show the maximum and minimum flux surfaces with the original 

surfaces produced from the global best-fit parameters. In Fig. S9B and D, we show all 1000 cross sections 

of the flux surfaces produced from the 1000 perturb parameter sets. 

 

Progress curve approximation 
 

Another strategy we used to better or more efficiently fit progress curve data involved approximating 

the rate of change of the progress curves, which change with time. We found this additional step in the 

fitting procedure to be especially helpful when trying to fit data sets that contain both pH-dependent 

NAD
+
 activation and inhibition; as opposed to simply either NAD

+
 activation or inhibition alone.  

Progress curve rates were estimated by first fitting the progress curve data using cubic spline 

interpolation and then differentiating at these time points. The derivatives were then integrated using the 

cumulative trapezoidal numerical integration method, with given initial conditions, to arrive at calculated 

substrate and product concentrations at a particular time point. These concentrations are then used to 

calculate the rates using the flux expression at each time point.  

The fitting procedure then minimizes the difference between the calculated derivatives and the 

computed rates at each time point using the flux expression and the optimized kinetic parameters. The 

advantage of this progress curve approximation method is that it avoids numerical integration during the 

actual fitting of the data and instead involves computing the flux at different time points, which is much 

less computationally intensive. Furthermore, it can provide better initial parameters for fitting progress 

curve data, relative to just fitting the initial rates as a preliminary fitting option.  

 

3-state redox model fitting for pH-dependent activation/inhibition data 

 

In one approach we started from 21 parameter sets (using a local optimizer; Supplement) that fit the 

human liver E3 data, in the most accurate manner (See (6)), but arrived at fits that did not accurately 

simulate the forward E3 reaction as a function of pH (Fig. 5C; dashed line). We also started from random 

initial parameter values (using both global and local optimization methods), but arrived at the same result 
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as the former approach. A method, described in the Supplement (See progress curve approximation 

above), to fit progress curve data using time-dependent rates was also implemented, but also failed to fit 

the data. We conclude that it is not possible to accurately fit the data set in Fig. 5 using the previously 

described 3-state redox model (6) (Fig. 5; dashed lines). 

 

pH-dependent E3 flux optimization 

 

-pH as an adjustable parameter 

 

 Optimizations were implemented using simulated annealing followed by local minimization with 

NAD
+
/NADH, Lipo/DHL, and pH as adjustable parameters. In this optimization routine, the best of 1000 

attempts were used for the displayed results (Table 2). These results are plotted in Fig. 11 and 12. The 

parameter bounds for NAD
+
/NADH and Lipo/DHL were 10

12 
and 10

-12 
for upper and lower bound, 

respectively. The pH was bound between 4 and 9. 

 

-pH fixed at different values 

Optimizations were carried out with a simulated annealing algorithm, followed by a local 

minimizer, treating the NAD
+
/NADH and Lipo/DHL ratios as adjustable parameters at different fixed pH 

values. Thus, 13 separate optimizations were carried out for each pH value (Fig. 13). Furthermore, 50 

attempts were made at each pH value to obtain the most optimum reverse flux for both mammalian and E. 

coli E3. This routine, thus, produced 650 separate optimizations a piece for both mammalian and E. coli 

E3. The same protocol was also implemented to optimize mammalian and E. coli E3 forward flux (Fig. 

14). The NAD
+
/NADH ratio was given the upper bounds of 10

2
 (Ec-E3) and 25 (mam-E3), and lower 

bounds of 10
-2

 (Ec-E3) and 25
-1

 (mam-E3). The Lipo/DHL ratio was given the upper and lower bound of 

10
12

 and 10
-12

, respectively, for both Ec-E3 and mam-E3. 
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Equation matrix for a 4-state redox steady-state model. In this model, E3 is composed of the oxidized (S1), 2e
-
 disulfide reduced (S2), 2e

-
 FAD 

reduced (S3), and both 2e
-
 disulfide and 2e

-
 FAD reduced (S4) states (Fig. 1A). The final row in the matrix accounts for the total enzyme 

concentration (Et), which is the sum of all enzyme states. An analytical solution for this kinetic model was determined by performing a 

pseudoinverse on the equation matrix using MATLAB 2014b symbolic toolbox. 
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Figure S1. Human liver E3 kinetic data with 3-state redox kinetic model simulations. A) Human liver E3 

reverse reaction progress curve data at pH 6.5 obtained from (7), with no initially added NAD
+
 (blue 

circles) and 100 µM NAD
+
 (red squares) with simulations (solid lines) to a 3-state redox kinetic model 

using best-fit parameters obtained from Table 1 in (6) under the Human liver E3 heading. B) Human liver 

