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1. PROOF OF THEOREM 1

Let Ajkm = f_1/2

12 Ao(w;Ujk)Aj(w;ij)e_Qm“’m dw so that Xji; has the form X, =

Y m QikmZikt—ms A = T-1/2 Zle zjkte_%iw@t be the discreet Fourier transform of the un-
observed white noise zji¢, and I7, = \d§k£|2 be the corresponding periodogram. It is well
known, i.e. Theorem 5.2.6 in Brillinger (2002), that under the conditions of Theorem 1, as
T — o0, I}, are asymptotically distributed as ng /df random variables with df=2 if wy # 0,1/2
and df=1 if wy = 0,1/2. There have been several approaches to the study of non-linear func-

tions/functionals of the periodograms of white noise for use in a variety of applications. The
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following Lemma is taken as an immediate consequence of the Edgeworth expansion of Gotze
& Hipp (1983). Further details about the application of this expansion to periodograms can be
found in Lemma A.1 of von Sachs (1994) and a discussion about its applicability under the un-
bounded log transformation when the absolute continuity of the distribution of 1 ;kt is assured by

(RA2) can be found in Janas & von Sachs (1995).

LEMMA 1. If (RA1)-(RA3) hold, then uniformly in j, k,{, ('

(i) E (1og I]:ZM> =~ +0 (T
(ii) var(log I5,) = o7 +O (T™)

(iii) cov (log 1%, log I]?W) = O (T1) when |{] # |V'].

Theorem 1 will follow from Lemma 1 after finding the decay of the remainder of the Bartlett’s

decomposition

L2 _
SL;IZE{}IOngke —log fjr(we; Ujk, Vi) — log I } =0(T™).
Iy

To show this decay, a first order Taylor’s series expansion of log I, around log f;1. (we; U k> Vj k)

can be taken where there exist 77,5 € [0, 1] such that

_ Rjre
fir(we; Us, V}'k)IjZke + ke R

log Ijxe — log fir(we; Ujk, Vir) — log I3y,

for Rjpe = jkg—fjk(ng;Ujk,ij)I;M. The proof of Theorem 1 can then be completed
by applying Lemmas 2 and 3 which respectively find that |Rjr| = O,(T~'/?) and

| fik(we; Ujtes Vi) Dy + mjgi Rjnel =2 = Op(1).
LEMMA 2. Under the assumptions of Theorem 1, sup, ;. o E|Rjie|* = O(T ') as T — .

Proof. Let  Qjgem = ZtT:_lnfm zjpre” 2Tt — EtT:l Zjge @t so  that  djg =

Ao(we; Ujr) Aj(we; ‘/jk)djkg + e where 1 = T-1/2 dom ajkme_%im‘”@jkgm. It then
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follows from Cauchy—Schwarz
B (1Rjnel?) <2 [B{ £ U Vi 172 [E {0} LB (irinal)} 7 428 (jrjnel).

Since the fourth cummulant of Z;;, being bounded implies that E(1 ;M)Q is uniformly bounded
and the finite fourth moments of the transfer functions in conjunction with their continuity and
(RAS) implies F { ij (we; Ui, V]k)} is uniformly bounded, the lemma is completed once the
decay of 7 is found.

Define the random functions

Aj(w) = / /< /§ Ao(w — v — G U Aj(w — v — G Vi) Ao(€ Vi) Ay (6: Vi)

x Ao(C =& Ujk) Aj (¢ — &5 Vi) Ao(C; Uk ) Az (G Vi) dv dC d€

so that F {Aj;(w)} has the Fourier coefficients £ (]ajkm|4) by Theorem 1.12 in Zyg-
mund (2003). From the smoothness of A2, hq and (RAS), the second derivative of E (Ajj)
is uniformly absolutely continuous and subsequently there exists a constant Cp such that
E (|ajkm|4) < Cy|m|~2 for all j, k, m. Note that, by Theorem 10.3.1 in Brockwell & Davis

(2006), E|Qjkem|* < 6|m|? + 2 [sup,, E {| Zjx(w)[*}] |m| . Consequently,
4

E (\Tjk£\4) < -0 (T‘Q) uniformly in j, k, 7]

T2 E (lajieml*) } " {E (1Qjkem ) } "

LEMMA 3. Under the assumptions of Theorem 1, sup; . o ¥ {]fjk(wg; Usjk, ij)IjM + anRjM‘—Q} =

o(1).

