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Supplementary Note 1

In this section we present the spin wave power spectra of Gadolinium Iron Garnet (Gd3Fe5O12) as calculated
numerically in a classical atomistic spin model. They are a direct measure of thermal spin pumping and the resulting
spin Seebeck (SSE) voltage: At low temperature, the SSE is dominated by the uniform ferrimagnetic resonance
mode and takes the conventional sign. With increasing temperature the exchange splitting between Fe and Gd is
reduced leading to an enhanced contribution from the gapped, optical mode to the SSE. At a certain temperature
this contribution becomes even larger than that of the uniform ferrimagnetic resonance mode causing a sign reversal
of the SSE. At the magnetization compensation temperature the Fe sublattices dominate and the change in their
orientations leads to the second sign change.

We first consider the classical Heisenberg model

H = −
∑
〈ij〉

JijSi · Sj −
∑
i

dzSz,i (1)

where Jij is the exchange energy between two classical spin vectors Si and Sj (|S| = 1), dz is an uniaxial energy
with easy axis along the z-direction that defines the quantization axis for the spin waves. We model the entire GdIG
unit cell of 32 magnetic moments using exchange couplings derived from inelastic neutron diffraction experiments
(Supplementary Table 1) [3].

symbol value units description source

S(Fe3+) 5/2 spin [1]

S(Gd3+) 7/2

µs(Fe) 5.92 µB magnetic moment g
√
S(S + 1)

µs(Gd) 7.95 µB

αFe 0.002 Gilbert damping parameter [2]

αGd 0.006

γ 1.00 γe gyromagnetic ratio

Jaa −1.10 × 10−21 J/bond exchange energy [3]

Jdd −1.10 × 10−21

Jad −5.52 × 10−21

Jac −4.08 × 10−22

Jdc −1.64 × 10−21

Supplementary Table 1: Parameters used in the numerical model.

The spin dynamics is described by the Landau-Lifshitz-Gilbert equation for spin Si with local magnetic field Hi

and damping parameter αi

∂Si
∂t

= − γi
(1 + α2

i )
(Si ×Hi + αiSi × (Si ×Hi)) (2)

From the solutions the magnetization dynamics of sublattice n is calculated as

Mn(t) =
1

Nn

∑
i∈n

Si,n(t) . (3)

The Gilbert damping parameters for the Fe (S = 5/2) and Gd (S = 7/2) moments have been measured in GdIG where
αGd was extracted from the FMR linewidth under the assumption that αFe(GdIG) = αFe(YIG) [2]. We do not include
any temperature dependence of the exchange constants and intrinsic damping parameters, thereby assuming that the
experimental findings are dominated by the thermal fluctuations. This simplification allows us to deconvolute the
contribution of magnon-magnon interactions to the damping from changes due to spin-lattice coupling as encapsulated
by the Gilbert and exchange parameters.

The effective local magnetic field on a lattice site i is

Hi = − 1

µs

∂H
∂Si

+ ξi (4)
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Supplementary Figure 1: Temperature dependence of the magnetization of each sublattice and the
total.

where µs = g
√
S(S + 1)µB (g ≈ 2 is the g-factor) is the magnetic moment. Since ξi is a field-like stochastic process,

Supplementary Equation (2) is a Langevin equation [4]. Here we consider the white noise limit with correlators

〈ξi(t)〉 = 0; 〈ξi,a(t), ξj,b(t
′)〉 = (2kBTαi/µiγi)δ(|t− t′|)δijδab (5)

where a and b are Cartesian components. The white noise approximation is valid as long as the eigenfrequencies
ω � kBT/~. Since we are concerned with frequencies of the order 2 THz and below, this holds even down to 20 K.