E3 reverse (red circles) and forward (black squares) initial velocity data at pH 6.5 and 8.5 respectively, 

obtained from (7), and corresponding simulations are shown with red and black lines, respectively, using 

the same parameters used to simulate progress curves in (A). The reverse initial velocity data (red circles) 

contained 100 µM NADH and NAD
+
. Additional simulations using the same parameters were generated 

with 0 (blue line), 250 (light pink), and 500 (dark pink) µM NAD
+
. 
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Figure S2. Mammalian E3 pH-dependent NAD
+
 activation/inhibition fitted to a 4 and 3-state redox 

independent Kd model. A) Pig heart E3 reverse reaction progress curves in acidic conditions (pH = 5.25) 

in different initially added amounts of NAD
+
 (0, 100, 500 µM), shown as blue, green, and red circles 

respectively. Model simulations are shown as dashed (3-state model) and solid (4-state model) lines of the 

corresponding data marker color. B) Pig heart E3 reverse reaction progress curves in basic conditions (pH 

= 8) in different initially added amounts of NAD
+
 (0, 100, 500 µM), shown as blue, green, and red circles 

respectively. Model simulations are shown as dashed (3-state model) and solid (4-state model) lines of the 

corresponding data marker color.  C) Human liver E3 pH-dependent forward initial rates (black circles) 

taken from Fig. 5 of (7). Model simulations are shown as black dashed (3-state model) and solid (4-state 

model) lines. D) Pig heart E3 pH-dependent reverse initial rates in different initially added amounts of 

NAD
+
 (0, 100, 500 µM), shown as blue, green, and red circles respectively. (D) Model simulations are 

shown as solid (4-state model) lines of the corresponding data marker color. (E) Model simulations are 

shown as dashed (3-state model) lines of the corresponding data marker color. F) Difference plot 

(observed turnover (NAD
+
 added)-observed turnover(no NAD

+
)) of data and simulations shown in (D). 

G) Difference plot (observed turnover (NAD
+
 added)-observed turnover(no NAD

+
)) of data and 

simulation shown in (E). In panels A-E error bars represent standard deviations of the data from at least 

three experimental repeats, where error bars in panels F and G represent the propagation of error from the 

difference of the observed rates. 
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 Figure S3. Mammalian E3 pH-dependent oligomeric state model. Enzyme oxidized, 2e
-
, and 4e

-
 reduced 

redox states are represented by S1, S2,3, and S4, respectively (6). These states are considered to be active 

oligomeric states, which may represent dimer, tetramer, or perhaps a higher oligomeric state (8). Enzyme 

states that have an asterisk represent inactive monomeric states. This model was constructed based on pig 

heart E3 oligomeric state changes as a function of pH observed in (8). 
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Figure S4. Mammalian E3 pH-dependent NAD

+
 activation/inhibition fitted to a pH-dependent oligomeric 

state model described in Fig. S3. A) Pig heart E3 reverse reaction progress curves in acidic conditions 

(pH = 5.25) in different initially added amounts of NAD
+
 (0, 100, 500 µM), shown as blue, green, and red 

circles respectively; simulations are represented by lines. B) Pig heart E3 reverse reaction progress curves 

in basic conditions (pH = 8) in different initially added amounts of NAD
+
 (0, 100, 500 µM), shown as 

blue, green, and red circles respectively; simulations are represented by lines.  C) Human liver E3 pH-

dependent forward initial rates (black circles) taken from Fig. 5 of (7), with simulation shown as a black 

line. D) Pig heart E3 pH-dependent reverse initial rates in different initially added amounts of NAD
+
 (0, 

100, 500 µM), shown as blue, green, and red circles respectively; simulations are represented by lines. E) 

Difference plot (observed turnover(NAD
+
 added)-observed turnover(no NAD

+
)) of data (circles) and 

simulations (lines) with NAD
+
 (0, 100, 500 µM), shown as blue, green, and red circles respectively. In 

panels A, B, and D error bars represent standard deviations of the data from at least three experimental 

repeats, while error bars in panel E represent the propagation of error from the difference of the observed 

rates.  Error bars in panel C represent a 10% deviation from the data collected from Fig. 5 in (7). 



