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Supplementary Information 

 

Data set 

 
 

Fig. S1. A schematic workflow of the data set preparation. 
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Feature selection 

 
Fig. S2. The intercorrelation matrix (using Pearson’s coefficient values) of the inhibitors/non-inhibitors 

model (A) and substrates/non-substrates model (B). 
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Coping with imbalanced data sets 

 The fuzzy C-means clustering (FCM) algorithm divides the input data into many clusters in 

which every data point possesses a partial membership in multiple clusters rather than complete 

association with a single cluster. Therefore, data points in the center of a cluster have a greater degree of 

belonging than data points located at the edge of cluster. Initially, FCM divides the n vector of xi (i = 1, 2, 

3,…, N) into c fuzzy groups, where M
ix ℜ∈ . The clustering center of each group is subsequently 

calculated, and the non-similarity index value function is minimized. For determination of membership in 

a cluster, a value of 0 or 1 is given to each data point. Subsequently, the element of the membership 

matrix is provided with the values of 0 and 1. The optimal cluster of each xi was obtained by minimizing 

the objective function of FCM (Zhou et al., 2010): 
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where m is a real-valued number greater than 1, m
iju  is the degree of membership of xi in the cluster j, cj is 

the center of the cluster j, and  is the similarity function between any measured data and the center. In 

this study, the number of clusters was generated from the ratio of the number of samples in the positive 

class to the number of samples in the negative class. The ratio of inhibitors:non-inhibitors was 

approximately 1.47; therefore, 2 clusters were generated for the inhibitors data set. These clusters were 

consequently used to represent the inhibitors class, along with all 913 inhibitors, for construction of the 

classification models. Herein, the decision tree algorithm was used for empirical observation. The 

predictive performance of each model was compared using a set of statistical parameters, including % 

accuracy (Acc), % sensitivity (Sens), % specificity (Spec) and Matthews correlation coefficient (MCC). 

Finally, inhibitors cluster 2 was selected as the best representative of the inhibitors for further CSPR 

analysis.  
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Table S1. A summary of predictive performance of positive class clusters 

Class Original / Cluster No. of 

I + NI / S + NS 

ACCtr 

(%) 

aACCcv 

(%) 

Senstr 

(%) 

aSenscv 

(%) 

Spectr 

(%) 

aSpeccv 

(%) 

MCCtr aMCCcv 

I Original 1341 + 913 89.219 82.165 91.723 87.696 85.542 74.042 0.776 0.627 

I Cluster 1 738 + 913 91.217 84.858 89.431 84.688 92.662 84.995 0.822 0.695 

I Cluster 2b 603 + 913 92.414 86.675 90.879 82.919 93.428 89.157 0.842 0.722 

S Original 197 +26 96.413 85.202 99.492 93.909 73.077 19.231 0.815 0.159 

S Cluster 1 14 + 26 97.500 85.000 100.000 78.571 96.154 88.462 0.947 0.670 

S Cluster 2 26 + 26 96.154 90.385 100.000 96.154 92.308 84.615 0.926 0.813 

S Cluster 3b 27 + 26 100.000 98.113 100.000 100.000 100.000 96.154 1.000 0.963 

S Cluster 4 21 + 26 91.489 87.234 100.000 85.714 84.615 88.462 0.843 0.742 

S Cluster 5 36 + 26 96.774 77.420 100.000 83.333 92.310 69.231 0.940 0.530 

S Cluster 6 27 + 26 98.113 92.453 100.000 96.296 96.154 88.462 0.963 0.851 

S Cluster 7 46 + 26 90.277 73.611 97.826 78.261 76.923 65.385 0.789 0.433 

I = inhibitor, NI = non-inhibitor, S= substrate, NS = non-substrate, ACC = accuracy, Sens = sensitivity, Spec = specificity, MCC = Matthews correlation coefficient.  
a 10-fold cross validation was performed for internal validation of the models.  
b The cluster that gives the best MCC was selected as representative for further CSPR analysis. 
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Multivariate analysis 

Decision tree  
Decision tree analysis is a supervised machine-learning algorithm (Tarca et al., 2007; Witten et al., 

2011) that has been widely used as a simple interpretation of binary classification (Tarca et al., 2007). 