The spin Seebeck effect is caused by the temperature gradient-induced imbalance between the thermally induced spin
pumping and the spin transfer torque exerted by the Johnson Nyquist noise in the normal metal [5]. Both contributions
are proportional to the presumably temperature-independent spin mixing conductance as well as integrals over the
dynamic magnetic susceptibility at the interface. The latter are in turn integrals over wave vector and momentum of
the dynamic structure factor (DSF)

S (q, ω) =
1

N
√

2π

∑
r,r′

eiq·(r−r′)
∫ +∞

−∞
eiωt C (r− r′, t) dt (6)

where

C (r− r′, t) = 〈S+(r, 0)S−(r′, t)〉 (7)

is the space-time spin-spin correlation function of the transverse components (x,y). Structures in the DSF reflect
the energy dispersion and the thermal broadening of the spin waves, where the latter is induced by the magnon-
magnon interactions. The thermal spin pumping contribution to the spin Seebeck effect is governed by an integral
over frequency and momentum of the DSF (weighted by frequency) [5]. Here we approximate the interface DSF by
that of the bulk ferromagnet and focus on the apparent qualitative physics that governs the sign change of the SSE
such as the relative contributions of each sublattice.

Our numerical method achieves a good ensemble average and sampling of the Brillouin zone for a system of
16 × 16 × 16 unit cells (N = 262144) with periodic boundary conditions. The system is equilibrated via a two
stage process: First, an over-damped Langevin simulation rapidly brings the system to thermal equilibrium, while
a subsequent longer equilibration with the damping parameters in the Supplementary Table 1 prepares the initial
conditions. The LLG equation is then solved for 500 ps (time step ∆t = 0.1 fs) generating the DSF with a high
resolution even at low frequencies. The present parameter set predicts a Curie temperature TC = 600 K and a
magnetization compensation temperature Tcomp = 320 K both approximately 50 K higher than the experimental
values (Supplementary Figure 1). This temperature offset does not change the interpretation of our results in the
context of the experiments as the phenomena we describe belong to the class of ferrimagnets with a weakly coupled
sublattice [6].

The SSE is proportional to the transverse magnetization dynamics. Supplementary Figure 2 shows the real-time
magnetization dynamics, which emphasizes the weak temperature dependence of the transverse magnetization of the
Gd relative to that of the Fe moments. Hence, the contribution of the Gd moments to the SSE decreases only slightly
as a function of temperature. This trend can be explained by the spin wave spectra as calculated from the DSF in
Supplementary Figure 3 that provide the temperature dependence of the frequency, amplitude and linewidths. Using
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Supplementary Figure 2: Comparison of the Fe (red dots) and Gd (blue dots) transverse
magnetization dynamics for different temperatures.

a numerical approach takes us beyond mean-field theories with a more complete description of the thermodynamics
and the inclusion of magnon-magnon interactions.

The low temperature spin wave spectra in Supplementary Figures 3a-c agree well with analytic approximations [3].
As already discussed in the main text, the lowest frequency peak, in the GHz regime, corresponds to the ferrimagnetic
resonance (FMR). It dominates the spectrum with a large oscillator strength and small broadening that reflects the
weak intrinsic damping of GdIG. The two flat bands with frequencies close to 1 THz are attributed to the Gd moments
precessing in the exchange field from the Fe moments [3]. The next approximately parabolic band is caused by the
spin splitting of the rare-earth ion where the gap at k = 0 depends on the Fe-Gd exchange couplings as −10Jdc+20Jac
[3].

At low temperature the spectrum is dominated by the FMR mode and the higher frequency dynamics are mostly
frozen out by the large magnon gap. Hence the SSE takes the conventional sign where the Gd and Fe a sublattice
determines the chirality of the precession.