10 
 

 
Figure S5. Global fitting of Mammalian E3 progress curve, reverse/forward initial velocity, and 

equilibrium titration data to a 4-state redox model with redox independent equilibrium dissociation 

constants. A-F) Pig heart E3 reverse reaction progress curve data were collected in different initially 

added amounts of NAD
+
 (0, 100, 500 µM), shown as blue, green, and red circles respectively. Model 

simulations (4-state model) are shown as solid lines of the corresponding data marker color. All time 
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dependent assays shown in (A-F) contained 500 µM of initially added NADH. Panels (A-C) and (D-F) 

contained 0.25 and 1 mM DL-lipoamide, respectively. pH was held fixed at 5.25, 6.25, and 8 shown in 

panels (A-C) and (D-F), respectively. G-L) Pig heart E3 pH-dependent reverse initial velocity data were 

collected in different initially added amounts of NAD
+
 (0, 100, 500 µM), shown as blue, green, and red 

circles, respectively. Error bars represent standard deviations of the data from at least three experimental 

repeats. Model simulations (4-state model) are shown as solid lines of the corresponding data marker 

color. Initial rates shown in panels (G-I) were obtained in 500 µM initially added NADH and 0.25 (G), 1 

(H), and 3 mM (I) DL-Lipoamide. Initial rates shown in panels (J-L) were obtained with 250 µM initially 

added NADH and 0.25 (J), 1 (K), and 3 mM (L) DL-Lipoamide.  M) Pig heart E3 fractional redox states 

were obtained from the dihyrolipoamide equilibrium titration shown in Figure 4D-F. The oxidized, 2e
-
 

reduced, and 4e
-
 reduced states as a function of dihydrolipoamide are shown as blue, green, and red 

circles, respectively. N) Human liver E3 forward initial rate data as a function of pH was obtained from 

Fig. 5 of (7), and fitted along all other datasets in this figure. O) Forward initial rate data (circles) as a 

function of NAD
+
 in different fixed concentrations of dihydrolipoamide (25 (blue), 40 (green), 50 (red), 

100 (magenta), 250 (cyan), 500 (yellow), and 750 µM (black)), were taken from the top of Fig. 1  in (9), 

and simulated (lines) with globally fitted parameters along with all other datasets shown in this figure. P-

R) Alpha values (blue circles) obtained from Figures 2C, 3C, and 4C were simulated (blue lines) with 

globally fitted parameters assuming rapid equilibrium binding of each ligand described by their 

corresponding enzyme state fractional occupancies (Eqn. 4). Error bars represent standard deviations of 

the data from at least three experimental repeats, while all literature derived data sets (panels M, N, and 

O) were assigned a 10% error according to the maximum ordinate value. 
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Figure S6. Calculated mammalian E3 NAD
+
/NADH and Lipo/DHL flux surfaces as a function of pH. 

The globally fitted parameters (Table 1) obtained by fitting the data in Fig. 6, to the 4-state redox model, 

were used to calculate the mammalian E3 NAD
+
/NADH and Lipo/DHL flux surfaces as a function of pH. 

In all panels, the forward and reverse fluxes are defined as being positive and negative, respectively. The 

forward flux is defined from left to right in Eqn. 2 in the main text.  
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 Figure S7. Calculated E. coli E3 NAD
+
/NADH and Lipo/DHL flux surfaces as a function of pH. The 

globally fitted parameters obtained from Moxley et al. (6), to the 3-state redox-dependent Kd model, were 

used to calculate the E. coli E3 NAD
+
/NADH and Lipo/DHL flux surfaces as a function of pH. In all 

panels, the forward and reverse fluxes are defined as being positive and negative, respectively. The 

forward flux is defined from left to right in Eqn. 2 in the main text. 
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Figure S8. Simulation of prediction boundaries from random perturbations of best-fit parameter set. The 

original best-fit parameter set (Table 1) was perturbed by randomly adjusting all parameters within a 10% 

boundary of the original values. One-thousand parameter sets were generated and the maximum and 

minimum output of all 1000 parameter sets were used to create simulation prediction boundaries. Model 
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simulations (4-state model) of maximum and minimum output are shown as solid lines of the 

corresponding data marker color with shaded area in-between. A-F) Pig heart E3 reverse reaction 

progress curve data were collected in different initially added amounts of NAD
+
 (0, 100, 500 µM), shown 

as blue, green, and red circles respectively. All time dependent assays shown in (A-F) contained 500 µM 

of initially added NADH. Panels (A-C) and (D-F) contained 0.25 and 1 mM DL-lipoamide, respectively. 

pH was held fixed at 5.25, 6.25, and 8 shown in panels (A-C) and (D-F), respectively. G-L) Pig heart E3 

pH-dependent reverse initial velocity data were collected in different initially added amounts of NAD
+
 (0, 

100, 500 µM), shown as blue, green, and red circles, respectively. Error bars represent standard deviations 

of the data from at least three experimental repeats. Model simulations (4-state model) are shown as solid 

lines of the corresponding data marker color. Initial rates shown in panels (G-I) were obtained in 500 µM 

initially added NADH and 0.25 (G), 1 (H), and 3 mM (I) DL-Lipoamide. Initial rates shown in panels (J-

L) were obtained with 250 µM initially added NADH and 0.25 (J), 1 (K), and 3 mM (L) DL-Lipoamide.  

