

Supporting Information for DOI: 10.1055/s-0034-1379319 © Georg Thieme Verlag KG Stuttgart · New York 2014

Copper-Catalyzed Aerobic C–H Trifluoromethylation of Phenanthrolines

Cheng-Liang Zhu, Yong-Qiang Zhang, Yong-An Yuan, and Hao Xu*

Department of Chemistry, Georgia State University, Atlanta, Georgia, 30303, United States

Supporting Material

- A. General Information
- **B.** Procedures for the Copper-Catalyzed Aerobic C–H Trifluoromethylation of

Phenanthrolines

a. General Procedures

b. Control Experiments to Probe for a Possible Mechanism

- C. References
- **D. NMR Spectra**

A. General Information

General Procedures. All reactions were performed in oven-dried or flame-dried round-bottom flasks and vials. Stainless steel syringes and cannula were used to transfer air- and moisture-sensitive liquids. Flash chromatography was performed using silica gel 60 (230-400 mesh) from Sigma–Aldrich.

Materials. Commercial reagents were purchased from Sigma Aldrich, Fluka, EM Science, and Lancaster and used as received. All solvents were used after being freshly distilled unless otherwise noted.

Instrumentation. Proton nuclear magnetic resonance (¹HNMR) spectra, carbon nuclear magnetic resonance (¹³C NMR) spectra and fluorine nuclear magnetic resonance (¹⁹F NMR) were recorded on Bruker UltraShield-400 (400 MHz). Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to the NMR solvent residual peak (CHCl₃: δ 7.26). Chemical shifts for carbons are reported in parts per million downfield from tetramethylsilane and are referenced to the NMR solvent (CDCl₃: δ 77.0). Chemical shifts for fluorine are reported in parts per million downfield and are referenced to the fluorine resonances of CFCl₃. Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz), and integration.

The mass spectroscopic data were obtained at the Georgia State University mass spectrometry facility using a Micromass Platform II single quadruple instrument. Infrared (IR) spectra were obtained using a Perkin Elmer Spectrum 100 FT-IR spectrometer.

Abbreviations used: EtOH–ethanol, EtOAc–ethyl acetate, THF–tetrahydrofuran, MeOH– methanol, Et₂O–diethyl ether, CH₂Cl₂–dichloromethane, TEA–triethylamine, MeCN– acetonitrile, MS–molecular sieves, TLC–thin layer chromatography.

B. Procedure for the Copper-Catalyzed Aerobic C–H Trifluoromethylation of Phenanthrolines

a. General Procedures:

To a mixture of 1, 10-phenanthroline 1 (36 mg, 0.2 mmol), Cu (OAc)₂ (7.4 mg, 0.04 mmol), KOAc (9.8mg, 0.1 mmol) and AcOH (6.0 μ L, 0.1 mmol) in toluene (4.0 mL), TMSCF₃ (30 μ L, 0.2 mmol) was added at room temperature under O₂ atmosphere. The reaction mixture was stirred 40 °C for 3 hours. Another portion of TMSCF₃ (30 μ L, 0.2 mmol) was added and continue stirring at 40 °C. The reaction was monitored by TLC. After the starting material was completely consumed, the reaction was quenched by H₂O and extracted with EtOAc (3x 4 mL). The combined organic layer was washed by brine, dried over Na₂SO₄ and concentrated *in vacuo*. The product was isolated through a silica gel flash column (40% EtOAc in hexanes) as a white foam (41 mg, 80% yield).