With increasing temperature, the Gd central peaks close to 1 THz decrease in power spectral intensity and broaden,
reflecting a decrease in coherence of the associated spin waves governed by the weak Fe-Gd exchange coupling.
However, this effect is small compared to the significant increase of the power spectral density of the optical mode
with parabolic dispersion at low k-values, which red shifts with increasing temperature. This point is emphasized
more clearly by the (smoothed) frequency scans at q = 0 shown for different temperatures in Supplementary Figure 4.
The integration of features in the DSF give their contribution to the SSE. The large line width and increase in power
spectral density of the red-shifting mode with increasing temperature leads to an increasing contribution to the SSE
with opposite polarization to the FMR mode. The band edge of this mode is determined by the spin splitting of the
Gd. The gap is highly temperature dependent because the Gd rapidly loses order due to the weak Fe-Gd exchange
coupling. This is seen in Supplementary Figure 1 and by the broadening of the flat Gd bands in the DSF. At some
point the SSE contribution of the gapped mode becomes even larger than that of the FMR mode (and other modes of
the same polarization). Then the sign of the SSE becomes opposite to the conventional sign. The precise temperature
where this occurs is difficult to determine as it requires the integration of the DSF over the Brillouin zone. The
quantitative analysis is beyond the scope of this work and is reserved for a future challenging study. However, we can
draw the important qualitative conclusion that the temperature dependence of the SSE is determined predominantly
by just two magnon bands and the closing of the magnon gap.

The high-temperature change of the sign of the SSE at the magnetization compensation point is caused by the
reorientation of the sublattice magnetizations as predicted in Ref. 7. When crossing the compensation temperature
the two branches exchange roles, leading to a sign change of the net magnetization and spin pumping. The spin wave
spectra shown in Supplementary Figures 3(d-f) around the compensation temperature as well as the corresponding
frequency scans at q = 0 (Supplementary Figure 4b) clearly show that the Gd modes are weak and hence their
contribution is negligibly small. Moreover, the spin splitting of the Gd ions almost vanishes. The FMR and optical
modes are also almost degenerate.

Most of the materials used in SSE experiments are ferrimagnets with multiple magnetic sublattices and complex
spin wave spectra that cannot be fully understood by simple analytical models. The results and insight gained through
these simulations demonstrate the contributions of multiple spin wave bands to the SSE.
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Supplementary Figure 3: Low-frequency spin wave spectra of GdIG calculated from finite
temperature spin dynamics simulations. The color code indicates the power spectral density (PSD): (a-c) The

spin wave spectra at low temperatures up to the Gd ordering temperature, (d-f) around the magnetization
compensation temperature of Tcomp = 320 K.

Supplementary Note 2

In this section, we outline a linear response approach to the spin Seebeck effect (SSE) in a compensated ferri-
magnet [7]. We demonstrate that the changes of sign of the SSE observed in ferrimagnet insulator (FMI, in the
experiment Gd3Fe5O12)/paramagnetic metal (NM, in the experiment Pt) hybrid structures can be accounted for by a
model calculation within the linear response formalism that uses realistic values of the interface (s-d or s-f) exchange
coupling. We shall show below that the first sign change of the SSE at a higher temperature Tsign1 originates from the
reversal of the spin quantization axis at the magnetization compensation temperature Tcomp, whereas the second sign
change at a lower temperature Tsign2 is caused by a competition between a soft-mode magnon and a gapped-mode
magnon. The former mode, which corresponds to the FMR mode in a first order treatment, is mainly composed of
Gd spins and has a weak exchange coupling at the FMI/NM interface. The latter mode, which corresponds to an
optical mode, is mainly composed of Fe spins and has a stronger exchange coupling at the FMI/NM interface than
the FMR mode.

Let us begin with a brief review of a linear response theory for the SSE in a compensated ferrimagnet [7, 8]. Our
starting point is the following model Hamiltonian for a compensated ferrimagnet FMI with two different spins SA
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Supplementary Figure 4: Frequency scans of the spin wave power spectral density (PSD) at q = 0
for various temperatures. (a) around the Gd ordering temperature, (b) around the magnetization compensation

temperature Tcomp.

and SB defined on two sublattices A and B [7]:

HFMI = −JA

∑
〈i,i′〉∈A

SA,i · SA,i′ − JB

∑
〈j,j′〉∈B

SB,j · SB,j′ + JAB

∑
〈i∈A,j∈B〉

SA,i · SB,j

+
∑
i∈A

[
gAµBH0 · SA,i −

DA

2
(ẑ · SA,i)

2

]
+
∑
i∈B

[
gBµBH0 · SB,i −

DB

2
(ẑ · SB,i)

2

]
, (8)

where JA and JB (JAB) are the nearest-neighbor intra-sublattice (inter-sublattice) exchange integrals, 〈i, i′〉 specifies
nearest neighbor bonding, µB is the Bohr magneton, H0 = −H0ẑ is the external magnetic field, gL (L = A,B) is the
effective g factor, and DL is the anisotropy constant. In this model, a Gd spin with a larger size SA is represented by
SA on sublattice A, whereas an Fe spin with a smaller size SB is represented by SB on sublattice B.