M) Pig heart E3 fractional redox states were obtained from the dihyrolipoamide equilibrium titration 

shown in Figure 4D-F. The oxidized, 2e
-
 reduced, and 4e

-
 reduced states as a function of 

dihydrolipoamide are shown as blue, green, and red circles, respectively. N) Human liver E3 forward 

initial rate data as a function of pH was obtained from Fig. 5 of (7), and fitted along all other datasets in 

this figure. O) Forward initial rate data (circles) as a function of NAD
+
 in different fixed concentrations of 

dihydrolipoamide (25 (blue), 40 (green), 50 (red), 100 (magenta), 250 (cyan), 500 (yellow), and 750 µM 

(black)), were taken from the top of Fig. 1  in (9), and simulation (lines) along with all other datasets 

shown in this figure. P-R) Alpha values (blue circles) obtained from Figures 2C, 3C, and 4C and 

simulations are shown as solid lines. Error bars represent standard deviations of the data from at least 

three experimental repeats, while all literature derived data sets (panels M, N, and O) were assigned a 

10% error according to the maximum ordinate value. 
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Figure S9. Calculated mammalian E3 NAD
+
/NADH, Lipo/DHL, and pH-dependent flux surface with 

randomly perturbed best-fit parameters. The globally fitted parameters (Table 1) obtained by fitting the 

data in Fig. 6, to the 4-state redox model, were randomly perturbed with a 10% upper and lower bound 

from the original parameter set. This process was repeated to yield 1000 parameter sets.  A) Mam-E3 flux 

as a function of NAD
+
/NADH and pH, at a constant Lipo/DHL ratio of 1, were used to calculate the 

mammalian E3 flux surface for all 1000 parameter sets. The maximum (red mesh) and minimum (blue 

mesh) flux from these calculations are shown along with the original surface calculated using the best-fit 

global parameters. B) E3 flux(NAD
+
/NADH, pH, Lipo/DHL = 1) cross sections at pH 5, 6, 7, 7.5, and 8 

of 1000 parameter sets derived from perturbations of the original best-fit parameter set. The black line is a 

reference for zero flux. C) E3 flux as a function of NAD
+
/NADH and Lipo/DHL, at a constant pH of 7.2, 

were used to calculate the mam-E3 flux surface for the 1000 parameter sets. The maximum (red mesh) 

and minimum (blue mesh) flux from these calculations are shown along with the original surface 

calculated using the best-fit global parameters. D) E3 flux(NAD
+
/NADH, pH = 7.2, Lipo/DHL) cross 

sections at Lipo/DHL ratios of 0.1, 1, and 10 of 1000 parameter sets derived from perturbations of the 

original best-fit parameter set. The black line is a reference for zero flux. In all panels, the forward and 
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reverse fluxes are defined as being positive and negative, respectively. The forward flux is defined from 

left to right in Eqn. 2. 
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Figure S10. Progress curves using 50 mM Tris (blue) and MOPS (red) at pH 8 in 250 µM 

NADH, 3 mM DL-lipoamide, 0.3 mM EDTA, 0.67 mg/ml BSA, and 0.2 µM pig heart E3 at 25 

°C. Duplicate assays were averaged and error bars represent standard deviations. 
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Lipoamide stereochemistry and kinetic modeling 

 

The natural conformation of lipoamide is the R enantiomer (D-Lipoamide) (10). We were unable 

however, to find a commercially available source for R-Lipoamide. Therefore, we have used a 

D/L lipoamide mixture. Although, we investigated whether accounting for the fact that another 

isomer of lipoamide is present in the lipoamide mixture would better fit our pH-dependent initial 

velocity data. 

 Notably, S-Lipoic acid (not S-Lipoamide) has been shown to be an inhibitor (11), but 

we have not found any reports of S-Lipoamide (L-Lipoamide) as an inhibitor. Interestingly, we 

have found a report of the kcat/Km for DL-Lipoamide being about 30 times higher than R-Lipoic 

acid demonstrating that R-Lipoic acid is not a better substrate than DL-Lipoamide (See Table 1 

of (11)). We do not know to what extent the lipoamide is in the D or L form, which creates a 

problem in accounting for the possible inhibition of L-lipoamide in our kinetic model. We also 

do not know how conditions such as concentration or pH affect D, L-lipoamide isomerization. 