Decision tree analysis is a way to represent a series of rules that leads to a particular classification 

(Sharma & Jain, 2013). It divides input data into a range based on attribute values that it learned from the 

training data set (Patil & Sherekar, 2013). In this study, decision tree models were constructed using the 

J48 algorithm of the Weka software package version 3.7.11. (Witten et al., 2011). The process of J48 

starts with creating if-then rules from the whole training set to split the data into two subsets, in which 

each subset contains data with the same feature value (Che et al., 2011). The splitting is performed 

through the use of internal nodes (i.e., independent variables) and external nodes (i.e., dependent 

variables) connected by branches (i.e., the cutoff value determining the class of the compounds) 

(Nantasenamat et al., 2013a). The tree initially finds and selects the most informative attribute (i.e., a 

descriptor as a root node for splitting data), followed by subsequent important attributes as internal nodes, 

until the terminal branch is reached (Nantasenamat et al., 2013a). The process continues until all samples 

in a subset are of the same class (Che et al., 2011). Initially, a large tree is grown and then pruned to 

reduce overfitting (Che et al., 2011). To produce a simple interpreted tree with the best performance, the 

minimum number of instances per leaf (miniNumObj) was optimized. The models were empirically 

constructed using varied miniNumObj. In addition, the validation set was used for an empirical search of 

suitable parameters. Matthews correlation coefficient (MCC) values for the training set (MCCtr), 10-fold 

cross validation (MCCcv) and a validation set (MCCv) were used to determine the  predictive performance 

of the model. Finally, the miniNumObj that gave the best MCC value was further used for the 

construction of the CSPR model based on J48. 

The results of classification using varied miniNumObj of the inhibitors/non-inhibitors classifier 

are shown in Table S2. The best predictive performance of the inhibitors/non-inhibitors model was 

provided by the miniNumObj of 8. Regarding the predictive performance, the results of the models using 

this miniNumObj parameter were selected as final. 
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Table S2.  The parameter optimization of the decision tree models 

Model miniNumObj No. of leaves Size of tree aMCCtr bMCCcv cMCCext
 

I_NI 2 40 79 0.877 0.708 0.694 

I_NI 3 32 63 0.857 0.724 0.703 

I_NI 4 31 61 0.852 0.715 0.703 

I_NI 5 34 67 0.860 0.709 0.713 

I_NI 6 31 61 0.860 0.733 0.723 

I_NI 7 29 57 0.850 0.739 0.732 

I_NI 8d 27 53 0.832d 0.739d 0.743d 

I_NI 9 13 37 0.812 0.742 0.694 

I_NI 10 14 27 0.792 0.739 0.674 

S_NS 2d 2 3 1.000d 0.955 d 0.800d 

S_NS 3 2 3 1.000 0.955 0.800 

S_NS 4 2 3 1.000 0.955 0.800 

aTraining. b10-fold cross validation. c External test set. d The best predictive performance. 
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Incorrectly classified compound  

 

Fig. S3. An incorrectly classified compound from the decision tree substrates/non-substrates model. 

 An incorrectly classified compound from the substrate/non-substrate decision tree classifier is 

shown in Fig. S3. The calculated descriptor values of this compound are MW = 692.8, nCIC = 4, RBN = 

14, nHDon = 0, ALogP =3.273, TPSA = 206.56, Qm = 0.266894306, Dipole = 13.0767, HOMO = -

0.32477, LUMO = -0.03158 and HOMO-LUMO GAP = 0.29319.  
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Artificial neural network (ANN) 

ANN is a supervised learning algorithm that mimics the behavior of the human brain, where the 

neuronal nodes of ANN represent human neurons and the synaptic weights represent dendrites and axons 

(Nantasenamat et al., 2013b). ANN is comprises many artificial processing units located in 3 layers, 

including input, hidden and output layers (Sutariya et al., 2013). The strength of the connection between 

processing units is defined by synaptic weights that can be adjusted by the learning process (Sutariya et 

al., 2013). The values of independent variables are relayed to the input layers, and then the signals are 

sent to hidden layers and output layers via synaptic weights (Nantasenamat et al., 2013b). The artificial 

neurons in the hidden layers contain a sigmoidal transfer function )(S x  (Eq. 2), which computes and 

limits the signal of the output layer as 0 or 1 (Nantasenamat et al., 2013b). 
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where β  is the slope parameter. The output layer contains a numerical class that is an unthresholded 
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where kMkkki wwww ,...,, 21=  is the weight of neuron which is optimized by total squared error, ow . is the 

weight which corresponds to the bias input, and ŷ  is the output signal of the neuron. 