Using the spin-wave approximation, Supplementary Equation (8) is diagonalized to be [7]

HFMI = ~
∑
q

(
ωαqα

†
qαq + ωβqβ

†
qβq

)
, (9)

where ωαq = 1
2

[√
(εAq + εBq )2 − 4ζ2

q + (εAq − εBq )
]
, ωβq = 1

2

[√
(εAq + εBq )2 − 4ζ2

q − (εAq − εBq )
]
, εAq = 2z0JASA[1− γq] +

z0JABSB + (gAµBH0 + DASA), εBq = 2z0JBSB[1− γq] + z0JABSA + (−gBµBH0 + DBSB). Here, γq = z−1
0

∑
δ e

iq·δ

is defined by the sum over z0 nearest neighbors of the original lattice whereas ζq = JAB

√
SASB

∑
δ′ eiq·δ′

is defined
by the sublattice A or B. The magnon operators αq and βq are related to the Holstein-Primakoff operators aq and
bq by the Bogoliubov transformation

aq = uqαq + vqβ
†
q , (10)

bq = vqα
†
q + uqβq , (11)

where uq =
√

1
2

[
εAq +εBq

[(εAq +εBq )2−4ζ2q]1/2
+ 1
]1/2

and vq = −sgn(ζq)
√

1
2

[
εAq +εBq

[(εAq +εBq )2−4ζ2q]1/2
− 1
]1/2

. In the following we set

SA = 3 × 7/2 and SB = 5/2, because there are three Gd 7/2-spins in each formula unit of Gd3Fe5O12 while three
Fe spins on octahedral sites and two Fe spins on tetrahedral sites align in the opposite sense, giving a resultant
5/2-spin per formula unit [9]. Also, we set DA = DB = 0 meV to simplify the argument, and use JA = 0 meV,
JB = 0.68 meV, JAB = 0.065 meV, gA = 2.0, gB = 2.0, in order to reproduce the Néel temperature (TNéel = 565 K)
and the compensation temperature (Tcomp = 286 K) [10]. These parameters bring about a situation where the α
magnon spectrum is gapless and very soft with a quite narrow bandwidth, whereas the β magnon spectrum is gapped
by an amount ∆ = z0JAB(SA − SB) with a much wider bandwidth (see Figure 2 in Ref. [7]).
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Thus, the two sublattice model is an effective model employed to understand the physics at play. Moreover, in the
present approach, the two Fe spins on octahedral a sites and the three Fe spins on tetrahedral d sites are considered to
be collinear forming a macrospin due to the strong antiferromagnetic exchange interaction Jad. This approximation
is justified, since the out-of-phase dynamics of Fe(a) and Fe(d) spins, which breaks the collinear alignment of the Fe
spins, introduces an additional mode at around 8 THz (Supplementary Figure 3), however, this mode can be safely
neglected due to the large energy gap.