1,10-Phenanthroline, 4,7-diphenyl-1,10-phenanthroline and 4,7-dimethyl-1,10-phenanthroline are commercially available and are used directly without further purification. 3-Phenyl-1,10-phenanthroline,¹ 3,8-diphenyl-1,10-phenanthroline,² and 5-nitro-1,10-phenanthroline were synthesized according to literature procedures.³

2-(Trifluoromethyl)-1,10-phenanthroline (2) : Compound **2** was isolated through a silica gel flash column (80% yield) as a white foam. ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.24 (s, H_a), 8.38 (d, *J* = 8.4 Hz, H_f), 8.23 (d, *J* = 8.6 Hz, H_c), 7.93 (d, *J* = 8.4 Hz, H_g), 7.85, 7.78 (d, *J* = 8.8Hz, H_{d &} H_e), 7.65 (m, H_b); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 151.06, 147.7 (q, *J* = 35.0 Hz), 145.72, 145.56, 137.83, 136.09, 129.76, 129.10, 128.79, 125.70, 123.59, 124.30 (q, *J* = 273 Hz), 119.00; ¹⁹F NMR (377 MHz, CDCl₃, ppm): δ -66.59 (s, 3F). IR v_{max} (neat)/cm⁻¹: 3696, 2967, 2217, 1595, 1337, 1112, 851, 746. HRMS (ESI, m/z): calcd for C₁₃H₈N₂F₃⁺ [M+H⁺]: 249.0640, found: 249.0642.

4,7-Diphenyl-2-(trifluoromethyl)-1,10-phenanthroline (S1a): Compound **S1a** was isolated through a silica gel flash column as an off-white foam (92% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.31 (d, *J* = 4.4 Hz, H_a), 7.96, 7.87 (d, *J* = 9.6 Hz, H_{c &} H_d), 7.93 (s, H_e), 7.61 (d, *J* = 4.4 Hz, H_b), 7.53-7.50 (m, 10H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 150.6, 150.5, 148.6, 147.8, 147.4, 147.1, 146.7, 146.4, 146.4, 137.4, 136.9, 129.5, 129.0, 128.8, 128.6, 127.7, 126.9, 126.3, 125.8, 124.0, 123.4, 123.1, 120.3, 119.5, 119.49, 117.6; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ - 66.40 (s, 3F); IR v_{max} (neat)/cm⁻¹: 3058, 2212, 1375, 1118, 1072, 838, 726; HRMS (ESI) calcd for C₂₅H₁₆N₃F₃ [M+H]⁺: 401.1266, found 401.1251.

4,7-Dimethyl-2-(trifluoromethyl)-1,10-phenanthroline (S2a): Compound **S2a** was isolated through a silica gel flash column as a white foam (61% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.13 (d, J = 4.4 Hz, H_a), 8.15, 8.05 (d, J = 9.2 Hz, H_{c &} H_d), 7.81 (s, H_e), 7.50 (d, J = 4.0 Hz, H_b), 2.88 (s, 3H), 2.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 150.8, 147.3, 146.7, 146.0, 145.7, 144.4, 129.0, 128.4, 124.6, 124.4, 121.4, 120.0, 119.9, 19.5, 19.0; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -66.59 (s, 3F); IR v_{max} (neat)/cm⁻¹: 3701, 2953, 1397, 1275, 1228, 1130, 1033, 877, 739; HRMS (ESI) calcd for C₁₅H₁₂N₃F₃ [M+H]⁺: 277.0953, found 277.0948.

3-Phenyl-2-(trifluoromethyl)-1,10-phenanthroline (S3a): Compound **S3a** was isolated through a silica gel flash column as a white foam (64% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.31

(d, $J = 3.6 \text{ Hz H}_{f}$), 8.31 (d, J = 8.0 Hz, H_d), 8.28 (s, H_a), 7.95, 7.85 (d, H_b & H_c, J = 8.8 Hz), 7.71 (dd, J = 8.0 Hz, 4.4 Hz, H_e), 7.32-7.49 (m, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 151.3, 145.9, 143.9, 139.9, 137.2, 136.3, 136.0, 129.4, 129.2, 129.1, 128.5, 128.4, 126.0, 125.6, 123.6, 123.3, 120.5, 115.8; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -66.53 (s, 3F); IR v_{max} (neat)/cm⁻¹ : 3048, 2923, 1721, 1557, 1314, 1125, 930, 697; HRMS (ESI) calcd for C₁₉H₁₂N₂F₃ [M+H]⁺ : 325.0953 , found 325.0941.