Despite this, we have outlined a few strategies that account for the DL-lipoamide mixture in the 

model in an attempt to better fit pH-dependent initial velocity data. 

  

In our view there are 3 ways to treat this issue:  

 1) Consider L-lipoamide as an inert component of the DL-lipoamide mixture, so that 

the true concentration of substrate (D-lipoamide) is less than the concentration of the known DL-

lipoamide concentration. Without knowledge of the mixture, we can simply fit concentration of 

D-lipoamide with an upper bound being the DL-lipoamide concentration. This strategy did not 

improve fitting of the data, however. 

 2) Consider L-lipoamide as an inhibitor of the reaction. That is, we distinguish between 

D and L-lipoamide in the model by giving them separate dissociation constants for each redox 

state, but L-lipoamide is not considered to be a substrate; therefore, it does not turnover the 

enzyme. Here, we also needed to fit the percentage of the correct enantiomer relative to the total 

DL-lipoamide concentration, since as mention above we do not know this information. This 

strategy was used to try and fit the initial velocity data but did not improve the fitting (See Figure 

S11).  
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Figure S11. Comparison of initial velocity fitting between a 4-state redox Kd dependent model 

that differentiates between D and L-lipoamide (dashed lines) and the original model (solid line) 

that does not distinguish this condition. The model that distinguishes between lipoamide 

enantiomers imposes the condition that [DL-lipoamide] = [D-Lipoamide] + [L-lipoamide], where 

[DL-lipoamide] is known, and the proportions of the DL-Lipoamide mixture is a globally fitted 

parameter. The conditions for each panel are the same as in main text Figure 6 panels G-L. 

Panels A-C contained 500 µM NADH, with panels A, B, and C each with 0.25, 1, and 3 mM 

DL-lipoamide, respectively. Panels D-F contained 250 µM NADH, with panels D, E, and F each 

with 0.25, 1, and 3 mM DL-lipoamide, respectively. 

 

In another attempt to fit these data better using strategy 2, we allowed the DL-lipoamide mixture 

to vary based on the total DL-lipoamide concentration. Although this may not have much 

chemical reasoning behind it, we were simply trying to improve the fit to the data. The result, 

shown in Figure S12 below, shows that allowing for this additional possibility did not improve 

the fitting. 
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Figure S12. Comparison of initial velocity fitting between a 4-state redox Kd dependent model 

that differentiates between D and L-lipoamide (dashed lines) and the original model (solid line) 

that does not distinguish this condition. Additionally the stereochemically detailed model 

(dashed line) allows for the DL-lipoamide mixture to change as a function of DL-lipoamide total 

concentration.  The model that distinguishes between lipoamide enantiomers imposes the 

condition that [DL-lipoamide] = [D-Lipoamide] + [L-lipoamide], where [DL-lipoamide] is 

known, [L-lipoamide] is a fitted parameter, and D-lipoamide is solved for based on the above 

mass balance equation. The DL-Lipoamide mixture is a fitted parameter. The conditions for each 

panel are the same as in main Figure 6 panels G-L. Panels A-C have 500 µM NADH, with 

panels A, B, and C each with 0.25, 1, and 3 mM DL-lipoamide. Panels D-F have 250 µM 

NADH, with panels D, E, and F each with 0.25, 1, and 3 mM DL-lipoamide. 

 

Another assumption may be that the DL-lipoamide mixture can change with pH, but this would 

require a formidable change to the model, in which we have no data to support this mechanism. 

 

3) Treating L-lipoamide as an alternative substrate: It is also very feasible that L-lipoamide is 

being consumed but at a lesser rate. Kinetic data with both human (11) and pig heart (10) E3 

using L-lipoic acid shows that this enantiomer still turns over but at a slower rate (~ 20 fold 

lower kcat/Km) than the R-enantiomer. This leads us to believe that L-lipoamide is also a substrate 

and not just a putative inhibitor. This notion is also supported by a molecular docking study (12)  

that demonstrates only a 1.4 Å deviation between the reactive thiol of S-lipoamide relative to R-

lipoamide. While this discrepancy in distance is certainly significant to distinguish between these 

substrates in catalytic reactivity, it demonstrates considerable probability that E3 can use S-

lipoamide as a substrate. If this is true, L-lipoamide should be more appropriately modeled as an 

alternative substrate rather than a purely competitive dead-end inhibitor. However, accounting 

for these facts requires a substantial increase in the number of adjustable parameters for the 

model and there is insufficient data to statistically support a more expansive model as the model 

fits currently stand. 
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