The resultant SSE signal in the FMI/NM hybrid structure under a temperature bias ∆T , represented in a form of
the injected spin current Is, is given by the following formula [7]:

Is = Iαs − Iβs , (12)

Iα(β)
s =

Nint

~2NNMNFMI

∑
k,q

〈[Jα(β)
sd (q)]2〉ImχR(k, ωα(β)

q )

(
−
∂NT

(
ω
α(β)
q

)
∂T

)
∆T , (13)

where NFMI (NNM ) is the number of lattice sites in FMI (NM), Nint is the number of localized spins per sublattice
at the FMI/NM interface, NT (ω) = (e~ω/kBT − 1)−1 is the Bose distribution function, and χR(k, ω) = χNM/(1 +
λ2k2 − iωτsf ) is the retarded part of the dynamical spin susceptibility of NM with χNM , λ and τsf being the uniform
susceptibility, the spin diffusion length, and the spin-flip relaxation time. In Supplementary Equation (13), the
following two factors

〈[Jαsd(q)]2〉 =
[
SA(JA

sd)
2 + SB(JB

sd)
2
]
v2
q + SA(JA

sd)
2 , (14)

〈[Jβsd(q)]2〉 =
[
SA(JA

sd)
2 + SB(JB

sd)
2
]
v2
q + SB(JB

sd)
2 , (15)

represent effective interface exchange couplings felt by α- and β-magnons, respectively, and they become important
for a later discussion on the second sign change of the SSE that occurs at a lower temperature Tsign2. In Supple-
mentary Equations. (14) and (15), JA

sd and JB
sd are defined by the following exchange interaction at the FMI/NM

interface:

Hsd =
∑

i,j∈interface

(
JA

sdσi · SA,i + JB
sdσj · SB,j

)
, (16)

where σi is the conduction-electron spin density in NM.
Taking different exchange couplings at the GdIG/Pt into account, we define

η ≡ JA
sd/J

B
sd . (17)

In Ref. [7], η = 1 was assumed throughout the calculation, which predicted only one sign change of the SSE at the
magnetization compensation temperature Tcomp. However, since the exchange interaction of the Gd 4f -spin with
conduction-electron spin is much weaker than that of Fe 3d-spin, JA

sd coming from a Gd spin is much smaller than JB
sd

coming from an Fe spin in Supplementary Equation (16), giving η � 1. In Figure 4b in the main text, we plot the
temperature dependence of the SSE signal by setting η = 0. Although we can see two sign changes in the SSE signal
with the use of this parameter, the calculated value of Tsign2 ≈ 30 K is slightly lower than the experimentally observed
value of Tsign2 ≈ 68 K. The calculated value of Tsign2 increases upon increasing the η value from zero, and when we use
η = 0.13 (Figure 4b in the main text), we obtain Tsign2 ≈ 68 K, which agrees with the experimentally observed value.
Thus, the present calculation shows that the two sign changes of the SSE signal observed in Gd3Fe5O12/Pt hybrid
structures can be accounted for by the linear response approach. Moreover, the present calculation demonstrates
that we can determine the relative strength of the two interface exchange couplings, i.e., the parameter η defined by
Supplementary Equation (17), by measuring Tsign2 in the SSE signal.

The physics behind the two sign changes is as follows. The origin of the first sign change at Tsign1 that was already
predicted in Ref. [7] is the reversal of the spin quantization axis at the magnetization compensation point Tcomp when
the magnetization direction is pinned by an external magnetic field. On the other hand, the second sign change at
Tsign2 is given by the following two factors: i) the gap ∆ = z0JAB(SA − SB) in the β-magnon spectrum, and ii) the

relation 〈[Jαsd(q)]2〉 � 〈[Jβsd(q)]2〉 in Supplementary Equation (13) under the present condition JA
sd � JB

sd that gives

Iαs � Iβs in the high temperature limit. As obvious from Fig. 4b in the main text, at low temperatures T .∆/kB,
the SSE signal is dominated by α-magnon because of the gap ∆ in the β-magnon spectrum. At higher temperatures

T � ∆/kB, however, the SSE signal is mainly given by β-magnon because of the relation 〈[Jαsd(q)]2〉 � 〈[Jβsd(q)]2〉
in Supplementary Equation (13). Since Iαs and Iβs contribute opposite in sign through Supplementary Equation (12),
this competition gives rise to a sign change at a temperature Tsign2. Note that if we use JA

sd = JB
sd as was done in

Ref. [7], the second sign change does not appear because the α- and β-magnon mode contributions become comparable
in the high temperature limit.
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