3,8-Diphenyl-2-(trifluoromethyl)-1,10-phenanthroline (S4a): Compound **S4a** was isolated through a silica gel flash column as a white foam (52% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.56 (s, H_a), 8.45 (s, H_e), 8.29 (s, H_b), 8.01, 7.88 (d, *J* = 8.8 Hz, H_{c &} H_d), 7.80 (d, *J* = 7.6 Hz, 2H), 7.58 (t, *J* = 7.2 Hz, 2H), 7.261-7.259 (m, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 150.4, 144.7, 139.9, 137.3, 137.2, 136.4, 135.8, 133.6, 129.5, 129.4, 129.3, 129.2, 129.0, 128.6, 128.4, 128.2, 127.6, 126.1; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -60.45 (s, 3F); IR v_{max} (neat)/cm⁻¹ : 3706, 2923, 1418, 1315, 1180, 1070, 931, 119, 699; HRMS (ESI) calcd for C₂₅H₁₆N₂F₃ [M+H]⁺ : 401.1266 , found 401.1251.

5-Nitro-2-(trifluoromethyl)-1,10-phenanthroline (S5a)⁵: Compound **S5a** was isolated through a silica gel flash column as a light yellow foam (17% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.47 (d, J = 4.4 Hz, H_a), 9.31 (d, J = 8.8 Hz, H_f), 8.85 (s, H_d), 8.49 (d, J = 8.0 Hz, H_c), 8.18 (d, J = 8.8 Hz, H_e), 7.85 (dd, J = 8.0 Hz, 4.4 Hz, H_b); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 152.4, 151.1, 150.8, 1150.4, 147.0, 146.0, 140.0, 132.5, 126.8, 125.0, 124.1, 122.5, 121.5; ¹⁹F NMR

(376 MHz, CDCl₃, ppm): δ -67.00 (s, 3F); IR ν_{max} (neat)/cm⁻¹: 3083, 2921, 1734, 1525, 1337, 1147, 1071, 846, 781; HRMS (ESI) calcd for C₁₃H₇N₃O₂F₃ [M+H]⁺: 294.0490, found 294.0492.

6-Nitro-2-(trifluoromethyl)-1,10-phenanthroline (S5b): Compound **S5b** was isolated through a silica gel flash column as a light yellow foam (54% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.41 (d, J = 4.0 Hz, H_f), 8.99 (d, J = 8.8 Hz, H_d), 8.70 (s, H_c), 8.66 (d, J = 8.4 Hz, H_b), 8.13 (d, J = 8.0 Hz, H_a), 7.88 (dd, J = 8.8 Hz, 4.0 Hz, H_e); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 154.5, 149.4, 149.1, 147.4, 145.8, 143.6, 138.1, 135.1, 127.9, 126.1, 125.0, 122.6, 122.4, 120.6, 120.55, 119.8; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -67.05 (s, 3F); IR v_{max} (neat)/cm⁻¹ : 3053, 2921, 1623, 1529, 1333, 1176, 1071, 913, 843, 768; HRMS (ESI) calcd for C₁₃H₇N₃O₂F₃ [M+H]⁺ : 294.0490, found 294.0493.

b. Control Experiments to Probe for a Possible Mechanism

Scheme S1. A control experiment in the presence of TEMPO

Procedure: To a mixture of 1, 10-phenanthroline 1 (18 mg, 0.1 mmol), Cu $(OAc)_2$ (3.7 mg, 0.02 mmol), KOAc (4.9 mg, 0.05 mmol), HOAc (3.0 µL, 0.05 mmol) and TEMPO (19 mg, 0.12 mmol, 1.2 equiv) in toluene (2.0 mL), TMSCF₃ (15 µL, 0.1 mmol) was added at room temperature under O₂ atmosphere. The reaction mixture was allowed to stir at 40 °C for 3 hours. Another portion of TMSCF₃ (15 µL, 0.1 mmol) was added and continue stirring at 40 °C The

reaction was monitored by TLC. After the starting material was completely consumed, the reaction was quenched by H_2O and extracted with EtOAc (3x 4 mL). The desired product was purified according to the general procedure.