Proof. By Schwarz’s inequality and the definition of Rk,

2
E{‘Ijkg/ljké - fjk(wg;Ujk,ij)‘ } <FE (|Rjk£|2) E <|I;M|_2). Lemma 2 found that
sup; .o £ (|R;x|*) = o(1) and Lemma 5 in Fay et al. (2002) shows that sup; ; , E (|I]?M\_2) =

O(1) under (RA1)-(RA3). Consequently,

Tine/ Tog — fin(we; Uy, ij)‘ = 0,(1) and it suffices
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to prove Lemma 3 over the event
0= {il;lz \Like/ Tne — fin(wes Ujk, V)| < 6}
where € is defined in (RA4). Under Q, Iie > { fjr(we; Uji, Vi) — €} I%, and
Fik(wes Ujie, Vi) e + ke Rjie 2> { i (we; Ujie, Vi) — €} Ly

-2
so that Supj’k.’gE{)fjk(Wg;Ujk,V}k)I;M —l—njkgRjk@’ ’ Q} = O(l). O

2. PROOF OF THEOREM 2

Let |||l be the norm over R such that ||z||s = supz; where z = (21,...,2p)7,
define the induced operator norm on the space of P x P matrices where |[M|, =
sup, || M || /||2]|o0s and let A = A"'A and © = §~'©. The proof will make use of the fact
that, since 8 € ®@F Wilter B(w) = 20— b exp(2miwm) where the Fourier coefficients sat-
isfy ||bim||co = O(Jm|~2) (Zygmund, 2003). The proof will also use that, since Ty is the covari-
ance of a stochastic process with realizations almost surely in nger, rye Wiper ® Wiper )
that Tg(w, ) = 3200 D702 oo Ggms€™ ™2™ where |ggms| = O(|m|~?[s|~2).

Decomposing the mean square error E{‘Bp(w) - ﬁp(w)‘2} = ‘E {Bp(w)} - Bp(w)‘2 +

var { Bp(w)} , we will consider the bias and variance terms separately. By the Woodburry For-

mula

{UTU + )\n(27rm)4]\}_1 = (UTU)™! + A(2rm)* {n—lUTU + A(27rm)4]\}_1 AUTU)
(1)

so that sup, | F { 5y(w) } = ()] < [1B1()lloo + [ Ba(w)loc + O(T") where

B(wl)eQﬂ'im(w—ng) o 5(w)

~ _1 .
A@rm)! {0 A1UTU + A@rm)' ) (wg)erimen)
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and the O(T~!) term is the error in the approximation of the mean of Y; with U 3(w;) obtained
in Theorem 1. Approximating averaging with integration and using the decay of the Fourier

coefficients of 5 we find that

wMBN)Mm—wM\EZL/B )X dy — B(w)llo + O(T )

m=1—L
< 3 Ulbmlloe + O
|m|>L
=0(T™h
L ~ —1 .
up | B () |0 = sup | 3 A2rm)t {nflA—HJTU+-A@wnw4} b 2|+ O(T 1)
“ m=1—L
i ATyl + 0T )
D1+>\C 2mm )4 milee

where D; is defined in (RA6). By Schwarz’s inequality, 2D}/201/2)\1/2(27rm)2 < D+

AC(27m)*, so that

sup || Ba(w)||oo < AY2272D7 2072 N i by oo + O(T )

m=—00

=0\ +0(T™)

and it then follows that sup,, ,,

E{B@)} - fplw)] =00 +0(T ),

To compute the variance term, note that sup, var }< Ve(@)|x + [|Va(w)] ]« +

r—’h\

O(T~1) where

L L B
Ve(w) = n;Q Z Ugé‘g‘m Z {nilUTU + )\(27Tm)4/~\} ' (nilUTU)
lr=1—L m,s=1—L

~y—1 . .
> {nilUTU+A(27TS)4A} 627T1(m+s)w6727rz(mwg+swr)

L B N
Va(w):# Z Z {n_lUTU+)\(27rm)4]\} ' n‘lejTVjF(wz,wr)VjTUj

{r=1—Lm,s=1-L Jj=1

-~y -1 . .
> {nilUTU—FA(Qﬂ'S)ZLA} eQﬂlm(W7wZ)+2ﬂ"LS(UJ7wT).
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To find the decay of V¢, let Sp,s = 03 + Jf/2e”i(m+s) + Z‘Lﬂ_:ll a%e%im“‘ and note that | S,,s| <

03T so that an application of Cauchy—Schwarz leads to

L L2
[IVe()lls < 5sup\5m,s\ [n=tou]], Yo [[{{n T UTU + A@rm) A} 1
s m=1-L *
2 oo
< JSLI;Q Z {Dy + )\C(27rm)4}72 .