The model is trained in a back-propagated manner, in which the difference between ! and y is 

calculated as the target error from the output layer through the hidden layer to the input layer, followed by 

a readjustment of the synaptic weights (Nantasenamat et al., 2013b). This process continues until reaching 

the assigned learning period and obtaining a minimized error and good prediction (Sutariya et al., 2013). 

The initial synaptic weights are randomly assigned at the beginning of the learning process, which may 

give rise to a slight varied prediction. Therefore, ten rounds of calculations were performed and the 

average parameter value was calculated and used for construction of the ANN models.  

The optimal value of parameters for ANN, including the number of hidden nodes, training time 

and learning rate and momentum, were empirically searched by software developed in-house, i.e., 

Autoweka. Ten calculations were performed, and the average RMSE values from these rounds were used 

to measure the predictive performance (Nantasenamat et al., 2013b). The optimal parameters are shown in 

Table S3.   
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Table S3. Optimal parameters of the ANN models 

Model Hidden node Training time Learning rate Momentum RMSEtr RMSEcv 

I_NI 17 200 0.3 0.0 0.2659 0.2934 

S_NS 1 1000 0.8 0.6 0.0044 0.0172 

 

Support vector machine (SVM) 

SVM is a supervised machine-learning algorithm based on statistical learning theory (Vapnik, 1998; 

Vapnik, 2000). SVM is a classifier that can separate data from two classes by finding a unique separating 

hyperplane with maximum margin (Vapnik, 2000) to minimize the classification error (Zhou et al., 2010). 

SVM searches for a set of data points that are the most difficult training points to be classified, which are 

defined as support vectors (Vapnik, 2000). These support vectors are closest to the hyperplane and 

located on the margin boundaries between the two classes (Yang, 2004). These striking characteristics 

contribute to the robustness and generalization ability of this classifier (Yang, 2004). Non-linear SVM 

was used in this study. Initially, non-linear original input X is projected into a higher dimensional feature 

space to allow the non-linear original data to be linearly separated in the transformed space using the 

kernel function (Eq.4) (Tarca et al., 2007). 

  

        ( ) ( ) ( )( )jiji xxxxK ϕϕ ⋅=,                                       (4) 

 

where K() represents the kernel function and!!!is a mapping function from the original input space into 

the feature space. Consequently, the linear classification model was constructed in the higher dimensional 

feature space, where the similarity between input data and support vectors was quantified by the kernel 

function, i.e., the radial basis function (RBF), as shown in Eq.5.  

 

           ( ) )exp(, jiji xxxxK −−= γ                                         (5) 

 

where K() represents the kernel function and γ  > 0 determines how the samples are transformed into a 

high-dimensional search space. As a result, data in higher dimensional space were linearly separated into 

two classes by the maximal-margin hyperplane, which provides the maximum distance between the two 
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classes by being located centrally between the marginal boundaries of each data class. The margin is 

defined as the distance between two marginal boundaries (2 ) where the support vectors are located.  

The most critical step in constructing a well-generalized SVM classifier is to find the optimal 

parameters of the kernel function. In the case of non-linear SVM, parameters that should be considered 

include the complexity parameter (C), which searches for a balance between misclassification and 

simplicity, gamma ( ), which determines the extent to which one training sample affects the model, and 

epsilon ( ε ), which designates the exponent value (we note that a value for the linear kernel is 1).  

To find the optimal parameters, a two-level grid search was performed using AutoWeka, which is 

a software program developed in-house. Initially, the global search was conducted by the systemic 

adjustment of exponential n values in the form of 2n for C and  parameters using a step size of 2. To 

obtain good performance, a more refined local grid search was performed on the regions from the global 

search using a step size of 0.25. The RMSE value was used for measurement of the predictive 

performance. Finally, SVM models were constructed by John Platt’s Sequential Minimal Optimization 

(SMO) algorithm of the Weka software package version 3.7.11 (Witten et al., 2011) using the optimal 

parameters obtained from the local grid search. The optimal parameters for SVM analysis are shown in 

Table S4. 

 

Table S4. Optimal parameters for the SVM models 

Model Level of search Complexity (C) Gamma (!) Epsilon (!) RMSEtr RMSEcv 

I_NI global 19 -11 0.001a 0.3668 0.3678 

I_NI localb 21 -9.5 0.001a 0.3304 0.3474 

S_NS global 19 -1 0.001a 0.0000 0.0000 

S_NS localb 21 -0.75 0.001a 0.0000 0.0000 

a Default ε value of 0.001 was used. 

 b Parameters of the local search were used for the construction of the SVM models. 

 

γ

γ
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