Scheme S2. Control experiment under argon affords 1, 2-dihydrophenanthroline

2-(Trifluoromethyl)-1,2-dihydro-1,10-phenanthroline (3)⁴: Compound **3** was isolated through a silica gel flash column as colorless oil (8% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.72 (d, J = 3.2 Hz, H_a), 8.01 (d, J = 8.4 Hz, H_c), 7.34 (q, J = 4.0 Hz, H_b), 7.14, 7.04 (d, J = 8.0 Hz, H_d & H_e), 6.77 (d, J = 10.0 Hz, H_f), 6.41 (s, NH), 5.63 (td, J = 7.6 Hz, 2.0 Hz, H_g), 5.12 (m, H_h); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 147.9, 138.5, 136.6, 136.0, 129.0, 126.0, 125.2, 123.7 (q, J = 264 Hz), 121.6, 115.1, 114.2, 113.4, 55.0 (q, J = 31 Hz); ¹⁹F NMR (377 MHz, CDCl₃, ppm): δ - 81.24 (d, J = 7.5 Hz). IR v_{max} (neat)/cm⁻¹: 3672, 2928, 2513, 2159, 2029, 1977, 1384, 1120, 1067. HRMS (ESI, m/z): calcd for C₁₃H₁₀N₂F₃⁺ [M+H⁺]: 251.0796, found: 251.0791.

Scheme S3. Imine trifluoromethylation without the quinolinyl directing group

4-Methyl-*N***-(2,2,2-trifluoro-1-phenyl-1-(pyridin-2-yl)ethyl)aniline** (5)⁴: Compound 5 was isolated through a silica gel flash column as a white foam (53% yield). ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.75 (d, *J* = 4.4 Hz, 1H), 7.67 (d, *J* = 6.8 Hz, 2H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.47-7.43 (m, 3H), 7.33-7.30 (m, 1H), 7.19 (s, 1H), 7.06 (d, *J* = 8.0 Hz, 1H), 6.90 (d, *J* = 8.0 Hz, 2H), 6.53 (d, *J* = 8.0 Hz, 2H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.47, 147.21, 141.66, 137.79, 136.57, 128.99, 128.77, 128.42, 128.40, 128.16, 127.22, 126.30 (q, *J* = 290 Hz), 125.03, 123.26, 116.30, 68.79 (q, *J* = 26 Hz), 20.28. ¹⁹F NMR (377 MHz, CDCl₃, ppm): δ - 66.88. . IR v_{max} (neat)/cm⁻¹: 3346, 1615, 1516, 1257, 1146, 932, 699. HRMS (ESI, m/z): calcd for C₂₀H₁₈F₃N₂ [M+H⁺]: 343.1422; Found: 343.1419.

C. References

- 1. Case, F. H.; Sasin, R. J. Org. Chem., 1955, 20, 1330.
- 2. Nishikawa, Y.; Yamamoto, H. J. Am. Chem. Soc., 2011, 133, 8432.

3. Ji, S.; Guo, H.; Yuan, X.; Li, X.; Ding, H.; Gao, P; Zhao, C.; Wu, W.; Wu, W.; Zhao, J. Org. Lett., 2010, 12, 2876.

- 4. Zhang, Y.-Q.; Liu, J.-D.; Xu, H. Org. Biomol. Chem. 2013, 11, 6242.
- 5. Compounds S5a and S5b were distinguished from each other by NOESY analysis.

D. NMR Spectra

S9

S13

S18

¹³C NMR (100 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) --9.560 1/2 S4a 11 10 2 1.02 1.02 1.06 2.19 6.13 8 7 3 9 6 5 4 1 0 ppm 1.00 COSY Ha He H_c H_d Hb H_a CF₃ S4a ppm 7.0 ¢ ⁰ 88⁸ 6⁰ Ø - 7.5 H_d H_c 8.0 He 0 Hb 8.5 9.0 Û 9.5 0 0 Ha -10.0 8.2 7.2 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.0 7.8 7.6 7.4 7.0 ppm