Since 2> {D + )\C(27rm)4}_2 < O VAg=t)\—1/4 2 (D1 + v 2dy, it follows

m=—0oQ

that sup,, ||Vi(w)||x = O(N"*T~IA\"1/4) If we define g, = diag(gimrs - - - » gQmr)» then

L L N
Vo(w) =n""1 Z {n_lUTU + )\(27rm)4A} n1 Z U]-TngmsV}TUj
m,s=1—L J=1

~y—1 .
X {n_lUTU + )\(2715)41\} e2milm+s)w 1 o771,

Since || {n‘lUTU + )\(27rr)411}71 |l =0(1) as A—0 and the summability of
the Fourier coefficients of I' assure that there exists a constant Cy such that
Sor i IS UL Vg, VUS|, < Co whenever U;, V; satisfy (RA6) and (RA7), it
follows that sup,, ||Va (w)||x = O(N~t +T71).

Consequently, sup,, , F¥ {|Bp(w) - Bp(w)|2} =ON+ N1 T I\ Y4 7=l 4 N~1) and

Theorem 2 follows.

3. PROOF OF THEOREM 3
Decomposing the mean squared error
‘2

+ sup E { ‘f‘q(w, v)—E

q7w7l/

sup E{‘fq(w,u) - Fq(w,y)r} = sup E{fq(w,l/)} —Ty(w,v)

q7w7l/ q7w71/
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we will sketch the proof for the convergence of the mean and bias terms separately assuming that

A~ N=/574/5 o investigate the bias term, apply the Woodbury Formula (1) so that

sup [E{Ty(w,1)} = Ty@.0)| £ 7 sup [ Bagie(w, )|« + sup || Bes (w, v)]l.
q,w,V k,K:l,Qj’w’V 7w,V

+O(N~2/57=2/5 4 N=12 4 7=1/2)

where
1 L 4 .
Bajll(W7 y) = ﬁ Z F(w47 VT)€2mm(w7we)+2ms(y7wr) o F(w, V)
Lm,r,s=1—L
1 L I I .
Bajia(w,v) = T2 Z 6(2ms) T (wy, ) {n]V]TVJ + 0(27‘(’8)4@} ©e2mim(w—we)+2mis(v—wr)
Lm,r,s=1—L

Bajo1(w,v) = Bajia(v,w)

L
1 ~ -1
Bajoa(w,v) = T2 Z 0% (2mm)*(27s)*0 {n]VJTV] + 9(27rm)4@} I'(we, vy)
lm,r,s=1—L
~71—1 - . .
% |:n]V]TV] +9(27TS)4@] @eZTrzm(wfwg)Jers(ufwr)
1 L L -1
Byw,) =75 > oty Y. {V/Vi+on,2rm)'6} VI,
lr=1-L m,s=1—L

> {V']T‘/J + enj (271'8)4(:)}_1 627ri(m+s)w€27rim(w7wz)+27Tis(ufwr) )
Using similar algebra to that used in the proof of Theorem 2 it can be found that

sup || Baji (@ V)|« < Y llgmslle +O(T1) =0T

Jwsv |ml|,|s|>L
o0
6(2ms)? ~1 1 -
B < OT H=00V+11!
sup||Bapia(w.)lle < D o Mg illomsll + 0T = 062 +T71)

m,s=—00

62(27s)*(2mm)* . .
jsclulll)/ 1Bajz(w. )l < m SZ:_OO {n_D3 + 6(2mm)*} {n_D3 + 6(27s)*} [|gmsll +O(T™) = 0@ +T77)

Z {Dg + 9nJ0(27rm) } — O(T_10_1/4)

m=—0oQ

sup || Bej(w, V)|« <
J?w7l/

and the supremum squared bias is O (6 + 7720712 4 N=4/57=4/5  N~L 4 T71).



8 R. T. KRAFTY, M. HALL, AND W. GUO

To investigate the variance term, let &jpp,s = { j}YﬁT —E ﬁYﬁT} e~ 2mi(mwetswr) o that

|

sup B {‘fq(w, V) — BT, (w, y)f} < supE U P(w.) ~E{P(w.n)

q,w,v w,V
[e’e) _9 2
<N e (VIVIES S ([ 4 ons(amm)
j=1,...,.N . *
oo
x> ElmllZ /T + ON T4 N4 T
£,rm,s=00

2
[e.e]
= N'D2 Z {Ds + an(27rm)40}72

m=—0Q

x |75 sup  E{log fi(w;Upp, Vik) }| + O(NTPT=45 4 N~L 4 771

wijkvyjk

—0 (N*10*1/2 LN L N T’1> .

Combining the results from the bias and variance terms,
. 2
sup,,., E {)rq(w, v) — [y(w, y)( } =0{0+ N1+ T2 Y2+ N~A/ST-45 4 N~L 4 771}

and Theorem 3 follows.
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